In this paper, we define the $ B_{\sigma} $-type grand Morrey spaces and establish the extrapolation theorem on the $ B_{\sigma} $-type grand Morrey spaces. In the process of proving the theorem, we find that the predual spaces of these spaces are $ H_{\sigma} $-block spaces and obtain the boundedness of the Hardy–Littlewood maximal operator on the predual spaces. By the extrapolation theory, the boundedness of the Calderón–Zygmund operator and commutators on the nonhomogeneous $ B_{\sigma} $-type grand Morrey space is also obtained. In particular, the classical bounded mean oscillation (BMO) spaces are characterized by establishing the John–Nirenberg inequality on the nonhomogeneous $ B_{\sigma} $ type grand Morrey space.
Citation: Yixiang Wang, Jiang Zhou. $ B_{\sigma} $-grand Morrey spaces[J]. Electronic Research Archive, 2025, 33(11): 6865-6884. doi: 10.3934/era.2025303
In this paper, we define the $ B_{\sigma} $-type grand Morrey spaces and establish the extrapolation theorem on the $ B_{\sigma} $-type grand Morrey spaces. In the process of proving the theorem, we find that the predual spaces of these spaces are $ H_{\sigma} $-block spaces and obtain the boundedness of the Hardy–Littlewood maximal operator on the predual spaces. By the extrapolation theory, the boundedness of the Calderón–Zygmund operator and commutators on the nonhomogeneous $ B_{\sigma} $-type grand Morrey space is also obtained. In particular, the classical bounded mean oscillation (BMO) spaces are characterized by establishing the John–Nirenberg inequality on the nonhomogeneous $ B_{\sigma} $ type grand Morrey space.
| [1] |
T. Iwaniec, C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal., 119 (1992), 129–143. https://doi.org/10.1007/bf00375119 doi: 10.1007/bf00375119
|
| [2] | A. Fiorenza, Duality and reflexivity in grand Lebesgue spaces, Collect. Math., 2000 (2000), 131–148. |
| [3] |
G. Anatriello, A. Fiorenza, Fully measurable grand Lebesgue spaces, J. Math. Anal. Appl., 422 (2015), 783–797. https://doi.org/10.1016/j.jmaa.2014.08.052 doi: 10.1016/j.jmaa.2014.08.052
|
| [4] |
C. Capone, M. R. Formica, R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal. Theory Methods Appl., 85 (2013), 125–131. https://doi.org/10.1016/j.na.2013.02.021 doi: 10.1016/j.na.2013.02.021
|
| [5] |
M. R. Formica, R. Giova, Boyd indices in generalized grand Lebesgue spaces and applications, Mediterr. J. Math., 12 (2015), 987–995. https://doi.org/10.1007/s00009-014-0439-5 doi: 10.1007/s00009-014-0439-5
|
| [6] |
C. Capone, A. Fiorenza, On small Lebesgue spaces, J. Funct. Spaces, 3 (2005), 73–89. https://doi.org/10.1155/2005/192538 doi: 10.1155/2005/192538
|
| [7] |
G. Di Fratta, A. Fiorenza, A direct approach to the duality of grand and small Lebesgue spaces, Nonlinear Anal. Theory Methods Appl., 70 (2009), 2582–2592. https://doi.org/10.1016/j.na.2008.03.044 doi: 10.1016/j.na.2008.03.044
|
| [8] |
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Am. Math. Soc., 43 (1938), 126–166. https://doi.org/10.1090/s0002-9947-1938-1501936-8 doi: 10.1090/s0002-9947-1938-1501936-8
|
| [9] |
A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic Equ., 56 (2011), 1003–1019. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793
|
| [10] |
H. Rafeiro, A note on boundedness of operators in grand Morrey spaces, Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl., 229 (2013), 349–356. https://doi.org/10.1007/978-3-0348-0516-2_19 doi: 10.1007/978-3-0348-0516-2_19
|
| [11] |
V. Kokilashvili, A. Meskhi, M. A. Ragusa, Weighted extrapolation in grand Morrey spaces and applications to partial differential equations, Arch. Ration. Mech. Anal., 119 (1992), 129–143. https://doi.org/10.4171/rlm/836 doi: 10.4171/rlm/836
|
| [12] |
K. P. Ho, Rough singular integral operators, spherical maximal functions and maximal Bochner-Riesz operators on grand Morrey spaces, Complex Anal. Oper. Theory, 18 (2024), 147. https://doi.org/10.1007/s11785024-01588-0 doi: 10.1007/s11785024-01588-0
|
| [13] |
A. Meskhi, Y. Sawano, Density, duality and preduality in grand variable exponent Lebesgue and Morrey spaces, Mediterr. J. Math., 15 (2018), 1–15. https://doi.org/10.1007/s00009-018-1145-5 doi: 10.1007/s00009-018-1145-5
|
| [14] |
Y. Sawano, T. Shimomura, Predual spaces of generalized grand Morrey spaces over non-doubling measure spaces, Georgian Math. J., 27 (2020), 433–439. https://doi.org/10.1515/gmj-2018-0068 doi: 10.1515/gmj-2018-0068
|
| [15] |
V. Kokilashvili, A. Meskhi, Fractional integrals with measure in grand Lebesgue and Morrey spaces, Integr. Transforms Special Funct., 32 (2021), 695–709. https://doi.org/10.1080/10652469.2020.1833003 doi: 10.1080/10652469.2020.1833003
|
| [16] | K. Matsuoka, E. Nakai, Fractional integral operators on $B^{p, \lambda}$ with Morrey-Campanato norms, Banach Center Publ., 92 (2011), 249–264. |
| [17] |
Y. Komori-Furuya, K. Matsuoka, E. Nakai, Y. Sawano, Integral operators on $B_\sigma$-Morrey-Campanato spaces, Rev. Mat. Complutense, 26 (2013), 1–32. https://doi.org/10.1007/s13163-011-0091-6 doi: 10.1007/s13163-011-0091-6
|
| [18] |
Y. Komori-Furuya, K. Matsuoka, Fractional integals on $B_\sigma$–weighted Morrey spaces, Math. Inequal. Appl., 19 (2016), 969–980. http://dx.doi.org/10.7153/mia-19-71 doi: 10.7153/mia-19-71
|
| [19] |
Y. Komori-Furuya, K. Matsuoka, E. Nakai, Y. Sawano, Applications of Littlewood-Paley theory for $\dot{B}_\sigma$-Morrey spaces to the boundedness of integral operators, J. Funct. Spaces, 2013 (2013), 859402. https://doi.org/10.1155/2013/859402 doi: 10.1155/2013/859402
|
| [20] | K. Matsuoka, $B_\sigma$-Campanato estimates for commutators of Calderón–Zygmund operators, in Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation: 22nd International Workshop in Operator Theory and its Applications, Sevilla, July 2011, Academic Press, (2014), 357–370. https://doi.org/10.1007/978-3-0348-0648-0_22 |
| [21] |
E. Nakai, T. Sobukawa, $ B_w^{u} $-function spaces and their interpolation, Tokyo J. Math., 39 (2016), 483–516. https://doi.org/10.48550/arXiv.1410.6327 doi: 10.48550/arXiv.1410.6327
|
| [22] |
R. de Francia, J. Luis, Factorization and extrapolation of weights, Am. Math. Soc., 7 (1982), 393–395. https://doi.org/10.1090/s0273-0979-1982-15047-9 doi: 10.1090/s0273-0979-1982-15047-9
|
| [23] |
K. P. Ho, Grand Morrey spaces and grand Hardy–Morrey spaces on Euclidean space, J Geom. Anal., 33 (2023), 180. https://doi.org/10.1007/s12220-023-01229-6 doi: 10.1007/s12220-023-01229-6
|
| [24] |
Z. Nieraeth, Extrapolation in general quasi-Banach function spaces, J. Funct. Anal., 285 (2023), 110130. https://doi.org/10.1016/j.jfa.2023.110130 doi: 10.1016/j.jfa.2023.110130
|
| [25] |
M. Wei, Extrapolation for weighted product Morrey spaces and some applications, Potential Anal., 60 (2024), 445–472. https://doi.org/10.1007/s11118-022-10056-3 doi: 10.1007/s11118-022-10056-3
|
| [26] |
Y. Zhao, J. Zhou, $B_\sigma$ type mixed Morrey spaces and their applications, J. Math. Inequal., 18 (2024), 329–353. https://doi.org/10.7153/jmi-2024-18-19 doi: 10.7153/jmi-2024-18-19
|
| [27] |
K. P. Ho, Grand Triebel-Lizorkin-Morrey spaces, Demonstratio Math., 58 (2025), 20240085. https://doi.org/10.1515/dema2024-0085 doi: 10.1515/dema2024-0085
|
| [28] |
A. Fiorenza, G. E. Karadzhov, Grand and small Lebesgue spaces and their analogs, Z. Anal. Anwend., 23 (2004), 657–681. https://doi.org/10.4171/zaa/1215 doi: 10.4171/zaa/1215
|
| [29] | A. P. Calderón, A. Zygmund, On the existence of certain singular integrals, in Selected Papers of Antoni Zygmund, Springer, (1989), 19–73. https://doi.org/10.1007/978-94-009-1045-4_3 |
| [30] |
V. S. Guliyev, J. J. Hasanov, S. G. Samko, Boundedness of maximal, potential type, and singular integral operators in the generalized variable exponent Morrey type spaces, J. Math. Sci., 170 (2010), 423–443. https://doi.org/10.1007/s10958-010-0095-7 doi: 10.1007/s10958-010-0095-7
|
| [31] |
R. Colifman, C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Stud. Math., 51 (1974), 241–250. https://doi.org/10.4064/sm-51-3-241-250 doi: 10.4064/sm-51-3-241-250
|
| [32] |
V. S. Guliyev, L. G. Softova, Global regularity in generalized Morrey spaces of solutions to nondivergence elliptic equations with VMO coefficients, Potential Anal., 38 (2013), 843–862. https://doi.org/10.1007/s11118-012-9299-4 doi: 10.1007/s11118-012-9299-4
|
| [33] |
V. S. Guliyev, L. G. Softova, Generalized Morrey regularity for parabolic equations with discontinuous data, Proc. Edinburgh Math. Soc., 58 (2015), 199–218. https://doi.org/10.1017/S0013091513000758 doi: 10.1017/S0013091513000758
|
| [34] |
S. Polidoro, M. A. Ragusa, Hölder regularity for solutions of ultraparabolic equations in divergence form, Potential Anal., 14 (2001), 341–350. https://doi.org/10.1023/A:1011261019736 doi: 10.1023/A:1011261019736
|
| [35] | R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math., 103 (19761), 611–635. https://doi.org/10.2307/1970954 |
| [36] |
R. Rochberg, G. Weiss, Derivatives of analytic families of Banach spaces, Ann. Math., 118 (1983), 315–347. https://doi.org/10.2307/2007031 doi: 10.2307/2007031
|
| [37] |
K. P. Ho, Nonlinear commutators on Morrey–Banach spaces, J. Pseudo-Differ. Oper. Appl., 12 (2021), 48. https://doi.org/10.1007/s11868-02100419-6 doi: 10.1007/s11868-02100419-6
|
| [38] |
C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., 3 (1997), 743–756. https://doi.org/10.1007/BF02648265 doi: 10.1007/BF02648265
|
| [39] |
F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. https://doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
|