Research article Special Issues

Artificial viscosity penalty-projection finite element approximations of non-Newtonian fluid flow for aneurysmal disease

  • Published: 17 November 2025
  • In this paper, we propose a new formulation of the artificial-viscosity penalty finite element methods for solving the mathematical model of non-Newtonian blood flow, treating blood as a pseudo-plastic fluid obeying the power-law Navier-Stokes equations. The proposed schemes are based on the artificial-viscosity mixed finite element method in the spatial direction, combined with a backward-Euler scheme and penalty-projection scheme for temporal discretization. It is rigorously derived the stability and error estimates for the fully discrete schemes. Numerical examples are presented to validate the theoretical ideas and to demonstrate the effectiveness of our proposed strategies. The comparison shows that the artificial viscosity penalty-projection scheme demands less central processing unit time, as well as a slightly higher-order precision. Finally, the penalty-projection finite element scheme is successfully applied to study the influence of blood viscosity on hemodynamics in aortic aneurysms. Moreover, numerical investigations for flow patterns based on patient-specific geometric models of cerebral aneurysms through segmentation of magnetic resonance imaging have been performed. The present study clearly illustrates the importance of taking the non-Newtonian properties of blood flow within aneurysms into account when studying the risk of aneurysm rupture.

    Citation: Keqing Feng, Yingchun Shan, Guang-an Zou. Artificial viscosity penalty-projection finite element approximations of non-Newtonian fluid flow for aneurysmal disease[J]. Electronic Research Archive, 2025, 33(11): 6885-6921. doi: 10.3934/era.2025304

    Related Papers:

  • In this paper, we propose a new formulation of the artificial-viscosity penalty finite element methods for solving the mathematical model of non-Newtonian blood flow, treating blood as a pseudo-plastic fluid obeying the power-law Navier-Stokes equations. The proposed schemes are based on the artificial-viscosity mixed finite element method in the spatial direction, combined with a backward-Euler scheme and penalty-projection scheme for temporal discretization. It is rigorously derived the stability and error estimates for the fully discrete schemes. Numerical examples are presented to validate the theoretical ideas and to demonstrate the effectiveness of our proposed strategies. The comparison shows that the artificial viscosity penalty-projection scheme demands less central processing unit time, as well as a slightly higher-order precision. Finally, the penalty-projection finite element scheme is successfully applied to study the influence of blood viscosity on hemodynamics in aortic aneurysms. Moreover, numerical investigations for flow patterns based on patient-specific geometric models of cerebral aneurysms through segmentation of magnetic resonance imaging have been performed. The present study clearly illustrates the importance of taking the non-Newtonian properties of blood flow within aneurysms into account when studying the risk of aneurysm rupture.



    加载中


    [1] K. B. Chandran, S. E. Rittgers, A. P. Yoganathan, Biofluid Mechanics: The Human Circulation, 2$^{nd}$ Edition, CRC Press, 2012. https://doi.org/10.1201/b11709
    [2] K. Chitra, S. Vengadesan, T. Sundararajan, P. Nithiarasu, An investigation of pulsatile flow in a model cavo-pulmonar vascular system, Commun. Numer. Methods Eng., 25 (2009), 1061–1083. https://doi.org/10.1002/cnm.1205 doi: 10.1002/cnm.1205
    [3] S. N. Majhi, V. R. Nair, Pulsatile flow of third grade fluids under body acceleration-modelling blood flow, Int. J. Eng. Sci., 32 (1994), 839–846. https://doi.org/10.1016/0020-7225(94)90064-7 doi: 10.1016/0020-7225(94)90064-7
    [4] J. G. Myers, J. A. Moore, M. Ojha, K. W. Johnston, C. R. Ethier, Factors influencing blood row patterns in the human right coronary artery, Ann. Biomed. Eng., 29 (2001), 109–120. https://doi.org/10.1114/1.1349703 doi: 10.1114/1.1349703
    [5] T. W. H. Sheu, S. F. Tsai, W. S. Hwang, T. M. Chang, A finite element study of the blood flow in total cavopulmonary connection, Comput. Fluids, 28 (1999), 19–39. https://doi.org/10.1016/S0045-7930(98)00018-8 doi: 10.1016/S0045-7930(98)00018-8
    [6] R. Budwig, D. Eiger, H. Hooper, J. Slippy, Steady flow in abdominal aortic aneurysm models, ASME J. Biomech. Eng., 115 (1993), 418–423. https://doi.org/10.1115/1.2895506 doi: 10.1115/1.2895506
    [7] J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, C. M. Putman, Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models, Am. J. Neuroradiol., 26 (2005), 2550–2559.
    [8] M. Julia, J. G. Bernard, Pulsatile flow in model cerebral aneurysms, Procedia Comput. Sci., 4 (2011), 811–820. https://doi.org/10.1016/j.procs.2011.04.086 doi: 10.1016/j.procs.2011.04.086
    [9] Z. Li, C. Kleinstreurer, Blood flow and structure interaction in a stented abdominal aortic aneurysm model, Med. Eng. Phys., 27 (2005), 369–382. https://doi.org/10.1016/j.medengphy.2004.12.003 doi: 10.1016/j.medengphy.2004.12.003
    [10] S. A. Berger, L. D. Jou, Flows in stenotic vessels, Annu. Rev. Fluid Mech., 32 (2000), 347–382. https://doi.org/10.1146/annurev.fluid.32.1.347 doi: 10.1146/annurev.fluid.32.1.347
    [11] A. D. Caballero, S. Laín, Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta, Comput. Methods Biomech. Biomed. Eng., 18 (2015), 1200–1216. https://doi.org/10.1115/1.2895506 doi: 10.1115/1.2895506
    [12] F. J. H. Gijsen, F. N. V. de Vosse, J. D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in a carotid bifurcation model, J. Biomech., 32 (1999), 601–608. https://doi.org/10.1016/s0021-9290(99)00015-9 doi: 10.1016/s0021-9290(99)00015-9
    [13] E. Gudiño, C. M. Oishi, A. Sequeira, Influence of non-Newtonian blood flow models on drug deposition in the arterial wall, J. Non-Newtonian Fluid Mech., 274 (2019), 104206. https://doi.org/10.1016/j.jnnfm.2019.104206 doi: 10.1016/j.jnnfm.2019.104206
    [14] B. M. Johnston, P. R. Johnston, S. Comey, D. Kilpatrick, Non-Newtonian blood flow in human right coronary arteries: Steady state simulations, J. Biomech., 37 (2004), 709–720. https://doi.org/10.1016/j.jbiomech.2003.09.016 doi: 10.1016/j.jbiomech.2003.09.016
    [15] X. Liu, Y. Fan, X. Deng, F. Zhan, Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta, J. Biomech., 44 (2011), 1123–1131. https://doi.org/10.1016/j.jbiomech.2011.01.024 doi: 10.1016/j.jbiomech.2011.01.024
    [16] V. L. Marrero, J. A. Tichy, O. Sahni, K. E. Jansen, Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm, J. Biomech. Eng., 136 (2014), 101001. https://doi.org/10.1115/1.4027488 doi: 10.1115/1.4027488
    [17] J. Bernsdorf, D. Wang, Non-Newtonian blood flow simulation in cerebral aneurysms, Comput. Math. Appl., 58 (2009), 1024–1029. https://doi.org/10.1016/j.camwa.2009.02.019 doi: 10.1016/j.camwa.2009.02.019
    [18] J. Deteix, D. Yakoubi, Shear rate projection schemes for non-Newtonian fluids, Comput. Method. Appl. Mech. Eng., 354 (2019), 620–636. https://doi.org/10.1016/j.cma.2019.06.006 doi: 10.1016/j.cma.2019.06.006
    [19] H. G. Morales, I. Larrabide, A. J. Geers, M. L. Aguilar, A. F. Frangi, Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms, J. Biomech., 46 (2013), 2158–2164. https://doi.org/10.1016/j.jbiomech.2013.06.034 doi: 10.1016/j.jbiomech.2013.06.034
    [20] K. Perktold, R. Peter, M. Resch, Pulsatile non-Newtonian blood flow simulation through a bifurcation with an aneurysm, Biorheology, 26 (1989), 1011–1030. https://doi.org/10.3233/bir-1989-26605 doi: 10.3233/bir-1989-26605
    [21] V. L. Rayz, A. Abla, L. Boussel, J. R. Leach, G. Acevedo-Bolton, D. Saloner, et al., Computational modeling of flow-altering surgeries in basilar aneurysms, Ann. Biomed. Eng., 43 (2014), 1210–-1222. https://doi.org/10.1007/s10439-014-1170-x doi: 10.1007/s10439-014-1170-x
    [22] S. Katz, A. Caiazzo, B. Moreau, Impact of turbulence modeling on the simulation of blood flow in aortic coarctation, Int. J. Numer. Method Biomed. Eng., 39 (2023), e3695. https://doi.org/10.1002/cnm.3695 doi: 10.1002/cnm.3695
    [23] X. Zhang, B. Mao, Y. Che, J. Kang, M. Luo, Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology, Comput. Biol. Med., 164 (2023), 107287. https://doi.org/10.1016/j.compbiomed.2023.107287 doi: 10.1016/j.compbiomed.2023.107287
    [24] F. He, L. Hua, T. Guo, Numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation, Theor. Biol. Med. Model., 18 (2021), 6. https://doi.org/10.1186/s12976-021-00136-z doi: 10.1186/s12976-021-00136-z
    [25] J. W. Barrett, W. B. Liu, Finite element error analysis of a quasi-Newtonian flow obeying the Carreauor power law, Numer. Math., 64 (1993), 433–453. https://doi.org/10.1007/BF01388698 doi: 10.1007/BF01388698
    [26] J. B. Barrett, W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math., 68 (1994), 437–456. https://doi.org/10.1007/s002110050071 doi: 10.1007/s002110050071
    [27] J. Baranger, P. Georget, K. Najib, Error estimates for a mixed finite element method for a non-Newtonian flow, J. Non-Newtonian Fluid Mech., 23 (1987), 415–421. https://doi.org/10.1016/0377-0257(87)80029-0 doi: 10.1016/0377-0257(87)80029-0
    [28] L. Lefton, D. Wei, Penalty finite element approximations of the stationary power-law Stokes problem, J. Numer. Math., 11 (2003), 301–322. https://doi.org/10.1515/156939503322663467 doi: 10.1515/156939503322663467
    [29] J. Borggaard, T. Iliescu, J. P. Roop, An improved penalty method for power-law Stokes problem, J. Comput. Appl. Math., 223 (2009), 646–658. https://doi.org/10.1016/j.cam.2008.02.002 doi: 10.1016/j.cam.2008.02.002
    [30] J. K. Djoko, J. M. Lubuma, M. Mbehou, On the numerical solution of the stationary power-law Stokes equations: A penalty finite element approach, J. Sci. Comput., 69 (2016), 1058–1082. https://doi.org/10.1007/s10915-016-0227-4 doi: 10.1007/s10915-016-0227-4
    [31] J. N. Reddy, V. A. Padhye, A penalty finite element model for axisymmetric flows of non-Newtonian fluids, Numer. Methods Partial Differ. Equations, 4 (1988), 33–56.
    [32] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.
    [33] Y. N. He, Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations, Math. Comp., 74 (2005), 1201–1216. https://doi.org/10.1090/S0025-5718-05-01751-5 doi: 10.1090/S0025-5718-05-01751-5
    [34] Y. N. He, J. Li, A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations, J. Comput. Appl. Math., 235 (2010), 708–725. https://doi.org/10.1016/j.cam.2010.06.025 doi: 10.1016/j.cam.2010.06.025
    [35] M. Jobelin, C. Lapuerta, J. C. Latché, P. Angot, B. Piar, A finite element penalty-projection method for incompressible fows, J. Comput. Phys., 217 (2006), 502–518. https://doi.org/10.1016/j.jcp.2006.01.019 doi: 10.1016/j.jcp.2006.01.019
    [36] J. Shen, On error estimates of the penalty method for unsteady Navier-Stokes equations, SIAM J. Numer. Anal., 32 (1995), 386–403. https://doi.org/10.1137/0732016 doi: 10.1137/0732016
    [37] J. Shen, On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes, Math. Comput., 65 (1996), 1039–1065. https://doi.org/10.1090/S0025-5718-96-00750-8 doi: 10.1090/S0025-5718-96-00750-8
    [38] X. Wang, G. A. Zou, B. Wang, The stabilized penalty-projection finite element method for the Navier-Stokes-Cahn-Hilliard-Oono system, Appl. Numer. Math., 165 (2021), 376–413. https://doi.org/10.1016/j.apnum.2021.03.004 doi: 10.1016/j.apnum.2021.03.004
    [39] Y. N. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 41 (2003), 1263–1285. https://doi.org/10.1137/S0036142901385659 doi: 10.1137/S0036142901385659
    [40] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Steady-State Problems, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-09620-9
    [41] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer, 1984. https://doi.org/10.1137/1028090
    [42] Y. I. Cho, K. R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28 (1991), 241–262. https://doi.org/10.3233/bir-1991-283-415 doi: 10.3233/bir-1991-283-415
    [43] J. B. Zhang, Z. B. Kuang, Study on blood constitutive parameters in different blood constitutive equations, J. Biomech., 33 (2000), 355–360. https://doi.org/10.1016/S0021-9290(99)00101-3 doi: 10.1016/S0021-9290(99)00101-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(234) PDF downloads(17) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog