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Abstract: In this paper, we define the Bσ-type grand Morrey spaces and establish the extrapolation
theorem on the Bσ-type grand Morrey spaces. In the process of proving the theorem, we find
that the predual spaces of these spaces are Hσ-block spaces and obtain the boundedness of the
Hardy–Littlewood maximal operator on the predual spaces. By the extrapolation theory, the
boundedness of the Calderón–Zygmund operator and commutators on the nonhomogeneous Bσ-type
grand Morrey space is also obtained. In particular, the classical bounded mean oscillation (BMO)
spaces are characterized by establishing the John–Nirenberg inequality on the nonhomogeneous Bσ
type grand Morrey space.
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1. Introduction

The grand Lebesgue spaces were introduced by Iwaniec and Sbordone [1] in 1992 on the
integrability of Jacobian functions. Since its introduction, the grand Lebesgue space has been widely
studied and generalized. Fiorenza [2] introduced the small Lebesgue space in this study and proved
that it is the dual space of the grand Lebesgue space. Anatriello and Fiorenza [3] introduced the fully
measurable grand Lebesgue spaces and proved the boundedness of Hardy–Littlewood maximal
operator through Hardy’s inequality. Generalized grand Lebesgue spaces were introduced by Capone
et al. [4], and Formica et al. [5] obtained control over the spectral radius of some linear operators and
proved the boundedness for two Hardy operators. For the study of the related spatial properties, the
reader can refer to [2–7].

Morrey spaces are regarded as a localized generalization of classical Lebesgue spaces, which were
defined and used to study the local properties of solutions of second-order elliptic equations by
Morrey [8]. Grand Morrey spaces, as a generalization of grand Lebesgue spaces and classical Morrey
spaces, were introduced by Meskhi [9] in 2010. The study of grand Morrey spaces were further
promoted due to the advantages of Morrey-type spaces in the study of local properties. Generalized

https://www.aimspress.com/journal/era
https://dx.doi.org/10.3934/era.2025303


6866

grand Morrey spaces [10], weighted grand Morrey spaces [11], grand Morrey spaces on Euclidean
spaces [12], and grand variable exponent Morrey spaces [13], etc., as generalizations of the more
general form of the grand Morrey spaces have been proposed and studied in the course of the study of
solvability problems of nonlinear partial differential equations in mathematical models. In this
process, the duality of the corresponding spaces, the operators’ boundedness, and other excellent
properties have also been systematically studied, and related work can be found in the relevant
references [11, 13–15].

In the research and development of space theory, centralized-type function spaces are also
important research objects. In 2011, Matsuoka and Nakai [16] completed the unification of central
Morrey spaces and general Morrey–Campanato spaces by introducing function spaces Bp,λ(Rn) with
the Morrey–Campanato norm. Subsequently, Komori-Furuya et al. [17] introduced Bσ-type function
spaces in 2013. Due to the unification of Bσ-type function spaces, the boundedness of various
operators such as Calderón–Zygmund operators, fractional integral operators, and commutators, etc.
on Bσ-type spaces were proved, and the corresponding work can be referred to in [18–21]. As a
profound application of weight theory, the extrapolation theorem can be used to solve the problem of
boundedness of operators on the spaces. However, its proof relies on the duality of the corresponding
spaces and the boundedness of Hardy–Littlewood maximal operators on dual or predual spaces. The
classical extrapolation theorem was first formulated by de Francia and Luis [22]. In subsequent
studies, the extrapolation theorem was generalized to more spaces such as grand Morrey spaces [23],
quasi-Banach function spaces [24], weighted product Morrey spaces [25], Bσ-type mixed Morrey
space [26], grand Morrey spaces on Euclidean spaces [27], etc.

Inspired by the results above, the main purpose of this paper is to consider the theory of operators
on Bσ-type grand Morrey spaces. To solve this problem, we first define the grand Bσ-type grand
Morrey spaces which unify the grand Lebesgue space, the grand Morrey space, and the grand central
Morrey space. At the same time, the embedding property, dual theory, and the boundedness of the
Hardy–Littlewood maximal operator in predual spaces are established. On this basis, the extrapolation
theory of the spaces is also solved. By the extrapolation theory, we establish some boundedness results
for some classical operators. In particular, the extrapolation theory can obtain a new characterization
of bounded mean oscillation (BMO) space.

We establish some conventions regarding notation. For any p ∈ [1,∞], we denote its conjugate
index p′ such that 1/p + 1/p′ = 1. In the following, let Q(x, r) represent an open cube with x as the
center and a side length of 2r, or an open sphere with x as the center and a radius of r. Specifically,
when x is the origin, we use Qr to represent it. We also use Q to denote the set of all cubes whose
edges are parallel to the coordinate axes. We always denote a positive constant by C, independent of
the main parameters, but it may vary from line to line. The notation A ≲ B means that A ≤ CB with
some positive constant C that is independent of the appropriate quantities. Additionally, if A ≲ B ≲ A,
we write A ∼ B. For a measurable set E, we use χE to denote the characteristic function of E, and |E|
signifies its n-dimensional Lebesgue-measure.

2. Bσ-type grand Morrey spaces

In this section, we define the Bσ-type grand Morrey spaces. Initially, we recall and review some
properties of the grand Lebesgue spaces and grand Morrey spaces.
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Definition 1. Let Q ∈ Q, for any Lebesgue-measurable function f and s > 0,write

d f ,Q(s) :=
1
|Q|
| {x ∈ Q : | f (x)| > s} |

and
f ∗Q(t) := inf

{
s > 0 : d f ,Q(s) ≤ t

}
t > 0.

Definition 2. Let p ∈ (0,∞) and Q ∈ Q. The grand Lebesgue space Lp)(Q) then consists of all
Lebesgue-measurable functions f satisfying

∥ f ∥Lp)(Q) = sup
0<t<1

(1 − ln t)−
1
p

(∫ 1

t
( f ∗Q(s))pds

) 1
p

< ∞.

The small Lebesgue space L(p(Q) consists of all Lebesgue-measurable functions f satisfying

∥ f ∥L(p(Q) =

∫ 1

0
(1 − ln t)−

1
p

(∫ t

0
( f ∗Q(s))pds

) 1
p dt

t
< ∞.

Lemma 1. [28] When p ∈ (1,∞), the grand Lebesgue spaces and the small Lebesgue spaces are
originally defined in terms of the following norms:

∥ f ∥∗Lp)(Q) = sup
0<ϵ<p−1

(
ϵ

|Q|

∫
Q
| f (x)|p−ϵdx

) 1
p−ϵ

< ∞,

∥g∥∗L(p(Q) = inf
g=

∑
gk

∞∑
k=1

inf
0<ϵ<p−1

ϵ−
1

p−ϵ

(
1
|Q|

∫
Q
|gk(x)|(p−ϵ)′dx

) 1
(p−ϵ)′

.

∥ · ∥∗Lp)(Q) and ∥ · ∥∗L(p(Q) are equivalent norms of ∥ · ∥Lp)(Q) and ∥ · ∥L(p(Q), respectively.

Lemma 2. [2] The associated space of Lp)(Q) is L(p′(Q) and vice versa, and the Hölder-type
inequality holds

1
|Q|

∫
Q
| f (x)g(x)|dx ≤ C∥ f ∥Lp)(Q)∥g∥L(p′ (Q)

and the norm conjugation formula is

∥ f ∥Lp)(Q) = sup
∥g∥

L(p′ (Q)
,0

1
|Q|

∫
Q
| f (x)g(x)|dx

∥g∥L(p′ (Q)
.

Definition 3. For any function f ∈ L1
loc(R

n), the Hardy–Littlewood maximal operator M is defined by

M f (x) := sup
Q∋x

1
|Q|

∫
Q
| f (y)|dy.

Lemma 3. [23] Let 1 < p < ∞. For any Q ∈ Q and f ∈ L(p(Q), a constant C > 0 exists such that

∥M(χQ f )∥L(p(Q) ≤ C∥ f ∥L(p(Q).
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Definition 4. [23] (Grand Morrey space) Let p ∈ (0,∞) and let u : Rn × (0,∞) → (0,∞) be a
Lebesgue-measurable function. In this case, the grand Morrey space Mp)

u (Rn) consists of all Lebesgue-
measurable functions f satisfying

∥ f ∥Mp)
u

:= sup
Q(x,r)∈Q

1
u(x, r)

∥ fχQ(x,r)∥Lp)(Q(x,r)).

For any Q = Q(x, r) ∈ Q, we write u(Q) = u(x, r).

Next, we introduce the Bσ-type grand Morrey spaces and study its related properties.

Definition 5. Let σ ≥ 0, p ∈ (0,∞), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable function.
The homogeneous Bσ-type grand Morrey space Ḃσ(Mp)

u )(Rn) is defined to be the set of all measurable
functions f with

∥ f ∥Ḃσ(Mp)
u ) := sup

r>0

1
rσ
∥ fχQr∥Mp)

u
= sup

r>0
sup
Q∈Q

1
rσu(Q)

∥ fχQ∩Qr∥Lp)(Q) < ∞.

Similarly, the nonhomogeneous Bσ-type grand Morrey space Bσ(Mp)
u )(Rn) consists of all measurable

functions f with

∥ f ∥Bσ(Mp)
u ) := sup

r≥1

1
rσ
∥ fχQr∥Mp)

u
= sup

r≥1
sup
Q∈Q

1
rσu(Q)

∥ fχQ∩Qr∥Lp)(Q) < ∞.

Remark 1.

1) When 0 ≤ σ1 ≤ σ2 < ∞, it is obvious that Bσ1(Mp)
u )(Rn) ↪→ Bσ2(Mp)

u )(Rn).

2) Let q > 0. By the q-convexification of grand Lebesgue space and Definition 2, we conclude that

∥ f q∥
1
q

Bσq(M
p
q )

uq )
= sup

r≥1
sup
Q∈Q

(
1

rσquq(Q)
∥ f qχQ∩Qr∥L

p
q )(Q)

) 1
q

= sup
r≥1

sup
Q∈Q

1
rσu(Q)

∥ fχQ∩Qr∥Lp)(Q)

= ∥ f ∥Bσ(Mp)
u ).

That is, the q-convexification of Bσ(Mp)
u )(Rn) is Bσq(M

p
q )
uq )(Rn).

Proposition 1. Let σ ≥ 0, 1 < p < ∞, and u : Rn × (0,∞) → (0,∞) be a Lebesgue-measurable
function. If u satisfies

Cr′−
n
p < u(x, r′), r′ > 1, (2.1)

C ≤ u(x, r′), r′ ≤ 1, (2.2)

then for any Q ∈ Q, we obtain χQ ∈ Bσ(Mp)
u )(Rn) and ∥χQ∥Bσ(Mp)

u ) ≤ C(1 + |Q|
1
p ).
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Proof. By Lemma 1 and Inequality (2.1) for any Q(x, r′) ∈ Q with r′ > 1

1
rσu(x, r′)

∥χQr∩Q(x,r′)∩Q∥Lp)(Q(x,r′)) ≤
C
rσ
·

1

r′
n
p u(x, r′)

|Qr ∩ Q(x, r′) ∩ Q|
1
p

≤
C
rσ
·

1

r′
n
p u(x, r′)

|Q|
1
p

≤
C
rσ
|Q|

1
p .

Thus,
∥χQ∥Bσ(Mp)

u ) ≤ C|Q|
1
p .

By Lemma 1 and Inequality (2.2) for any Q(x, r′) ∈ Q with r′ ≤ 1,

1
rσu(x, r′)

∥χQr∩Q(x,r′)∩Q∥Lp)(Q(x,r′)) ≤
C
rσ
·

1

r′
n
p u(x, r′)

|Qr ∩ Q(x, r′) ∩ Q|
1
p

≤
C
rσ
·

1

r′
n
p u(x, r′)

|Q(x, r′)|
1
p

≤ Cr−σ.

Thus,
∥χQ∥Bσ(Mp)

u ) ≤ C.

Definition 6. Let σ ≥ 0, 1 < p < ∞, and u : Rn× (0,∞)→ (0,∞) be a Lebesgue-measurable function.

1) If a function A ∈ L(p′(Q) satisfies supp(A) ⊂ Q ∩ Qr and ∥A∥L(p′ (Q) ≤
1

rσu(Q)|Q| for some r > 0 and
Q ∈ Q, the function A is called a (p′, u, σ, r)-block.

2) Let Ȧσ
(
H

(p′
u

)
be the collection of all sequences {(Ai, ri,Qi)}∞i=1 for which each Ai is a (p′, u, σ, ri)-

block. The homogeneous Hσ-block space Ḣσ(H(p′
u )(Rn) is defined by all Lebesgue-measurable

functions f such that

f =
∞∑

i=1

λiAi a.e.x ∈ Rn,

for some {λi}
∞
i=1 ∈ l

1 and {(Ai, ri,Qi)}∞i=1 ∈ Ȧσ
(
H

(p′
u

)
. The norm ∥ f ∥Ḣσ(H(p′

u ) can be defined by

∥ f ∥Ḣσ(H(p′
u ) := inf

 ∞∑
i=1

|λi| : f =
∞∑

i=1

λiAi a.e., {(Ai, ri,Qi)}∞i=1 ∈ Ȧσ
(
H(p′

u

) < ∞.
3) Let Aσ

(
H

(p′
u

)
be the collection of all sequences {(Ai, ri,Qi)}∞i=1 for which each Ai is a

(p′, u, σ, ri)-block, where ri ≥ 1. The nonhomogeneous Hσ-block space Hσ(H(p′
u )(Rn) is defined

by all Lebesgue-measurable functions f such that

f =
∞∑

i=1

λiAi a.e.x ∈ Rn,
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for some {λi}
∞
i=1 ∈ l

1 and {(Ai, ri,Qi)}∞i=1 ∈ Aσ
(
H

(p′
u

)
. The norm ∥ f ∥Hσ(H(p′

u ) can be defined by

∥ f ∥Hσ(H(p′
u ) := inf

 ∞∑
i=1

|λi| : f =
∞∑

i=1

λiAi a.e., {(Ai, ri,Qi)}∞i=1 ∈ Aσ
(
H(p′

u

) < ∞.
3. The duality of Bσ-type function spaces

In this section, we primarily establish the predual spaces of Bσ-type grand Morrey spaces. Prior to
presenting the key theorems, we conduct some preliminary lemmas related to Ḣσ(H(p′

u )(Rn) and
Hσ(H(p′

u )(Rn). Given their similar properties, we prove only some of the conclusions related to
Hσ(H(p′

u )(Rn) in this section, and the proof of the conclusions Ḣσ(H(p′
u )(Rn) are analogous.

Lemma 4. Let σ ≥ 0, p ∈ (1,∞), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable function. If
function g ∈ L(p′ , Q ∈ Q, then, for any r > 0 and r ≥ 1, the following inequalities hold, respectively:∥∥∥∥∥ χQr∩Qg

rσu(Q)|Q|

∥∥∥∥∥
Ḣσ(H(p′

u )
≤ ∥g∥L(p′ (Q),

and ∥∥∥∥∥ χQr∩Qg
rσu(Q)|Q|

∥∥∥∥∥
Hσ(H(p′

u )
≤ ∥g∥L(p′ (Q).

Proof. When Q ∈ Q and r ≥ 1, let

B :=
χQr∩Qg

rσu(Q)|Q|∥g∥L(p′ (Q)
.

Obviously, B satisfies supp(B) ⊂ Qr ∩ Q and

∥B∥L(p′ (Q) ≤
1

rσu(Q)|Q|
·
∥χQr∩Qg∥L(p′ (Q)

∥g∥L(p′ (Q)
≤

1
rσu(Q)|Q|

.

This implies that B is a (p′, u, σ, r)-block. Thus,∥∥∥∥∥ χQr∩Qg
rσu(Q)|Q|

∥∥∥∥∥
Hσ(H(p′

u )
≤ ∥g∥L(p′(Q) .

Next, we introduce Hσ-block spaces and prove its density in Hσ-spaces.

Definition 7. Let σ ≥ 0, p ∈ (1,∞), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable function.

1) The Hσ-block space Ḣσ(H(p′
u )(Rn), which is the linear subspace of Ḣσ(H(p′

u )(Rn), is defined to
be the set of all functions f satisfying supp( f ) ⊂ QR\QR−1 for some R > 0.

2) The Hσ-block space Hσ(H(p′
u )(Rn), which is the linear subspace of Hσ(H(p′

u )(Rn), is defined to
be the set of all functions f satisfying supp( f ) ⊂ QR for some R ≥ 1.

Lemma 5. Letσ ≥ 0, p ∈ (1,∞), and u : Rn×(0,∞)→ (0,∞) be a Lebesgue-measurable function. The
spaces Ḣσ(H(p′

u )(Rn) and Hσ(H(p′
u )(Rn) are dense in Ḣσ(H(p′

u )(Rn) and Hσ(H(p′
u )(Rn), respectively.
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Proof. For any f ∈ Hσ(H(p′
u )(Rn), there are sequences {(Ai, ri,Qi)}∞i=1 in which Ai is a (p′, u, σ, ri)-

block satisfying

f =
∞∑

i=1

λiAi a.e.x ∈ Rn and
∞∑

i=1

|λi| < ∞.

Consequently, it is evident that
k∑

i=1

λiAi ∈Hσ(H(p′
u )(Rn).

Then, for any k ∈ N, ∥∥∥∥∥∥∥ f −
k∑

i=1

λiAi

∥∥∥∥∥∥∥
Hσ(H(p′

u )

=

∥∥∥∥∥∥∥
∞∑

i=k+1

λiAi

∥∥∥∥∥∥∥
Hσ(H(p′

u )

≤

∞∑
i=k+1

|λi|,

so it will suffice to show that ∥ f −
∑k

i=1 λiAi∥Hσ(H(p′
u ) → 0 when k → ∞.

Therefore, we complete the proof that the space Hσ(H(p′
u )(Rn) is dense in Hσ(H(p′

u )(Rn).
For any f ∈ Ḣσ(H(p′

u )(Rn), there are sequences {(Ai, ri,Qi)}∞i=1 in which Ai is a
(p′, u, σ, ri)-block satisfying

f =
∞∑

i=1

λiAi a.e.x ∈ Rn and
∞∑

i=1

|λi| < ∞.

From this, we have supp(χQR\QR−1 Ai) ⊂ QR\QR−1 and supp(Ai − χQR\QR−1 Ai) ⊂ Q ∩ Qi for any block Ai

and some Q ∈ Q.
Let gk =

∑k
i=1 λiχQR\QR−1 Ai. It will suffice to show that gk ∈ Ḣσ(H(p′

u )(Rn). By definition of the space
Ḣσ(H(p′

u )(Rn) and Lemma 4, we have

∥Ai − χQR\QR−1 Ai∥Ḣσ(H(p′
u ) ≤ rσu(Q)|Q| · ∥Ai − χQR\QR−1 Ai∥L(p′ (Q). (3.1)

Combining (3.1), we can obtain the following inequality:

∥ f − gk∥Ḣσ(H(p′
u ) ≤

k∑
i=1

λi∥Ai − χQR\QR−1 Ai∥Ḣσ(H(p′
u ) +

∥∥∥∥∥∥∥
∞∑

i=k+1

λiAi

∥∥∥∥∥∥∥
Ḣσ(H(p′

u )

≤

k∑
i=1

λirσu(Q)|Q| · ∥Ai − χQR\QR−1 Ai∥L(p′ (Q) +

∞∑
i=k+1

|λi|.

Therefore, we can deduce that ∥ f − gk∥Ḣσ(H(p′
u )(Rn) → 0 when R→ ∞ and k → ∞.

It implies that the space Ḣσ(H(p′
u )(Rn) is dense in Ḣσ(H(p′

u )(Rn).

Theorem 1. Let σ ≥ 0, p ∈ (1,∞), and u : Rn × (0,∞) → (0,∞) be a Lebesgue-measurable function.
The spaces Ḣσ(H(p′

u )(Rn) and Hσ(H(p′
u )(Rn) are the predual spaces of Ḃσ(Mp)

u )(Rn) and Bσ(Mp)
u )(Rn),

respectively.
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Proof. Let f ∈ Bσ(Mp)
u )(Rn) and g ∈ Hσ(H(p′

u )(Rn). By definition of the space Hσ(H(p′
u )(Rn), for

any ϵ > 0, a decomposition g =
∑∞

i=1 λiAi exists such that
∞∑

i=1

|λi| ≤ (1 + ϵ)∥g∥Hσ(H(p′
u ). (3.2)

In addition, by the Hölder inequality on grand Lebesgue spaces and small Lebesgue spaces
and (3.2),

∥ f g∥L1 ≤

∞∑
i=1

|λi|

∫
Rn
| fχQi∩Qri

Ai|dx

≲
∞∑

i=1

|λi| · |Qi| · ∥ fχQi∩Qri
∥Lp)(Qi)∥Ai∥L(p′ (Qi)

≲
∞∑

i=1

|λi| · ∥ fχQi∩Qri
∥Lp)(Qi)

1
rσi u(Qi)

≲

 ∞∑
i=1

|λi|

 ∥ f ∥Bσ(Mp)
u )

≲ (1 + ϵ)∥g∥Hσ(H(p′
u )∥ f ∥Bσ(Mp)

u ).

Hence, we get
∥ f g∥L1 ≲ ∥g∥Hσ(H(p′

u )∥ f ∥Bσ(Mp)
u ). (3.3)

Moreover, we define the functional L f : Hσ(H(p′
u )(Rn)→ C as

L f (g) =
∫
Rn

f (x)g(x)dx, g ∈ Hσ(H(p′
u )(Rn).

By the definition of the norm of the operator L f on Hσ(H(p′
u )(Rn),

∥L f ∥(Hσ(H(p′
u ))∗ := sup

g,0

1
∥g∥Hσ(H(p′

u )

∣∣∣∣∣∫
Rn

f (x)g(x)dx
∣∣∣∣∣ .

Thus, it can be inferred that

∥L f ∥(Hσ(H(p′
u ))∗ ≲ sup

g,0

∥g∥Hσ(H(p′
u )∥ f ∥Bσ(Mp)

u )

∥g∥Hσ(H(p′
u )(Rn)

≲ ∥ f ∥Bσ(Mp)
u ). (3.4)

Let L : Hσ(H(p′
u )(Rn) → C is a bounded linear functional. Furthermore, for r ≥ 1 and Q ∈ Q, the

functional Lr,Q : L(p′(Q)→ C is defined by

Lr,Q(g) = L
(
χQ∩Qr g

rσu(Q)|Q|

)
, g ∈ L(p′(Q).

According to the definition of the norm of the operator Lr,Q on L(p′(Q), it can be inferred that

∥Lr,Q∥(L(p′ (Q))∗ := sup
g,0

|L
(
χQ∩Qr g

rσu(Q)|Q|

)
|

∥g∥L(p′ (Q)
.
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From Lemma 2 and the Riesz representation theorem, for each cube Q and r ≥ 1, there is a fr,Q ∈

Lp)(Q) such that

Lr,Q(g) =
∫
Rn

fr,Q(x)g(x)dx,

for all g ∈ L(p′(Q) and that ∥ fr,Q∥Lp)(Q) = ∥Lr,Q∥(L(p′ (Q))∗ .

By using the boundedness of the functional L and Lemma 4

|Lr,Q(g)| ≤ ∥L∥(Hσ(H(p′
u ))∗

∥∥∥∥∥ χQ∩Qr g
rσu(Q)|Q|

∥∥∥∥∥
Hσ(H(p′

u )

≤ ∥L∥(Hσ(H(p′
u ))∗∥g∥L(p′ (Q).

Hence,
∥ fr,Q∥Lp)(Q) = ∥Lr,Q∥(L(p′ (Q))∗ ≤ ∥L∥(Hσ(H(p′

u ))∗ .

By the definition of the functional L, for any r ≥ 1 and Q ∈ Q, we have

L(χQ∩Qr g) =
∫
Rn

rσ|Q|u(Q) fr,Q(x)g(x)dx.

Thus, when 1 ≤ r1 ≤ r2 and Q1 ⊂ Q2, we have

L
(
χQ1∩Qr1

g
)
= L

(
χQ1∩Qr1

χQ1∩Qr1
g
)
= L

(
χQ2∩Qr2

χQ1∩Qr1
g
)
.

Furthermore, it can be concluded that

rσ1 |Q|u(Q) fr1,Q1 = rσ2 |Q|u(Q) fr2,Q2 a.e.x ∈ Q1 ∩ Qr1 .

That implies the definition of the function f independent of r and Q as follows:

f = rσu(Q)|Q| · fr,Q a.e.x ∈ Q ∩ Qr.

It can then be concluded that
1

rσ|Q|u(Q)
∥ fχQ∩Qr∥Lp)(Q) ≤ ∥ fr,Q∥Lp)(Q) ≤ ∥L∥(Hσ(H(p′

u ))∗ ,

and
∥ f ∥Bσ(Mp)

u ) ≤ ∥L∥(Hσ(H(p′
u ))∗ . (3.5)

Thus, for all g ∈ L(p(Q), it can be concluded that∫
Rn

fr,Q(x)g(x)dx =
1

rσ|Q|u(Q)
L f

(
χQ∩Qr g

)
and ∫

Rn
fr,Q(x)g(x)dx = L

(
1

rσ|Q|u(Q)
χQ∩Qr g

)
=

1
rσ|Q|u(Q)

L
(
χQ∩Qr g

)
.

Therefore, L is identical on the (p′, u, σ, ri)-block. The set of finite linear combinations of the
(p′, u, σ, ri)-block is Hσ(H(p′

u )(Rn), and through Lemma 5, (3.4), and (3.5), we get L = L f and

∥ f ∥Bσ(Mp)
u ) ∼ ∥L f ∥(Hσ(H(p′

u ))∗ .
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Corollary 1. If f ∈ Bσ(Mp)
u )(Rn) for all g ∈ Hσ(H(p′

u )(Rn) such that
∫
Rn | f (x)g(x)|dx < ∞, then for all

g ∈ Hσ(H(p′
u )(Rn), the following equivalence holds:

∥ f ∥Bσ(Mp)
u ) ∼ sup

{∫
Rn
| f (x)g(x)|dx : ∥g∥Hσ(H(p′

u ) ≤ 1
}
.

4. Extrapolation

In this section, we extend the extrapolation theory which is initially introduced by Rubio de
Francia in [22] to Bσ-type grand Morrey spaces. The explanation of extrapolation theory is based on
Muckenhoupt weight functions. Thus, we start by revisiting the definition of Muckenhoupt
weight functions.

Definition 8.

1) Let 1 < p < ∞. We say that a locally integrable function ω : Rn → (0,∞) belongs to Ap weight if

[ω]Ap := sup
Q∈Q

(
1
|Q|

∫
Q
ω(x)dx

) (
1
|Q|

∫
Q
ω(x)−

p′
p dx

) p
p′

< ∞.

2) We say that a locally integrable function ω : Rn → (0,∞) belongs to the A1 weight if for any
Q ∈ Q

1
|Q|

∫
Q
ω(y)dy ≤ Cω(x) a.e.x ∈ Q,

for some constants C > 0. The infimum of all such C is denoted by [ω]A1 .

3) We define A∞ :=
⋃

p≥1 Ap.

Lemma 6. Let σ ≥ 0, p ∈ (1,∞), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable function. If
for any Q ∈ Q, u satisfies

∞∑
i=1

u(2iQ) ≤ Cu(Q). (4.1)

Then, Hardy–Littlewood maximal operator M is then bounded on Ḣσ(H(p′
u )(Rn) and Hσ(H(p′

u )(Rn).

Proof. Let f ∈ Hσ(H(p′
u )(Rn). Then the function f can be represented as

f =
∞∑

i=1

λiAi a.e.x ∈ Rn.

Thus, it is sufficient to prove that for any (p′, u, σ, ri)-block A satisfies ∥MA∥Hσ(H(p′
u )(Rn) ≤ C.

Let A be a (p′, u, σ, r)-block. Then, perform the following decomposition:

MA = χ2QMA +
∞∑

i=1

χ2i+1Q\2iQMA.

Write A0 := χ2QMA and Ai := χ2i+1Q\2iQMA.
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By Lemma 3, a constant C which is independent of Q exists such that

∥A0∥L(p′ (2Q) ≤ C∥A∥L(p′ (2Q) ≤ C∥A∥L(p′ (Q)

≤ C
1

u(Q)|Q|rσ
= C

1
u(2Q)|2Q|rσ

u(2Q)
u(Q)

.

Thus, u(Q)
Cu(2Q) A0 is a (p′, u, σ, r)-block and

∥A0∥Hσ(H(p′
u ) ≤ C

u(2Q)
u(Q)

. (4.2)

Further, for any i ∈ N+ and x ∈ 2i+1Q\2iQ, we have

Ai ≤
1
|2iQ|

∫
Q∩Qr

|A(y)|dy

≤ C
|Q|
|2iQ|
∥A∥L(p′ (Q)∥χQ∥Lp)(Q)

≤ C
1

rσu(Q)
1
|2iQ|
.

Applying the norm ∥ · ∥L(p(2i+1Q) on both sides of the inequality above, we have

∥Ai∥L(p(2i+1Q) ≤ C
1

rσu(Q)
1
|2iQ|
∥χ2i+1Q\2iQ∥L(p(2i+1Q)

≤ C
1

rσu(Q)|Q|
|Q|
|2i+1Q|

= C
1

rσu(2i+1Q)|2i+1Q|
·

u(2i+1Q)
u(Q)

,

where the constant C is independent of Q. Thus, u(Q)
Cu(2i+1Q) Ai is a (p′, u, σ, r)-block and

∥Ai∥Hσ(H(p′
u ) ≤ C

u(2i+1Q)
u(Q)

. (4.3)

Then, by Inequality (4.1)–(4.3), for any (p′, u, σ, ri)-block A, a constant C exists such that

∥MA∥Hσ(H(p′
u ) ≤ C

1
u(Q)

∞∑
i=1

u(2iQ) ≤ C.

Hence, we deduce that MA ∈ Hσ(H(p′
u )(Rn). Similarly, it can ultimately be concluded that M is

bounded on Ḣσ(H(p′
u )(Rn) and Hσ(H(p′

u )(Rn).
Drawing on the boundedness of the Hardy–Littlewood maximal operator M, we establish the

subsequent iteration algorithm generated by this operator.
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Definition 9. Let σ ≥ 0, p ∈ (1,∞), q ∈ (0, p), and u : Rn× (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies

∞∑
i=1

uq(2iQ) ≤ Cuq(Q) (4.4)

for any Q ∈ Q. Define B as the operator norm of M on Hσq(H
(( p

q )′

uq )(Rn), i.e.,

B = ∥M∥
Hσq(H

(( p
q )′

uq )(Rn)→Hσq(H
(( p

q )′

uq )(Rn)
.

For any non-negative locally integral function h, the iteration algorithm R is defined by

Rh :=
∞∑

k=0

Mkh
2kBk ,

where Mk is the k-th iterations of M and we write M0h = h.

Proposition 2. Let σ ≥ 0, p ∈ (1,∞), q ∈ (0, p), and u : Rn × (0,∞) → (0,∞) be a Lebesgu-

measurable function. If u satisfies (4.4) for Q ∈ Q, for any h ∈ Hσq(H
(( p

q )′

uq )(Rn), the operator R has the
following properties:

h(x) ≤Rh(x),
∥Rh∥

Hσq(H
(( p

q )′

uq )
≤ 2∥h∥

Hσq(H
(( p

q )′

uq )
,

[Rh]A1 ≤ 2B.

These properties can be deduced from the definition of the operator R and the boundedness of the
Hardy–Littlewood maximal operator M on the space Hσ(H(p′

u )(Rn).

Theorem 2. Let σ ≥ 0, p ∈ (1,∞), q ∈ (0, p), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies (4.4) for any Q ∈ Q, and if f ∈ Bσ(Mp)

u )(Rn) and g is a non-negative Lebesgue-
measurable function such that for every

ω ∈

{
Rh : h ∈ Hσq(H

(( p
q )′

uq )(Rn) and ∥h∥
Hσq(H

(( p
q )′

uq )
≤ 1

}
,

that satisfy ∫
Rn
|g(x)|qω(x)dx ≤ C

∫
Rn
| f (x)|qω(x)dx < ∞,

this implies that g ∈ Bσ(Mp)
u )(Rn) and

∥g∥Bσ(Mp)
u ) ≤ C∥ f ∥Bσ(Mp)

u ).

Proof. From Corollary 1, we can obtain

∥g∥q
Bσ(Mp)

u )
= ∥gq∥

Bσq(M
p
q )

uq )

∼ sup
{
|

∫
Rn

g(x)qh(x)dx| : ∥h∥
Hσq(H

(( p
q )′

uq )
≤ 1

}
.
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By Proposition 2,

|

∫
Rn

g(x)qh(x)dx| ≤
∫
Rn
|g(x)q|Rh(x)dx

≤ C
∫
Rn
| f (x)q|Rh(x)dx

≤ C∥ f q∥
Bσq(M

p
q )

uq )
∥h∥

Hσq(H
(( p

q )′

uq )

≤ C∥ f ∥q
Bσ(Mp)

u )
.

Further, it implies that
∥g∥Bσ(Mp)

u ) ≤ C∥ f ∥Bσ(Mp)
u ).

Corollary 2. Let σ ≥ 0, p ∈ (1,∞), q ∈ (0, p), and u : Rn× (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies (4.4) for any Q ∈ Q, we assume that for every

ω ∈

{
Rh : h ∈ Hσq(H

(( p
q )′

uq )(Rn) and ∥h∥
Hσq(H

(( p
q )′

uq )
≤ 1

}
,

the operators T : Lq
ω(Rn)→ Lq

ω(Rn) and f ∈ Bσ(Mp)
u )(Rn) satisfy∫

Rn
|T f (x)|qω(x)dx ≤ C

∫
Rn
| f (x)|qω(x)dx.

We then have
∥T f ∥Bσ(Mp)

u ) ≤ C∥ f ∥Bσ(Mp)
u ).

Remark 2. In this section, although we only proved the extrapolation theory on the space Bσ(Mp)
u )(Rn),

the extrapolation theory on the space Ḃσ(Mp)
u )(Rn) can be established because the proof is similar.

5. Operators on the Bσ(Mp)
u )(Rn)

In this section, we will use the extrapolation theorem to prove the boundedness of the
Calderón–Zygmund operator and the commutators in Bσ(Mp)

u )(Rn) space.

5.1. The Calderón–Zygmund operator

The Calderón–Zygmund singular integral operator, a classic operator in harmonic analysis, was
introduced by Calderón and Zygmund [29]. Since its introduction, the Calderón–Zygmund singular
integral operator has been extensively studied due to its wide application in partial differential
equations, mathematical physics, signal processing, and other fields.

First, we review the definition of the Calderón–Zygmund operator from [30] and the related lemma.

Definition 10. A continuous linear operator T is a Calderón–Zygmund-type singular operator if T is
bounded on L2(Rn) and T has the kernel function K : R2n \ {(x, x) : x ∈ Rn} → C such that

T f (x) =
∫
Rn

K(x, y) f (y)dy x < supp( f )
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for all f ∈ C∞0 (Rn), and there is a constant C > 0 such that the kernel function K satisfies

|K(x, y)| ≤
C

|x − y|n
, x , y,

|K(x, y) − K(x, z)| ≤ C
|y − z|σ

|x − y|n+σ
, σ > 0 i f |x − y| > 2|y − z|,

|K(x, y) − K(ξ, y)| ≤ C
|x − ξ|σ

|x − y|n+σ
, σ > 0 i f |x − y| > 2|x − ξ|.

Lemma 7. [31] Let p ∈ (1,∞) and T be a Calderón–Zygmund-type singular operator. If ω ∈ Ap, then
for any f ∈ Lp

ω, we have ∫
Rn
|T f |pω(x)dx ≤ C

∫
Rn
| f |pω(x)dx.

We then prove the boundedness of the Calderón–Zygmund operator in Bσ(Mp)
u )(Rn) through the

extrapolation theorem.

Theorem 3. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and T be a Calderón–Zygmund-type singular operator
and u : Rn × (0,∞) → (0,∞) be a Lebesgue-measurable function. If u satisfies (2.1), (2.2), and (4.4)
for any Q ∈ Q, then for any f ∈ Bσ(Mp)

u )(Rn)

∥T f ∥Bσ(Mp)
u ) ≤ C∥ f ∥Bσ(Mp)

u ).

Proof. Let f ∈ Bσ(Mp)
u )(Rn) and any h ∈ Hσq(H

(( p
q )′

uq )(Rn), we have∫
Rn
| f (x)|qRh(x)dx ≤ C∥ f q∥

Bσq(M
p
q )

uq )
∥Rh∥

Hσq(H
(( p

q )′

uq )

≤ C∥ f ∥q
Bσ(Mp)

u )
∥h∥

Hσq(H
(( p

q )′

uq )
< ∞.

By Proposition 2 and Lemma 7, we get f (x) ∈ Lq
Rh and∫

Rn
|T f (x)|qRh(x)dx ≤ C

∫
Rn
| f (x)|qRh(x)dx.

By Corollary 2, we have
∥T f ∥Bσ(Mp)

u ) ≤ C∥ f ∥Bσ(Mp)
u ).

5.2. Commutators

In the research framework of harmonic analysis, the commutators generated by the
Calderón–Zygmund operator play an important role. These commutators play a crucial role in
promoting the regularity analysis of solutions to elliptic, parabolic, and hyper parabolic partial
differential equations [32–34]. The Coifman–Rochberg–Weiss theorem [35] pioneered the study of
commutators, constructed a profound operator description for BMO spaces, and established an
essential connection between the abstract definition of function spaces and the specific boundedness
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conditions of singular integral operators. It is worth noting that scholars such as Rochberg and
Weiss [36] have proposed and deeply explored a class of nonlinear commutators with more complex
structures. Subsequent studies have further extended and applied their boundedness theory to a
broader range of function space systems on this basis. For instance, it has been extended to new
functional frameworks such as Morrey–Banach spaces [37], and a systematic theoretical
generalization has been formed.

We review the commutators generated by the Calderón–Zygmund operator in this section through
the lens of [38]. They involve the higher-order commutators and the nonlinear commutators.

Definition 11. [38] Let b ∈ BMO, k ∈ N, and T be a Calderón–Zygmund type singular operator. For
any f ∈ Bσ(Mp)

u )(Rn), the higher-order commutators T k
b are defined as

T k
b f (x) :=

∫
Rn

(b(x) − b(y))kK(x, y) f (y)dy.

Lemma 8. [38] Let p ∈ (0,∞), ω ∈ A∞, and b ∈ BMO. We obtain∫
Rn
|T k

b f (x)|pω(x)dx ≤ C∥b∥kp
BMO[ω](k+1)p

A∞

∫
Rn

Mk+1 f (x)pω(x)dx,

where M is the Hardy–Littlewood maximal operator.

Theorem 4. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), T be a Calderón–Zygmund type singular operator, and
u : Rn × (0,∞) → (0,∞) be a Lebesgue-measurable function. If u satisfies (2.1), (2.2), and (4.4) for
any Q ∈ Q, k ∈ N and b ∈ BMO, then for any f ∈ Bσ(Mp)

u )(Rn), we have

∥T k
b f ∥Bσ(Mp)

u ) ≤ C∥ f ∥Bσ(Mp)
u ).

Proof. Let f ∈ Bσ(Mp)
u )(Rn), for any h ∈ Hσq(H

(( p
q )′

uq )(Rn) and ω ∈ A∞. When q > 1, the M is
bounded in Lq

Rh-space. Therefore, we can deduce from Proposition 2 and Lemma 8 that∫
Rn
|T k

b f (x)|qω(x)dx ≤ C∥b∥kq
BMO[ω](k+1)q

A∞

∫
Rn

Mk+1 f (x)qRh(x)dx

≤ C
∫
Rn
| f (x)|qRh(x)dx.

By Corollary 2,
∥T k

b f ∥Bσ(Mp)
u ) ≤ C∥ f ∥Bσ(Mp)

u ).

Definition 12. [38] Let T be a Calderón–Zygmund type singular operator. For any f ∈ Bσ(Mp)
u )(Rn),

the nonlinear order commutator N is defined as

N f := T ( f ln | f |) − T f ln(|T f |).

Lemma 9. [38] Let p ∈ (1,∞) and ω ∈ Ap. Then a constant C > 0 exists such that∫
Rn
|N f (x)|pω(x)dx ≤ C[ω]3p

Ap

∫
Rn
| f (x)|pω(x)dx.
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Theorem 5. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and T be a Calderón–Zygmund type singular operator
and u : Rn × (0,∞) → (0,∞) is a Lebesgue-measurable function. If u satisfies (2.1), (2.2), and (4.4)
for any Q ∈ Q, then for any f ∈ Bσ(Mp)

u )(Rn), we have

∥N f ∥Bσ(Mp)
u ) ≤ C∥ f ∥Bσ(Mp)

u ).

Proof. By direct observation, the conditions for Corollary 2 are satisfied. Therefore, the conclusion
∥N f ∥Bσ(Mp)

u ) ≤ C∥ f ∥Bσ(Mp)
u ) is valid.

6. A new characterization of BMO

The BMO space introduced by John and Nirenberge [39] can be seen as a natural generalization of
the essentially bounded function space L∞(Rn). This generalization can be used to solve the endpoint
estimation of classical singular integral operators and commutators. Therefore, BMO plays a crucial
role in harmonic analysis and has been studied deeply by researchers, with the characterization of
BMO becoming an important topic.

In this section, we will provide another characterization of BMO space through the extrapolation
theorem. For the convenience of description, we define fQ =

1
|Q|

∫
Q

f (x)dx. Before defining the new
BMO space, we first perform some preliminary work.

Lemma 10. (John–Nirenberg inequality) For any Q ∈ Q, f ∈ BMO and ∥ f ∥BMO , 0, we have

|
{
x ∈ Q : | f (x) − fQ| > t

}
| ≤ Ce−

C1t
∥ f ∥BMO |Q|.

Theorem 6. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies (2.1), (2.2), and (4.4) for any Q ∈ Q, such that C,C1 > 0 for any t > 0, f ∈
BMO, and ∥ f ∥BMO , 0, we have

∥χ{x∈Q:| f (x)− fQ |>t}∥Bσ(Mp)
u ) ≤ Ce−

C1t
∥ f ∥BMO ∥χQ∥Bσ(Mp)

u ).

Proof. For any ω ∈ A1 ⊂ A∞, ϵ > 0 exists such that for any Lebesgue-measurable set E ⊂ Q, we
can obtain

ω(E)
ω(Q)

≤ C(
|E|
|Q|

)ϵ , (6.1)

which, by the definition of ω(E), is ω(E) :=
∫

E
ω(x)dx.

By combining the John–Nirenberg inequality and (6.1)∫
Rn
χ{x∈Q:| f (x)− fQ |>t}(x)ω(x)dx ≤ Ce−

C1t
∥ f ∥BMO

∫
Rn
χQ(x)ω(x)dx.

Therefore, the conditions of Theorem 2 are all satisfied, so we have

∥χ{x∈Q:| f (x)− fQ |>t}∥Bσ(Mp)
u ) ≤ Ce−

C1t
∥ f ∥BMO ∥χQ∥Bσ(Mp)

u ).

Next, we define a new type of BMO space based on the Bσ(Mp)
u )(Rn) space.
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Definition 13. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and u : Rn × (0,∞) → (0,∞) be a
Lebesgue-measurable function. If u satisfies (2.1), (2.2), and (4.4) for any Q ∈ Q, the BMOBσ(Mp)

u )(R
n)

is defined by

BMOBσ(Mp)
u )(R

n) :=

 f ∈ Lloc : ∥ f ∥BMO
Bσ(Mp)

u )
:= sup

Q∈Q

∥( f − fQ)χQ∥Bσ(Mp)
u )

∥χQ∥Bσ(Mp)
u )

< ∞

 .
Lemma 11. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies (2.1), (2.2), and (4.4) for any Q ∈ Q, then we have

C−1|Q| ≤ ∥χQ∥Bσ(Mp)
u ) · ∥χQ∥Hσ(H(p′

u ) ≤ C|Q|.

Proof. According to Theorem 1, it can be concluded that

|Q| =
∫
Rn
χ2

Q(x)dx ≤ C∥χQ∥Bσ(Mp)
u ) · ∥χQ∥Hσ(H(p′

u ).

According to Corollaries 1 and 2, we find that

∥χQ∥Bσ(Mp)
u ) · ∥χQ∥Hσ(H(p′

u )

=C sup
{
|

∫
Q

g(x)dx| · ∥χQ∥Hσ(H(p′
u ) : g ∈ Hσ(H(p′

u )(Rn), ∥g∥Hσ(H(p′
u ) ≤ 1

}
≤C|Q| sup

{
∥Mg∥Hσ(H(p′

u ) : g ∈ Hσ(H(p′
u )(Rn), ∥g∥Hσ(H(p′

u ) ≤ 1
}

≤C|Q|

for some C > 0.

Theorem 7. Let σ ≥ 0, p ∈ (1,∞), q ∈ (1, p), and u : Rn × (0,∞)→ (0,∞) be a Lebesgue-measurable
function. If u satisfies (2.1), (2.2), and (4.4) for any Q ∈ Q, then ∥ · ∥BMO and ∥ · ∥BMO

Bσ(Mp)
u )

are
equivalent norms.

Proof. By Theorem 1 and Lemma 11, for any f ∈ BMO,∫
Rn
|( f (x) − fQ)|χQdx ≤ C∥( f − fQ)χQ∥Bσ(Mp)

u ) · ∥χQ∥Hσ(H(p′
u )

≤ C|Q|
∥( f − fQ)χQ∥Bσ(Mp)

u )

∥χQ∥Bσ(Mp)
u )

.

(6.2)

By (6.2), we have ∥ f ∥BMO ≤ C∥ f ∥BMO
Bσ(Mp)

u )
.

According to Theorem 6, for any i ∈ N, we have

∥χ{x∈Q:2i<| f (x)− fQ |≤2i+1}∥Bσ(Mp)
u ) ≤ ∥χ{x∈Q:| f (x)− fQ |>2i}∥Bσ(Mp)

u )

≤ Ce−
C12i

∥ f ∥BMO ∥χQ∥Bσ(Mp)
u ).

Multiplying 2i+1 on both sides and summing over i, we have

∥( f − fQ)χQ∥Bσ(Mp)
u ) ≤ C∥ f ∥BMO∥χQ∥Bσ(Mp)

u ).

Hence, we obtain
∥ f ∥BMO

Bσ(Mp)
u )
≤ C∥ f ∥BMO.
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