We considered a nonlinear elliptic boundary value problem driven by the variable (anisotropic) $ (p, q) $-Laplacian with Robin boundary condition and a superlinear reaction which does not satisfy the Ambrosetti-Rabinowitz condition. Using critical point theory, truncation and comparison techniques and critical groups, we showed the existence of five nontrivial smooth solutions all with sign information and ordered.
Citation: Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Jian Zhang. Anisotropic Robin problems with indefinite potential[J]. Electronic Research Archive, 2025, 33(11): 6844-6864. doi: 10.3934/era.2025302
We considered a nonlinear elliptic boundary value problem driven by the variable (anisotropic) $ (p, q) $-Laplacian with Robin boundary condition and a superlinear reaction which does not satisfy the Ambrosetti-Rabinowitz condition. Using critical point theory, truncation and comparison techniques and critical groups, we showed the existence of five nontrivial smooth solutions all with sign information and ordered.
| [1] |
X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395–1412. https://doi.org/10.1016/j.jmaa.2007.08.003 doi: 10.1016/j.jmaa.2007.08.003
|
| [2] |
S. Deng, Positive solutions for Robin problem involving the $p(x)$-Laplacian, J. Math. Anal. Appl., 360 (2009), 548–560. https://doi.org/10.1016/j.jmaa.2009.06.032 doi: 10.1016/j.jmaa.2009.06.032
|
| [3] | N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Nonlinear Analysis–Theory and Methods, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6 |
| [4] |
N. S. Papageorgiou, D. Qin, V. D. Rădulescu, Anisotropic double-phase problems with indefinite potential: multiplicity of solutions, Anal. Math. Phys., 10 (2020), 63. https://doi.org/10.1007/s13324-020-00409-9 doi: 10.1007/s13324-020-00409-9
|
| [5] |
X. Fan, S. Deng, Multiplicity of positive solutions for a class of inhomogeneous Neumann problems involving the $p(x)$-Laplacian, Nonlinear Differ. Equations Appl., 16 (2009), 255–271. https://doi.org/10.1007/s00030-008-6027-2 doi: 10.1007/s00030-008-6027-2
|
| [6] |
Z. Liu, N. S. Papageorgiou, Anisotropic $(p, q)$-equations with competition phenomena, Acta Math. Sci., 42 (2022), 299–322. https://doi.org/10.1007/s10473-022-0117-9 doi: 10.1007/s10473-022-0117-9
|
| [7] |
Z. Liu, N. S. Papageorgiou, Parametric anisotropic $(p, q)$-Neumann problems, Acta Math. Appl. Sin., 39 (2023), 926–942. https://doi.org/10.1007/s10255-023-1087-y doi: 10.1007/s10255-023-1087-y
|
| [8] |
E. Ozturk, N. S. Papageorgiou, Global multiplicity of positive solutions for anisotropic $(p, q)$-Robin boundary value problems with an indefinite potential term, Electron. J. Qual. Theory Differ. Equations, (2024), 1–25. https://doi.org/10.14232/ejqtde.2024.1.58 doi: 10.14232/ejqtde.2024.1.58
|
| [9] |
N. S. Papageorgiou, V. D. Rădulescu, W. Zhang, Multiple solutions with sign information for double-phase problems with unbalanced growth, Bull. London Math. Soc., 57 (2025), 638–656. https://doi.org/10.1112/blms.13218 doi: 10.1112/blms.13218
|
| [10] |
N. S. Papageorgiou, V. D. Rădulescu, Y. Zhang, Anisotropic singular double phase Dirichlet problems, Discrete Contin. Dyn. Syst. - Ser. S, 14 (2021), 4465–4502. https://doi.org/10.3934/dcdss.2021111 doi: 10.3934/dcdss.2021111
|
| [11] | L. Diening, P. Horjulehto, P. Hästo, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. |
| [12] | N. S. Papageorgiou, P. Winkert, Applied Nonlinear Functional Analysis: An Introduction, Berlin, 2024. https://doi.org/10.1515/9783111286952 |
| [13] |
X. Fan, Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J. Differ. Equations, 235 (2007), 397–417. https://doi.org/10.1016/j.jde.2007.01.008 doi: 10.1016/j.jde.2007.01.008
|
| [14] |
G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Commun. Partial Differ. Equations, 16 (1991), 311–361. https://doi.org/10.1080/03605309108820761 doi: 10.1080/03605309108820761
|
| [15] | P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007. |
| [16] |
L. Gasiński, N. S. Papageorgiou, Anisotropic nonlinear Neumann problems, Calc. Var. Partial Differ. Equations, 42 (2011), 323–354. https://doi.org/10.1007/s00526-011-0390-2 doi: 10.1007/s00526-011-0390-2
|
| [17] |
P. Takač, J. Giacomoni, A $p(x)$-Laplacian extension of the Diaz-Saa inequality and some applications, Proc. Edinburgh Math. Soc. Sect. A: Math., 150 (2020), 205–232. https://doi.org/10.1017/prm.2018.91 doi: 10.1017/prm.2018.91
|
| [18] |
N. S. Papageorgiou, V. D. Rădulescu, D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discrete Contin. Dyn. Syst., 37 (2017), 2589–2618. https://doi.org/10.3934/dcds.2017111 doi: 10.3934/dcds.2017111
|
| [19] | S. Hu, N. S. Papageorgiou, Research Topics in Analysis, Volume I: Grounding Theory, Birkhäuser, Cham, 2022. |