The Chermak-Delgado lattice of a finite group $ G $ is a self-dual sublattice of the subgroup lattice of $ G $. In this paper, we determine finite groups with at most six subgroups not in the Chermak-Delgado lattice.
Citation: Guojie Liu, Qiangwei Song. Finite groups with at most six subgroups not in the Chermak-Delgado lattice[J]. Electronic Research Archive, 2025, 33(9): 5769-5775. doi: 10.3934/era.2025256
The Chermak-Delgado lattice of a finite group $ G $ is a self-dual sublattice of the subgroup lattice of $ G $. In this paper, we determine finite groups with at most six subgroups not in the Chermak-Delgado lattice.
| [1] |
A. Chermak, A. Delgado, A measuring argument for finite groups, Proc. Am. Math. Soc., 107 (1989), 907–914. https://doi.org/10.1090/S0002-9939-1989-0994774-4 doi: 10.1090/S0002-9939-1989-0994774-4
|
| [2] | I. M. Isaacs, Finite Group Theory, American Mathematical Society, 2008. |
| [3] |
B. Brewster, P. Hauck, E. Wilcox, Groups whose Chermak-Delgado lattice is a chain, J. Group Theory, 17 (2014), 253–265. https://doi.org/10.1515/jgt-2013-0043 doi: 10.1515/jgt-2013-0043
|
| [4] |
R. McCulloch, M. T$\rm\check{a}$rn$\rm\check{a}$uceanu, Two classes of finite groups whose Chermak-Delgado lattice is a chain of length zero, Comm. Algebra, 46 (2018), 3092–3096. https://doi.org/10.1080/00927872.2017.1404090 doi: 10.1080/00927872.2017.1404090
|
| [5] | B. Brewster, P. Hauck, E. Wilcox, Quasi-antichain Chermak-Delgado lattices of finite groups, Arch. Math. (Basel), 103 (2014), 301–311. https://doi.org/10.1007/s00013-014-0696-3 |
| [6] |
L. J. An, Groups whose Chermak-Delgado lattice is a quasi-antichain, J. Group Theory, 22 (2019), 529–544. https://doi.org/10.1515/jgth-2018-0043 doi: 10.1515/jgth-2018-0043
|
| [7] |
L. J. An, J. Brennan, H. P. Qu, E. Wilcox, Chermak-Delgado lattice extension theorems, Comm. Algebra, 43 (2015), 2201–2213. https://doi.org/10.1080/00927872.2014.889147 doi: 10.1080/00927872.2014.889147
|
| [8] |
L. J. An, Groups whose Chermak-Delgado lattice is a subgroup lattice of an elementary abelian $p$-group, Comm. Algebra, 50 (2022), 2846–2853. https://doi.org/10.1080/00927872.2021.2021222 doi: 10.1080/00927872.2021.2021222
|
| [9] |
L. J. An, Groups whose Chermak-Delgado lattice is a subgroup lattice of an abelian group, Canad. Math. Bull., 66 (2023), 443–449. https://doi.org/10.4153/S0008439522000418 doi: 10.4153/S0008439522000418
|
| [10] |
B. Brewster, E. Wilcox, Some groups with computable Chermak-Delgado lattices, Bull. Aust. Math. Soc., 86 (2012), 29–40. https://doi.org/10.1017/S0004972712000196 doi: 10.1017/S0004972712000196
|
| [11] |
W. Cocke, Subnormality and the Chermak-Delgado lattice, J. Algebra Appl., 19 (2020), 2050141. https://doi.org/10.1142/S0219498820501418 doi: 10.1142/S0219498820501418
|
| [12] |
E. Brush, J. Dietz, K. Johnson-Tesch, B. Power, On the Chermak-Delgado lattices of split metacyclic $p$-groups, Involve, 9 (2016), 765–782. https://doi.org/10.2140/involve.2016.9.765 doi: 10.2140/involve.2016.9.765
|
| [13] |
M. T$\rm\check{a}$rn$\rm\check{a}$uceanu, The Chermak-Delgado lattice of ZM-groups, Results Math., 72 (2017), 1849–1855. https://doi.org/10.1007/s00025-017-0735-z doi: 10.1007/s00025-017-0735-z
|
| [14] |
M. T$\rm\check{a}$rn$\rm\check{a}$uceanu, A note on the Chermak-Delgado lattice of a finite group, Comm. Algebra, 46 (2018), 201–204. https://doi.org/10.1080/00927872.2017.1355374 doi: 10.1080/00927872.2017.1355374
|
| [15] |
G. Glauberman, Centrally large subgroups of finite $p$-groups, J. Algebra, 300 (2006), 480–508. https://doi.org/10.1016/j.jalgebra.2005.11.033 doi: 10.1016/j.jalgebra.2005.11.033
|
| [16] |
L. J. An, Twisted centrally large subgroups of finite groups, J. Algebra, 604 (2022), 87–106. https://doi.org/10.1016/j.jalgebra.2022.03.034 doi: 10.1016/j.jalgebra.2022.03.034
|
| [17] |
G. Fasol$ \rm \check{a} $, On the Chermak-Delgado measure of a finite group, Results Math., 79 (2024), 44. https://doi.org/10.1007/s00025-023-02080-5 doi: 10.1007/s00025-023-02080-5
|
| [18] |
A. M. Zuccari, V. Russo, C. M. Scoppola, The Chermak-Delgado measure in finite $p$-groups, J. Algebra, 502 (2018), 262–276. https://doi.org/10.1016/j.jalgebra.2018.01.030 doi: 10.1016/j.jalgebra.2018.01.030
|
| [19] |
M. T$\rm\check{a}$rn$\rm\check{a}$uceanu, Finite groups with a certain number of values of the Chermak-Delgado measure, J. Algebra Appl., 19 (2020), 2050088. https://doi.org/10.1142/S0219498820500887 doi: 10.1142/S0219498820500887
|
| [20] | J. K. Lu, X. Huang, Q. W. Lian, W. Meng, Finite groups with few subgroups not in the Chermak-Delgado lattice, preprint, arXiv2504.14347. |
| [21] |
R. McCulloch, Chermak-Delgado simple groups, Comm. Algebra, 45 (2017), 983–991. https://doi.org/10.1080/00927872.2016.1172623 doi: 10.1080/00927872.2016.1172623
|
| [22] |
R. McCulloch, Finite groups with a trivial Chermak-Delgado subgroup, J. Group Theory, 21 (2018), 449–461. https://doi.org/10.1515/jgth-2017-0042 doi: 10.1515/jgth-2017-0042
|
| [23] |
F. de Giovanni, M. Trombetti, A note on large characteristic subgroups, Comm. Algebra, 46 (2018), 4654–4662. https://doi.org/10.1080/00927872.2018.1448851 doi: 10.1080/00927872.2018.1448851
|
| [24] |
F. de Giovanni, M. Trombetti, Large characteristic subgroups and abstract group classes, Quaestiones Math., 43 (2020), 1159–1172. https://doi.org/10.2989/16073606.2019.1602087 doi: 10.2989/16073606.2019.1602087
|
| [25] |
G. Fasol$ \rm \check{a} $, M. T$ \rm \check{a} $rn$ \rm \check{a} $uceanu, Finite groups with large Chermak-Delgado lattices, Bull. Aust. Math. Soc., 107(2023), 451–455. https://doi.org/10.1017/S0004972722000806 doi: 10.1017/S0004972722000806
|
| [26] |
D. Burrell, W. Cocke, R. McCulloch, On groups with few subgroups not in the Chermak-Delgado lattice, Arnold Math. J., 10 (2024), 265–279. https://doi.org/10.1007/s40598-023-00237-2 doi: 10.1007/s40598-023-00237-2
|
| [27] | G. J. Liu, L. J. An, H. P. Qu, Finite $p$-groups with at most $p^2+p$ subgroups not in Chermak-Delgado lattice, preprint, arXiv2307.13946. |
| [28] | Y. Berkovich, Groups of Prime Power Order Vol.1, Berlin: Walter de Gruyter, 2008. https://doi.org/10.1515/9783110208221 |