Research article Special Issues

Stability analysis for the maximum principle preserving finite difference approach of the surface Allen–Cahn equation on curved surfaces

  • Published: 25 September 2025
  • A stability analysis of a finite difference scheme was presented for the surface Allen–Cahn (AC) equation on curved surfaces. The surface was discretized by a triangular mesh, which accurately represented geometric features and enabled subsequent computational analysis. A discrete Laplace–Beltrami operator was used on this mesh, and it produced a simple and efficient discrete equation. The explicit time-stepping method, although straightforward, requires a moderate restriction on the time step. For practical applications, it is essential to determine the maximum value of this restriction. We derived the theoretical maximum value of the admissible time step that guarantees the discrete maximum principle and analyzed the stability of the explicit scheme under this condition. Numerical tests were performed to verify the theoretical prediction. The computational results confirmed that the proposed scheme maintains stability and reproduces expected interfacial dynamics on curved geometries. The analysis provides rigorous guidance for selecting stable time steps and demonstrates that the fully explicit scheme can be used as a reliable tool for simulating curvature-driven phase transitions and interfacial motion. This work provides a solid theoretical foundation for explicit numerical methods applied to the surface AC equation and contributes to the improvement of both efficiency and accuracy in computational studies involving complex geometries.

    Citation: Hyundong Kim, Jian Wang, Seokjun Ham, Youngjin Hwang, Jyoti, Junseok Kim. Stability analysis for the maximum principle preserving finite difference approach of the surface Allen–Cahn equation on curved surfaces[J]. Electronic Research Archive, 2025, 33(9): 5748-5768. doi: 10.3934/era.2025255

    Related Papers:

  • A stability analysis of a finite difference scheme was presented for the surface Allen–Cahn (AC) equation on curved surfaces. The surface was discretized by a triangular mesh, which accurately represented geometric features and enabled subsequent computational analysis. A discrete Laplace–Beltrami operator was used on this mesh, and it produced a simple and efficient discrete equation. The explicit time-stepping method, although straightforward, requires a moderate restriction on the time step. For practical applications, it is essential to determine the maximum value of this restriction. We derived the theoretical maximum value of the admissible time step that guarantees the discrete maximum principle and analyzed the stability of the explicit scheme under this condition. Numerical tests were performed to verify the theoretical prediction. The computational results confirmed that the proposed scheme maintains stability and reproduces expected interfacial dynamics on curved geometries. The analysis provides rigorous guidance for selecting stable time steps and demonstrates that the fully explicit scheme can be used as a reliable tool for simulating curvature-driven phase transitions and interfacial motion. This work provides a solid theoretical foundation for explicit numerical methods applied to the surface AC equation and contributes to the improvement of both efficiency and accuracy in computational studies involving complex geometries.



    加载中


    [1] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [2] Y. Choi, Y. Li, C. Lee, H. Kim, J. Kim, Explicit hybrid numerical method for the Allen–Cahn type equations on curved surfaces, Numer. Math. Theory Methods Appl., 14 (2021), 797–810. https://doi.org/10.4208/nmtma.OA-2020-0155 doi: 10.4208/nmtma.OA-2020-0155
    [3] Y. Li, S. Guo, Triply periodic minimal surface using a modified Allen–Cahn equation, Appl. Math. Comput., 295 (2017), 84–94. https://doi.org/10.1016/j.amc.2016.10.005 doi: 10.1016/j.amc.2016.10.005
    [4] L. Ortellado, L. R. Gómez, Phase field modeling of dendritic growth on spherical surfaces, Front. Mater., 7 (2020), 163. https://doi.org/10.3389/fmats.2020.00163 doi: 10.3389/fmats.2020.00163
    [5] R. Parthasarathy, C. H. Yu, J. T. Groves, Curvature-modulated phase separation in lipid bilayer membranes, Langmuir, 22 (2006), 5095–5099. https://doi.org/10.1021/la060390o doi: 10.1021/la060390o
    [6] F. A. Heberle, G. W. Feigenson, Phase separation in lipid membranes, Cold Spring Harbor Perspect. Biol., 3 (2011), a004630. https://doi.org/10.1101/cshperspect.a004630 doi: 10.1101/cshperspect.a004630
    [7] K. Yokota, T. Ogino, Phase separation in lipid bilayer membranes induced by intermixing at a boundary of two phases with different components, Chem. Phys. Lipids, 191 (2015), 147–152. https://doi.org/10.1016/j.chemphyslip.2015.09.001 doi: 10.1016/j.chemphyslip.2015.09.001
    [8] S. Lai, B. Jiang, Q. Xia, B. Xia, J. Kim, Y. Li, On the phase-field algorithm for distinguishing connected regions in digital model, Eng. Anal. Boundary Elem., 168 (2024), 105918. https://doi.org/10.1016/j.enganabound.2024.105918 doi: 10.1016/j.enganabound.2024.105918
    [9] B. Fu, D. Cai, X. Kong, R. Gao, J. Yang, On the numerical approximation of a phase-field volume reconstruction model: Linear and energy-stable leap-frog finite difference scheme, Commun. Nonlinear Sci. Numer. Simul., 151 (2025), 109104. https://doi.org/10.1016/j.cnsns.2025.109104 doi: 10.1016/j.cnsns.2025.109104
    [10] Y. Li, S. Lan, X. Liu, B. Lu, L. Wang, An efficient volume repairing method by using a modified Allen–Cahn equation, Pattern Recognit., 107 (2020), 107478. https://doi.org/10.1016/j.patcog.2020.107478 doi: 10.1016/j.patcog.2020.107478
    [11] Y. Jin, S. Kwak, S. Ham, J. Kim, A fast and efficient numerical algorithm for image segmentation and denoising, AIMS Math., 9 (2024), 5015–5027. https://doi.org/10.3934/math.2024243 doi: 10.3934/math.2024243
    [12] S. Su, J. Yang, Unconditionally stable algorithm with unique solvability for image inpainting using a penalized Allen–Cahn equation, Commun. Nonlinear Sci. Numer. Simul., 142 (2025), 108503. https://doi.org/10.1016/j.cnsns.2024.108503 doi: 10.1016/j.cnsns.2024.108503
    [13] H. Kim, S. Kang, G. Lee, S. Yoon, J. Kim, Shape transformation on curved surfaces using a phase-field model, Commun. Nonlinear Sci. Numer. Simul., 133 (2024), 107956. https://doi.org/10.1016/j.cnsns.2024.107956 doi: 10.1016/j.cnsns.2024.107956
    [14] A. Jiang, Y. Wang, F. Zheng, X. Xiao, A convective Allen–Cahn model for the two-and three-dimensional shape transformations of non-contact objects, Comput. Math. Appl., 188 (2025), 72–82. https://doi.org/10.1016/j.camwa.2025.03.018 doi: 10.1016/j.camwa.2025.03.018
    [15] S. Ham, H. Kim, Y. Hwang, S. Kwak, Jyoti, J. Wang, et al., A novel phase-field model for three-dimensional shape transformation, Comput. Math. Appl., 176 (2024), 67–76. https://doi.org/10.1016/j.camwa.2024.09.006 doi: 10.1016/j.camwa.2024.09.006
    [16] Z. Han, H. Xu, J. Wang, A simple shape transformation method based on phase-field model, Comput. Math. Appl., 147 (2023), 121–129. https://doi.org/10.1016/j.camwa.2023.07.020 doi: 10.1016/j.camwa.2023.07.020
    [17] J. He, Solving a class of shape-transforming phase-field models using the lattice Boltzmann method, Eng. Anal. Boundary Elem., 179 (2025), 106358. https://doi.org/10.1016/j.enganabound.2025.106358 doi: 10.1016/j.enganabound.2025.106358
    [18] Y. Wang, X. Xiao, X. Feng, An efficient maximum bound principle preserving p-adaptive operator-splitting method for three-dimensional phase field shape transformation model, Comput. Math. Appl., 120 (2022), 78–91. https://doi.org/10.1016/j.camwa.2022.06.015 doi: 10.1016/j.camwa.2022.06.015
    [19] H. Zhao, B. D. Storey, R. D. Braatz, M. Z. Bazant, Learning the physics of pattern formation from images, Phys. Rev. Lett., 124 (2020), 060201. https://doi.org/10.1103/PhysRevLett.124.060201 doi: 10.1103/PhysRevLett.124.060201
    [20] X. Hu, Q. Xia, B. Xia, Y. Li, A second-order accurate numerical method with unconditional energy stability for the Lifshitz–Petrich equation on curved surfaces, Appl. Math. Lett., 163 (2025), 109439. https://doi.org/10.1016/j.aml.2024.109439 doi: 10.1016/j.aml.2024.109439
    [21] B. Xia, X. Xi, R. Yu, P. Zhang, Unconditional energy-stable method for the Swift–Hohenberg equation over arbitrarily curved surfaces with second-order accuracy, Appl. Numer. Math., 198 (2024), 192–201. https://doi.org/10.1016/j.apnum.2024.01.005 doi: 10.1016/j.apnum.2024.01.005
    [22] Y. Li, R. Liu, Q. Xia, C. He, Z. Li, First- and second-order unconditionally stable direct discretization methods for multi-component Cahn–Hilliard system on surfaces, J. Comput. Appl. Math., 401 (2022), 113778. https://doi.org/10.1016/j.cam.2021.113778 doi: 10.1016/j.cam.2021.113778
    [23] Q. Pan, C. Chen, Y. J. Zhang, X. Yang, A novel hybrid IGA-EIEQ numerical method for the Allen–Cahn/Cahn–Hilliard equations on complex curved surfaces, Comput. Methods Appl. Mech. Eng., 404 (2023), 115767. https://doi.org/10.1016/j.cma.2022.115767 doi: 10.1016/j.cma.2022.115767
    [24] Q. Pan, J. Zhang, T. Rabczuk, C. Chen, X. Yang, Numerical algorithms of subdivision-based IGA-EIEQ method for the molecular beam epitaxial growth models on complex surfaces, Comput. Mech., 72 (2023), 927–948. https://doi.org/10.1007/s00466-023-02319-6 doi: 10.1007/s00466-023-02319-6
    [25] Q. Pan, T. Rabczuk, G. Xu, C. Chen, Isogeometric analysis for surface PDEs with extended Loop subdivision, J. Comput. Phys., 398 (2019), 108892. https://doi.org/10.1016/j.jcp.2019.108892 doi: 10.1016/j.jcp.2019.108892
    [26] Q. Pan, T. Rabczuk, C. Chen, Subdivision based isogeometric analysis for geometric flows, Int. J. Numer. Methods Eng., 123 (2022), 610–633. https://doi.org/10.1002/nme.6870 doi: 10.1002/nme.6870
    [27] J. Shen, T. Tang, J. Yang, On the maximum principle preserving schemes for the generalized Allen–Cahn equation, Commun. Math. Sci., 14 (2016), 1517–1534. https://doi.org/10.4310/CMS.2016.v14.n6.a3 doi: 10.4310/CMS.2016.v14.n6.a3
    [28] X. Feng, A. Prohl, Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), 33–65. https://doi.org/10.1007/s00211-002-0413-1 doi: 10.1007/s00211-002-0413-1
    [29] H. Kim, G. Lee, S. Kang, S. Ham, Y. Hwang, J. Kim, Hybrid numerical method for the Allen–Cahn equation on nonuniform grids, Comput. Math. Appl., 158 (2024), 167–178. https://doi.org/10.1016/j.camwa.2024.01.016 doi: 10.1016/j.camwa.2024.01.016
    [30] Y. Hwang, Jyoti, S. Kwak, H. Kim, J. Kim, An explicit numerical method for the conservative Allen–Cahn equation on a cubic surface, AIMS Math., 9 (2024), 34447–34465. https://doi.org/10.3934/math.20241641 doi: 10.3934/math.20241641
    [31] Y. Hwang, S. Ham, H. G. Lee, H. Kim, J. Kim, Numerical algorithms for the phase-field models using discrete cosine transform, Mech. Res. Commun., 139 (2024), 104305. https://doi.org/10.1016/j.mechrescom.2024.104305 doi: 10.1016/j.mechrescom.2024.104305
    [32] H. Zamani-Gharaghoshi, M. Dehghan, M. Abbaszadeh, Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach, Eng. Anal. Boundary Elem., 152 (2023), 575–581. https://doi.org/10.1016/j.enganabound.2023.04.019 doi: 10.1016/j.enganabound.2023.04.019
    [33] J. Yang, S. Kang, S. Kwak, J. Kim, The Allen–Cahn equation with a space-dependent mobility and a source term for general motion by mean curvature, J. Comput. Sci., 77 (2024), 102252. https://doi.org/10.1016/j.jocs.2024.102252 doi: 10.1016/j.jocs.2024.102252
    [34] J. Yang, D. Lee, S. Kwak, S. Ham, J. Kim, The Allen–Cahn model with a time-dependent parameter for motion by mean curvature up to the singularity, Chaos, Solitons Fractals, 182 (2024), 114803. https://doi.org/10.1016/j.chaos.2024.114803 doi: 10.1016/j.chaos.2024.114803
    [35] A.I. Bobenko, B. A. Springborn, A discrete Laplace–Beltrami operator for simplicial surfaces, Discrete Comput. Geom., 38 (2007), 740–756. https://doi.org/10.1007/s00454-007-9006-1 doi: 10.1007/s00454-007-9006-1
    [36] H. Kim, Explicit Time-stepping Approach for Pattern Formation on Evolving Curved Surfaces, Ph.D thesis, Korea University, 2022.
    [37] X. Xiao, X. Feng, J. Yuan, The stabilized semi-implicit finite element method for the surface Allen–Cahn equation, Discrete Contin. Dyn. Syst. - Ser. B, 22 (2017), 2857–2877. https://doi.org/10.3934/dcdsb.2017154 doi: 10.3934/dcdsb.2017154
    [38] X. Xiao, R. He, X. Feng, Unconditionally maximum principle preserving finite element schemes for the surface Allen–Cahn type equations, Numer. Methods Partial Differ. Equations, 36 (2020), 418–438. https://doi.org/10.1002/num.22435 doi: 10.1002/num.22435
    [39] V. Mohammadi, D. Mirzaei, M. Dehghan, Numerical simulation and error estimation of the time-dependent Allen–Cahn equation on surfaces with radial basis functions, J. Sci. Comput., 79 (2019), 493–516. https://doi.org/10.1007/s10915-018-0859-7 doi: 10.1007/s10915-018-0859-7
    [40] F. Zhang, Y. Xu, F. Chen, R. Guo, Interior penalty discontinuous Galerkin based isogeometric analysis for Allen–Cahn equations on surfaces, Commun. Comput. Phys., 18 (2015), 1380–1416. https://doi.org/10.4208/cicp.010914.180315a doi: 10.4208/cicp.010914.180315a
    [41] R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32–74. https://doi.org/10.1007/BF01448839 doi: 10.1007/BF01448839
    [42] M. Desbrun, M. Meyer, P. Schröder, A. H. Barr, Implicit fairing of irregular meshes using diffusion and curvature flow, in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, (1999), 317–324. https://doi.org/10.1145/311535.311576
    [43] G. Xu, Convergence of discrete Laplace–Beltrami operators over surfaces, Comput. Math. Appl., 48 (2004), 347–360. https://doi.org/10.1016/j.camwa.2004.05.001 doi: 10.1016/j.camwa.2004.05.001
    [44] G. Xu, Convergent discrete Laplace–Beltrami operators over triangular surfaces, Geom. Model. Process., (2004), 195–204. https://doi.org/10.1109/GMAP.2004.1290041
    [45] Q. Xia, Q. Yu, Y. Li, A second-order accurate, unconditionally energy stable numerical scheme for binary fluid flows on arbitrarily curved surfaces, Comput. Methods Appl. Mech. Eng., 384 (2021), 113987. https://doi.org/10.1016/j.cma.2021.113987 doi: 10.1016/j.cma.2021.113987
    [46] H. Zhang, J. Yan, X. Qian, X. Gu, S. Song, On the preserving of the maximum principle and energy stability of high-order implicit-explicit Runge–Kutta schemes for the space-fractional Allen–Cahn equation, Numerical Algorithms, 88 (2021), 1309–1336. https://doi.org/10.1007/s11075-021-01077-x doi: 10.1007/s11075-021-01077-x
    [47] Z. Fu, T. Tang, J. Yang, Energy plus maximum bound preserving Runge–Kutta methods for the Allen–Cahn equation, J. Sci. Comput., 92 (2022), 97. https://doi.org/10.1007/s10915-022-01940-6
    [48] H. G. Lee, J. Shin, J. Y. Lee, Energy quadratization Runge–Kutta scheme for the conservative Allen–Cahn equation with a nonlocal Lagrange multiplier, Appl. Math. Lett., 132 (2022), 108161. https://doi.org/10.1016/j.aml.2022.108161 doi: 10.1016/j.aml.2022.108161
    [49] H. Zhang, L. Liu, X. Qian, S. Song, Quantifying and eliminating the time delay in stabilization exponential time differencing Runge–Kutta schemes for the Allen–Cahn equation, ESAIM. Math. Model. Numer. Anal., 58 (2024), 191–221. https://doi.org/10.1051/m2an/2023101 doi: 10.1051/m2an/2023101
    [50] H. Zhang, X. Qian, S. Song, Third-order accurate, large time-stepping and maximum-principle-preserving schemes for the Allen–Cahn equation, Numerical Algorithms, 95 (2024), 1213–1250. https://doi.org/10.1007/s11075-023-01606-w doi: 10.1007/s11075-023-01606-w
    [51] Y. Sun, Q. Zhou, Maximum bound principle for matrix-valued Allen–Cahn equation and integrating factor Runge–Kutta method, Numerical Algorithms, 97 (2024), 391–429. https://doi.org/10.1007/s11075-023-01708-5 doi: 10.1007/s11075-023-01708-5
    [52] D. C. Antonopoulou, G. Karali, D. Li, Optimal error estimates of energy-stable Runge–Kutta methods for the $\varepsilon$-dependent Cahn–Hilliard/Allen–Cahn Equation, J. Sci. Comput., 103 (2025), 68. https://doi.org/10.1007/s10915-025-02895-0 doi: 10.1007/s10915-025-02895-0
    [53] S. J. Ruuth, B. Merriman, A simple embedding method for solving partial differential equations on surfaces, J. Comput. Phys., 227 (2008), 1943–1961. https://doi.org/10.1016/j.jcp.2007.10.009 doi: 10.1016/j.jcp.2007.10.009
    [54] Z. Weng, S. Zhai, X. Feng, Numerical approximation of the nonlocal ternary viscous Cahn–Hilliard model based on a high order explicit hybrid algorithm, SIAM J. Sci. Comput., 47 (2025), A2221–A2247. https://doi.org/10.1137/24M1645474 doi: 10.1137/24M1645474
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(671) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog