In this study, an inverse problem including the identification of a source function in a time-fractional diffusion equation with initial and mixed boundary conditions is investigated by employing the Laplace transform and the Daftardar-Gejji and Jafari method (DJM). Two kinds of inverse problems are considered, where the source function depends either on the temporal variable or the spatial variable. Initially, the Laplace and inverse Laplace transforms are applied to transform the fractional differential equation into an algebraic form. Subsequently, DJM is utilized to establish the solution of the converted problem by using the initial condition. Then, under the mixed boundary conditions, the unknown source function is explicitly determined. The suggested method's ability to obtain the source function under no need for extra conditions and overmeasured data is one of its noteworthy features. The Banach fixed-point theorem and the energy estimate for fractional partial differential equations are also used to theoretically support the existence, uniqueness, and stability of the solution.
Citation: Suleyman Cetinkaya. On a fractional inverse source problem with mixed boundary conditions through a novel method[J]. Electronic Research Archive, 2025, 33(9): 5719-5747. doi: 10.3934/era.2025254
In this study, an inverse problem including the identification of a source function in a time-fractional diffusion equation with initial and mixed boundary conditions is investigated by employing the Laplace transform and the Daftardar-Gejji and Jafari method (DJM). Two kinds of inverse problems are considered, where the source function depends either on the temporal variable or the spatial variable. Initially, the Laplace and inverse Laplace transforms are applied to transform the fractional differential equation into an algebraic form. Subsequently, DJM is utilized to establish the solution of the converted problem by using the initial condition. Then, under the mixed boundary conditions, the unknown source function is explicitly determined. The suggested method's ability to obtain the source function under no need for extra conditions and overmeasured data is one of its noteworthy features. The Banach fixed-point theorem and the energy estimate for fractional partial differential equations are also used to theoretically support the existence, uniqueness, and stability of the solution.
| [1] | K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974. |
| [2] | I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. https://doi.org/10.1016/S0076-5392(99)X8001-5 |
| [3] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Germany, 2000. https://doi.org/10.1142/3779 |
| [4] | F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, World Scientific, Bologna, 2010. https://doi.org/10.1142/p614 |
| [5] |
Z. Achouri, N. E. Amroun, A. Benaissa, The Euler–Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci., 40 (2017), 3837–3854. https://doi.org/10.1002/mma.4267 doi: 10.1002/mma.4267
|
| [6] |
M. M. AlBaidani, A. H. Ganie, F. Aljuaydi, A. Khan, Application of analytical techniques for solving fractional physical models arising in applied sciences, Fractal Fract., 7 (2023), 584. https://doi.org/10.3390/fractalfract7080584 doi: 10.3390/fractalfract7080584
|
| [7] |
K. Chalambari, H. Ebrahimi, Z. Ayati, Stability and convergence of a new hybrid method for fractional partial differential equations, Math. Sci., 18 (2024), 367–386. https://doi.org/10.1007/s40096-022-00506-9 doi: 10.1007/s40096-022-00506-9
|
| [8] |
T. Eriqat, M. N. Oqielat, Z. Al-Zhour, G. S. Khammash, A. El-Ajou, H. Alrabaiah, Exact and numerical solutions of higher-order fractional partial differential equations: A new analytical method and some applications, Pramana, 96 (2022), 207. https://doi.org/10.1007/s12043-022-02446-4 doi: 10.1007/s12043-022-02446-4
|
| [9] |
N. A. Shah, I. Dassios, E. R. El-Zahar, J. D. Chung, An efficient technique of fractional-order physical models involving $\rho$-Laplace transform, Mathematics, 10 (2022), 816. https://doi.org/10.3390/math10050816 doi: 10.3390/math10050816
|
| [10] |
A. Ghafoor, N. Khan, M. Hussain, R. Ullah, A hybrid collocation method for the computational study of multi-term time fractional partial differential equations, Comput. Math. Appl., 128 (2022), 130–144. https://doi.org/10.1016/j.camwa.2022.10.005 doi: 10.1016/j.camwa.2022.10.005
|
| [11] |
B. K. Turmetov, B. J. Kadirkulov, On the solvability of an initial-boundary value problem for a fractional heat equation with involution, Lobachevskii J. Math., 43 (2022), 249–262. https://doi.org/10.1134/S1995080222040217 doi: 10.1134/S1995080222040217
|
| [12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)X8001-5 |
| [13] |
Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
|
| [14] |
I. Ali, H. Khan, R. Shah, D. Baleanu, P. Kumam, M. Arif, Fractional view analysis of acoustic wave equations, using fractional-order differential equations, Appl. Sci., 10 (2020), 610. https://doi.org/10.3390/app10020610 doi: 10.3390/app10020610
|
| [15] |
R. M. Jena, S. Chakraverty, On the solution of time-fractional coupled system of partial differential equations, SN Appl. Sci., 1 (2019), 1655. https://doi.org/10.1007/s42452-019-1676-9 doi: 10.1007/s42452-019-1676-9
|
| [16] |
J. Ren, Z. Z. Sun, W. Dai, New approximations for solving the Caputo-type fractional partial differential equations, Appl. Math. Modell., 40 (2016), 2625–2636. https://doi.org/10.1016/j.apm.2015.10.011 doi: 10.1016/j.apm.2015.10.011
|
| [17] |
R. Sahadevan, P. Prakash, Exact solution of certain time fractional nonlinear partial differential equations, Nonlinear Dyn., 85 (2016), 659–673. https://doi.org/10.1007/s11071-016-2714-4 doi: 10.1007/s11071-016-2714-4
|
| [18] |
H. Zhang, M. Nadeem, A. Rauf, Z. G. Hui, A novel approach for the analytical solution of nonlinear time-fractional differential equations, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 1069–1084. https://doi.org/10.1108/HFF-02-2020-0077 doi: 10.1108/HFF-02-2020-0077
|
| [19] |
X. B. Yin, S. Kumar, D. Kumar, A modified homotopy analysis method for solution of fractional wave equations, Adv. Mech. Eng., 7 (2015), 1–8. https://doi.org/10.1177/1687814015620330 doi: 10.1177/1687814015620330
|
| [20] |
J. Weng, X. Liu, Y. Zhou, J. Wang, An explicit wavelet method for solution of nonlinear fractional wave equations, Mathematics, 10 (2022), 4011. https://doi.org/10.3390/math10214011 doi: 10.3390/math10214011
|
| [21] |
S. Kukla, U. Siedlecka, On solutions of the initial value problem for the three-term fractional differential equation with Caputo derivatives, Symmetry, 12 (2020), 1355. https://doi.org/10.3390/sym12081355 doi: 10.3390/sym12081355
|
| [22] |
V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
|
| [23] |
V. Daftardar-Gejji, S. Bhalekar, Chaos in fractional ordered Liu system, Comput. Math. Appl., 59 (2010), 1117–1127. https://doi.org/10.1016/j.camwa.2009.07.003 doi: 10.1016/j.camwa.2009.07.003
|
| [24] |
L. Ali, S. Islam, T. Gul, I. S. Amiri, Solution of nonlinear problems by a new analytical technique using Daftardar-Gejji and Jafari polynomials, Adv. Mech. Eng., 11 (2019), 1–10. https://doi.org/10.1177/1687814019896962 doi: 10.1177/1687814019896962
|
| [25] |
S. Cetinkaya, A. Demir, A new approach for the fractional Rosenau–Hyman problem by ARA transform, Math. Methods Appl. Sci., 48 (2025), 10970–10977. https://doi.org/10.1002/mma.10934 doi: 10.1002/mma.10934
|
| [26] |
S. Cetinkaya, A. Demir, On the solution of time fractional initial value problem by a new method with ARA transform, J. Intell. Fuzzy Syst., 44 (2022), 2693–2701. https://doi.org/10.3233/JIFS-223237 doi: 10.3233/JIFS-223237
|
| [27] |
H. K. Sevindir, S. Cetinkaya, A. Demir, On effects of a new method for fractional initial value problems, Adv. Math. Phys., 2021 (2021), 606442. https://doi.org/10.1155/2021/7606442 doi: 10.1155/2021/7606442
|
| [28] |
F. Mihoubi, B. Nouiri, An inverse time-dependent source problem for a time-fractional diffusion equation with nonlocal boundary conditions, Miskolc Math. Notes, 25 (2024), 873–889. https://doi.org/10.18514/MMN.2024.4495 doi: 10.18514/MMN.2024.4495
|
| [29] |
B. Derbissaly, M. Sadybekov, Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions, AIMS Math., 9 (2024), 9969–9988. https://doi.org/10.3934/math.2024488 doi: 10.3934/math.2024488
|
| [30] |
M. Nouar, C. Abdeledjalil, O. M. Alsalhi, H. O. Sidi, Inverse problem of identifying a time-dependent source term in a fractional degenerate semi-linear parabolic equation, Mathematics, 9 (2025), 1486. https://doi.org/10.3390/math13091486 doi: 10.3390/math13091486
|
| [31] |
M. Abdelwahed, M. BenSaleh, N. Chorfi, M. Hassine, An inverse problem study related to a fractional diffusion equation, J. Math. Anal. Appl., 512 (2022), 126145. https://doi.org/10.1016/j.jmaa.2022.126145 doi: 10.1016/j.jmaa.2022.126145
|
| [32] |
M. A. Bayrak, A. Demir, On the inverse problem of time dependent coefficient in a time fractional diffusion problem by sinc wavelet collocation method, Phys. Scr., 99 (2024), 10. https://doi.org/10.1088/1402-4896/ad753a doi: 10.1088/1402-4896/ad753a
|
| [33] |
M. A. Bayrak, A. Demir, On the inverse problem of time-dependent coefficient in a time fractional diffusion problem by newly defined Monic Laquerre wavelets, J. Comput. Nonlinear Dyn., 18 (2023), 111003. https://doi.org/10.1115/1.4063337 doi: 10.1115/1.4063337
|
| [34] |
J. R. Cannon, The solution of the heat conduction subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155–160. https://doi.org/10.1090/qam/160437 doi: 10.1090/qam/160437
|
| [35] |
J. R. Cannon, Determination of an unknown heat source from over-specified boundary data, SIAM J. Numer. Anal., 5 (1968), 275–286. https://doi.org/10.1137/0705024 doi: 10.1137/0705024
|
| [36] |
F. F. Dou, C. L. Fu, F. Yang, Identifying an unknown source term in a heat equation, Inverse Probl. Sci. Eng., 17 (2009), 901–913. https://doi.org/10.1080/17415970902916870 doi: 10.1080/17415970902916870
|
| [37] |
V. Obukhovskii, G. Petrosyan, M. Soroka, C. F. Wen, On a boundary value problem for Hale type fractional functional-differential inclusions with causal multioperators in a Banach space, J. Nonlinear Var. Anal., 7 (2023), 957–970. https://doi.org/10.23952/jnva.7.2023.6.05 doi: 10.23952/jnva.7.2023.6.05
|
| [38] |
M. Kaewsuwan, C. Thaiprayoon, A. Aphithana, J. Kongson, W. Sae-dan, W. Sudsutad, Nonlinear impulsive $(\rho_k, \psi_k)$-Hilfer fractional pantograph integro-differential equations under nonlocal integral boundary conditions, J. Nonlinear Funct. Anal., 2024 (2024), 10. https://doi.org/10.23952/jnfa.2024.10 doi: 10.23952/jnfa.2024.10
|
| [39] |
G. Özkum, A. Demir, S. Erman, K. Esra, B. Özgür, On the inverse problem of the fractional heat-like partial differential equations: Determination of the source function, Adv. Math. Phys., 2013 (2013), 476154. https://doi.org/10.1155/2013/476154 doi: 10.1155/2013/476154
|
| [40] |
V. Gülkaç, A method of finding source function for inverse diffusion problem with time-fractional derivative, Adv. Math. Phys., 2016 (2016), 6470949. https://doi.org/10.1155/2016/6470949 doi: 10.1155/2016/6470949
|
| [41] |
D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403–1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
|
| [42] |
Y. Zhang, D. A. Benson, D. M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561–581 https://doi.org/10.1016/j.advwatres.2009.01.008 doi: 10.1016/j.advwatres.2009.01.008
|
| [43] |
Á. Cartea, D. del-Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749–763. https://doi.org/10.1016/j.physa.2006.08.071 doi: 10.1016/j.physa.2006.08.071
|
| [44] |
E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376–384. https://doi.org/10.1016/S0378-4371(00)00255-7 doi: 10.1016/S0378-4371(00)00255-7
|
| [45] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
|
| [46] | Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhäuser, New York, 2015. https://doi.org/10.1007/978-3-319-17954-4 |
| [47] |
R. B. Paris, A uniform asymptotic expansion for the incomplete gamma function, J. Comput. Appl. Math., 148 (2002), 323–339. https://doi.org/10.1016/S0377-0427(02)00553-8 doi: 10.1016/S0377-0427(02)00553-8
|
| [48] |
K. V. Zhukovsky, H. M. Srivastava, Analytical solutions for heat diffusion beyond Fourier law, Appl. Math. Comput., 293 (2017), 423–437. https://doi.org/10.1016/j.amc.2016.08.038 doi: 10.1016/j.amc.2016.08.038
|
| [49] |
X. J. Yang, H. M. Srivastava, D. F. M. Torres, A. Debbouche, General fractional-order anomalous diffusion with non-singular power-law kernel, Therm. Sci., 21 (2017), 1–9. https://doi.org/10.2298/TSCI170610193Y doi: 10.2298/TSCI170610193Y
|
| [50] | R. Bracewell, The Fourier Transform And Its Applications, McGraw-Hill, 2000. |
| [51] | Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 |
| [52] |
K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
|