Research article

Upper bounds of blowup time for nonlinear extensible beam equations

  • Published: 25 September 2025
  • This paper aims to investigate the initial boundary value problem for a class of Kirchhoff-type wave equations modified by Woinowsky-Krieger models, which can be used to describe the nonlinear extensible beam. Using the concave property of the function and a differential inequality, we estimate the upper bounds of the blowup time of the blowup solution at subcritical, critical, and high initial energy levels.

    Citation: Tiantian Pang, Zhenshan Wang, Weipeng Wu. Upper bounds of blowup time for nonlinear extensible beam equations[J]. Electronic Research Archive, 2025, 33(9): 5701-5718. doi: 10.3934/era.2025253

    Related Papers:

  • This paper aims to investigate the initial boundary value problem for a class of Kirchhoff-type wave equations modified by Woinowsky-Krieger models, which can be used to describe the nonlinear extensible beam. Using the concave property of the function and a differential inequality, we estimate the upper bounds of the blowup time of the blowup solution at subcritical, critical, and high initial energy levels.



    加载中


    [1] C. Yang, V. D. Rǎdulescu, R. Z. Xu, M. Y. Zhang, Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models, Adv. Nonlinear Stud., 22 (2022), 436–468. https://doi.org/10.1515/ans-2022-0024 doi: 10.1515/ans-2022-0024
    [2] S. Woinowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Math. Anal. Appl., 17 (1950), 35–36. https://doi.org/10.1115/1.4010053 doi: 10.1115/1.4010053
    [3] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Am. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2
    [4] G. Kirchhoff, Vorlesungen über Mathematische Physik, Tauber, Leipzig, 1883.
    [5] F. T. K. Au, Y. S. Cheng, Y. K. Cheung, Vibration analysis of bridges under moving vehicles and trains: An overview, Prog. Struct. Eng. Mater., 3 (2001), 299–304. https://doi.org/10.1002/pse.89 doi: 10.1002/pse.89
    [6] W. Fang, J. A. Wickert, Post-buckling of micromachined beams, J. Micromech. Microeng., 4 (1994), 116–122. https://doi.org/10.1109/MEMSYS.1994.555620 doi: 10.1109/MEMSYS.1994.555620
    [7] M. I. Younis, A. H. Nayfeh, A study of the nonlinear response of a resonant microbeam to an electric actuation, Nonlinear Dyn., 31 (2003), 91–117. https://doi.org/10.1023/A:1022103118330 doi: 10.1023/A:1022103118330
    [8] N. Lobontiu, E. Garcia, Mechanics of Microelectromechanical Systems, Springer, Boston, MA, 2005. https://doi.org/10.1007/b100026
    [9] J. G. Eisley, Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15 (1964), 167–175. https://doi.org/10.1007/BF01602658 doi: 10.1007/BF01602658
    [10] D. Burgreen, Free vibrations of a pin-ended column with constant distance between pin ends, ASME J. Appl. Mech., 18 (1951), 135–139. https://doi.org/10.1115/1.4010266 doi: 10.1115/1.4010266
    [11] X. C. Wang, Y. X. Chen, Y. B. Yang, J. H. Li, R. Z. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475–499. https://doi.org/10.1016/j.na.2019.06.019 doi: 10.1016/j.na.2019.06.019
    [12] W. Q. Lv, Ground states of a Kirchhoff equation with the potential on the lattice graphs, Commun. Anal. Mech., 15 (2023), 792–810. https://doi.org/10.3934/cam.2023038 doi: 10.3934/cam.2023038
    [13] I. Chueshov, I. Lasiecka, Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models, Discrete Contin. Dyn. Syst., 15 (2006), 777–809. https://doi.org/10.3934/dcds.2006.15.777 doi: 10.3934/dcds.2006.15.777
    [14] X. Qiu, Z. Q. Ou, Y. Lv, Normalized solutions to nonautonomous Kirchhoff equation, Commun. Anal. Mech., 16 (2024), 457–486. https://doi.org/10.3934/cam.2024022 doi: 10.3934/cam.2024022
    [15] S. K. Patcheu, On a global solution and asymptotic behaviour for the generalized damped extensible beam equation, J. Differ. Equations, 135 (1997), 229–314. https://doi.org/10.1006/jdeq.1996.3231 doi: 10.1006/jdeq.1996.3231
    [16] Q. Li, Y. Z. Han, B. Guo, A critical Kirchhoff problem with a logarithmic type perturbation in high dimension, Commun. Anal. Mech., 16 (2024), 578–598. https://doi.org/10.3934/cam.2024027 doi: 10.3934/cam.2024027
    [17] I. Chueshov, I. Lasiecka, On global attractor for 2D Kirchhoff-Boussinesq model with supercritical nonlinearity, Commun. Partial Differ. Equations, 36 (2011), 67–99. https://doi.org/10.1080/03605302.2010.484472 doi: 10.1080/03605302.2010.484472
    [18] L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Isr. J. Math., 22 (1975), 273–303. https://doi.org/10.1007/bf02761595 doi: 10.1007/bf02761595
    [19] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148–172. https://doi.org/10.1007/bf00250942 doi: 10.1007/bf00250942
    [20] G. W. Liu, M. Y. Yin, S. X. Xia, Blow-up phenomena for a class of extensible beam equations, Mediterr. J. Math., 20 (2023), 266. https://doi.org/10.1007/s00009-023-02469-0 doi: 10.1007/s00009-023-02469-0
    [21] Y. Pang, X. T. Qiu, R. Z. Xu, Y.B, Yang, The Cauchy problem for general nonlinear wave equations with doubly dispersive, Commun. Anal. Mech., 16 (2024), 416–430. https://doi.org/10.3934/cam.2024019 doi: 10.3934/cam.2024019
    [22] K. Ono, On global solutions and blow-up of solutions of nonlinear Kirchhoff string with nonlinear dissipation, J. Math. Anal. Appl., 216 (1997), 321–342. https://doi.org/10.1006/jmaa.1997.5697 doi: 10.1006/jmaa.1997.5697
    [23] M. M. Freitas, M. L. Santos, J. A. Langa, Porous elastic system with nonlinear damping and sources terms, J. Differ. Equations, 264 (2018), 2970–3051. https://doi.org/10.1016/j.jde.2017.11.006 doi: 10.1016/j.jde.2017.11.006
    [24] B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1999.
    [25] J. N. Flavin, S. Rionero, Qualitative Estimates for Partial Differential Equations: An Introduction, CRC Press, Boca Raton, 1996. https://doi.org/10.1201/9781003069010
    [26] J. Z. Cheng, Q. R. Wang, Global existence and finite-time blowup for a mixed pseudo-parabolic $r(x)$-Laplacian equation, Adv. Nonlinear Anal., 13 (2024), 20230133. https://doi.org/10.1515/anona-2023-0133 doi: 10.1515/anona-2023-0133
    [27] Y. X. Chen, Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity, Commun. Anal. Mech., 15 (2023), 658–694. https://doi.org/10.3934/cam.2023033 doi: 10.3934/cam.2023033
    [28] S. H. Park, Blow-up for logarithmic viscoelastic equations with delay and acoustic boundary conditions, Adv. Nonlinear Anal., 12 (2023), 20220310. https://doi.org/10.1515/anona-2022-0310 doi: 10.1515/anona-2022-0310
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(330) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog