Research article Special Issues

A second-order accurate numerical scheme for Ericksen-Leslie system with penalty terms and defect dynamics in flows of nematic liquid crystals

  • Published: 24 September 2025
  • In this article, we study a second-order numerical scheme for the Ericksen-Leslie system. A modified Crank-Nicolson temporal discretization is adopted, and the pressure projection approach is used to decouple the Stokes solver. The second-order convex-concave decomposition is applied to the chemical potential vector, in which the convex nonlinear term is updated by a modified Crank-Nicolson approximation, the expansive concave term is computed by an explicit Adams-Bashforth extrapolation, and the surface diffusion part is discretized by the standard Crank-Nicolson interpolation. Meanwhile, semi-implicit second-order approximations are taken for the convection terms, in both the momentum equation and the orientation vector evolutionary equation, as well as the coupled elastic stress terms. In fact, these semi-implicit terms could be represented as a monotone, linear operator of a vector potential, and its combination with the second order convex splitting approximation to the chemical potential yields a closed nonlinear system of equations for the orientation vector function. The unique solvability analysis of the numerical system is established with the help of the Browder-Minty lemma. A combination of the second order convex splitting approximation to chemical potential vector and the semi-implicit discretization for the coupled terms leads to the total energy stability estimate, composed of kinematic energy and internal elastic free energy. Moreover, an optimal rate convergence analysis and error estimate are provided, with second-order accuracy in both time and space. Some numerical simulation results of liquid crystals' molecular dynamics are presented to study the scientific issue of defect annihilation. These results are consistent with the existing literature, and the energy evolution in the defect annihilation process is in agreement with the expectations. In addition, the influence of different parameters on the defect annihilation time instant is tested, and the results also agree with the physical laws.

    Citation: Tianxin Lv, Cheng Wang, Zhengru Zhang. A second-order accurate numerical scheme for Ericksen-Leslie system with penalty terms and defect dynamics in flows of nematic liquid crystals[J]. Electronic Research Archive, 2025, 33(9): 5661-5700. doi: 10.3934/era.2025252

    Related Papers:

  • In this article, we study a second-order numerical scheme for the Ericksen-Leslie system. A modified Crank-Nicolson temporal discretization is adopted, and the pressure projection approach is used to decouple the Stokes solver. The second-order convex-concave decomposition is applied to the chemical potential vector, in which the convex nonlinear term is updated by a modified Crank-Nicolson approximation, the expansive concave term is computed by an explicit Adams-Bashforth extrapolation, and the surface diffusion part is discretized by the standard Crank-Nicolson interpolation. Meanwhile, semi-implicit second-order approximations are taken for the convection terms, in both the momentum equation and the orientation vector evolutionary equation, as well as the coupled elastic stress terms. In fact, these semi-implicit terms could be represented as a monotone, linear operator of a vector potential, and its combination with the second order convex splitting approximation to the chemical potential yields a closed nonlinear system of equations for the orientation vector function. The unique solvability analysis of the numerical system is established with the help of the Browder-Minty lemma. A combination of the second order convex splitting approximation to chemical potential vector and the semi-implicit discretization for the coupled terms leads to the total energy stability estimate, composed of kinematic energy and internal elastic free energy. Moreover, an optimal rate convergence analysis and error estimate are provided, with second-order accuracy in both time and space. Some numerical simulation results of liquid crystals' molecular dynamics are presented to study the scientific issue of defect annihilation. These results are consistent with the existing literature, and the energy evolution in the defect annihilation process is in agreement with the expectations. In addition, the influence of different parameters on the defect annihilation time instant is tested, and the results also agree with the physical laws.



    加载中


    [1] P. G. De Gennes, J. Prost, The Physics of Liquid Crystal, Oxford University Press, 1993. https://doi.org/10.1093/oso/9780198520245.001.0001
    [2] J. L. Ericksen, Equilibrium theory of liquid crystals, Adv. Liq. Cryst., 2 (1976), 233–298. https://doi.org/10.1016/B978-0-12-025002-8.50012-9 doi: 10.1016/B978-0-12-025002-8.50012-9
    [3] G. Friedel, Les états mésomorphes de la matière, Ann. Phys., 9 (1922), 273–474. https://doi.org/10.1051/anphys/192209180273 doi: 10.1051/anphys/192209180273
    [4] F. M. Leslie, Theory of flow phenomena in liquid crystals, Adv. Liq. Cryst., 4 (1979), 1–81. https://doi.org/10.1016/B978-0-12-025004-2.50008-9 doi: 10.1016/B978-0-12-025004-2.50008-9
    [5] L. Liu, The Oseen-Frank theory of liquid crystals, Ph.D thesis, University of Oxford, 2019.
    [6] W. Wang, L. Zhang, P. W. Zhang, Modelling and computation of liquid crystals, Acta Numer., 30 (2021), 765–851. https://doi.org/10.1017/S0962492921000088 doi: 10.1017/S0962492921000088
    [7] M. Doi, Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym Sci., 19 (1981), 229–243. https://doi.org/10.1002/pol.1981.180190205 doi: 10.1002/pol.1981.180190205
    [8] B. Tjipto-Margo, G. T. Evans, The Onsager theory of the isotropic-nematic liquid-crystal transition: Biaxial particles in uniaxial phases, J. Chem. Phys., 94 (1991), 4546–4556. https://doi.org/10.1063/1.460609 doi: 10.1063/1.460609
    [9] F. C. Frank, Ⅰ. Liquid crystals. On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19–28. https://doi.org/10.1039/df9582500019 doi: 10.1039/df9582500019
    [10] C. W. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), 883–899. https://doi.org/10.1039/tf9332900883 doi: 10.1039/tf9332900883
    [11] F. H. Lin, C. Y. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. London, Ser. A, 372 (2014), 20130361. https://doi.org/10.1098/rsta.2013.0361 doi: 10.1098/rsta.2013.0361
    [12] H. Wu, X. Xu, C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var., 45 (2012), 319–345. https://doi.org/10.1007/s00526-011-0460-5 doi: 10.1007/s00526-011-0460-5
    [13] J. R. Huang, F. H. Lin, C. Y. Wang, Regularity and existence of global solutions to the Ericksen- Leslie system in $\mathbb{R}^2$, Commun. Math. Phys., 331 (2014), 805–850. https://doi.org/10.1007/s00220-014-2079-9 doi: 10.1007/s00220-014-2079-9
    [14] J. Zhao, X. F. Yang, J. Shen, Q. Wang, A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals and viscous fluids, J. Comput. Phys., 305 (2016), 539–556. https://doi.org/10.1016/j.jcp.2015.09.044 doi: 10.1016/j.jcp.2015.09.044
    [15] C. F. Zhou, P. T. Yue, J. J. Feng, The rise of Newtonian drops in a nematic liquid crystal, J. Fluid Mech., 593 (2007), 385–404. https://doi.org/10.1017/S0022112007008889 doi: 10.1017/S0022112007008889
    [16] C. F. Zhou, P. T. Yue, J. J. Feng, Dynamic simulation of droplet interaction and self-assembly in a nematic liquid crystal, Langmuir, 24 (2008), 3099–3110. https://doi.org/10.1021/la703312f doi: 10.1021/la703312f
    [17] K. Maryna, T. Denis, J. Zhao, W. Timothy, X. F. Yang, C. Alex, et al., Modeling the excess cell surface stored in a complex morphology of bleb-like protrusions, PLoS Comput. Biol., 12 (2016), e1004841. https://doi.org/10.1371/journal.pcbi.1004841 doi: 10.1371/journal.pcbi.1004841
    [18] R. Chen, W. Z. Bao, H. Zhang, The kinematic effects of the defects in liquid crystal dynamics, Commun. Comput. Phys., 20 (2016), 234–249. https://doi.org/10.4208/cicp.120115.071215a doi: 10.4208/cicp.120115.071215a
    [19] S. P. Zhang, C. Liu, H. Zhang, Numerical simulations of hydrodynamics of nematic liquid crystals: Effects of kinematic transports, Commun. Comput. Phys., 9 (2011), 974–993. https://doi.org/10.4208/cicp.160110.290610a doi: 10.4208/cicp.160110.290610a
    [20] J. Zhao, X. F. Yang, J. Li, Q. Wang, Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals, SIAM J. Sci. Comput., 38 (2016), A326–A3290. https://doi.org/10.1137/15M1024093 doi: 10.1137/15M1024093
    [21] P. Lin, C. Liu, H. Zhang, An energy law preserving $C^0$ finite element scheme for simulating the kinematic effects in liquid crystal dynamics, J. Comput. Phys., 227 (2007), 1411–1427. https://doi.org/10.1016/j.jcp.2007.09.005 doi: 10.1016/j.jcp.2007.09.005
    [22] F. M. Guillén-González, J. V. Gutiérrez-Santacreu, A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model, Esaim Math. Model. Numer. Anal., 47 (2013), 1433–1464. https://doi.org/10.1051/m2an/2013076 doi: 10.1051/m2an/2013076
    [23] K. L. Cheng, C. Wang, S. Wise, An energy stable finite difference scheme for the Ericksen-Leslie system with penalty function and its optimal rate convergence analysis, Commun. Math. Sci., 21 (2023), 1135–1169. https://doi.org/10.4310/CMS.2023.v21.n4.a10 doi: 10.4310/CMS.2023.v21.n4.a10
    [24] C. Liu, J. Shen, X. F. Yang, Dynamics of defect motion in nematic liquid crystal flow: Modeling and numerical simulation, Commun. Comput. Phys., 2 (2007), 1184–1198.
    [25] J. L. Guermond, P. Minev, J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195 (2006), 6011–6045. https://doi.org/10.1016/j.cma.2005.10.010 doi: 10.1016/j.cma.2005.10.010
    [26] Z. Zheng, G. Zou, B. Wang, W. Zhao, A fully-decoupled discontinuous Galerkin method for the nematic liquid crystal flows with SAV approach, J. Comput. Appl. Math., 429 (2023), 115207. https://doi.org/10.1016/j.cam.2023.115207 doi: 10.1016/j.cam.2023.115207
    [27] G. Zou, X. Wang, J. Li, An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows, Adv. Comput. Math., 49 (2023), 30. https://doi.org/10.1007/s10444-023-10028-0 doi: 10.1007/s10444-023-10028-0
    [28] W. B. Chen, W. Q. Feng, Y. Liu, C. Wang, S. M. Wise, A second-order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 149–182. https://doi.org/10.3934/dcdsb.2018090 doi: 10.3934/dcdsb.2018090
    [29] W. B. Chen, Y. Liu, C. Wang, S. M. Wise, An optimal-rate convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation, Math. Comput., 85 (2016), 2231–2257. https://doi.org/10.1090/mcom3052 doi: 10.1090/mcom3052
    [30] Y. Liu, W. B. Chen, Y. Liu, C. Wang, S. M. Wise, Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system, Numer. Math., 135 (2017), 679–709. https://doi.org/10.1007/s00211-016-0813-2 doi: 10.1007/s00211-016-0813-2
    [31] W. B. Chen, J. Y. Jing, Q. Q. Liu, C. Wang, X. M. Wang, Convergence analysis of a second-order numerical scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system, J. Comput. Appl. Math., 450 (2024), 115981. https://doi.org/10.1016/j.cam.2024.115981 doi: 10.1016/j.cam.2024.115981
    [32] A. Diegel, C. Wang, X. M. Wang, S. M. Wise, Convergence analysis and error estimates for a second-order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, Numer. Math., 137 (2017), 495–534. https://doi.org/10.1007/s00211-017-0887-5 doi: 10.1007/s00211-017-0887-5
    [33] W. B. Chen, D. Z. Han, C. Wang, S. F. wang, X. M. Wang, S. M. Wise, Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system, IMA J. Numer. Anal., 42 (2022), 2621–2655. https://doi.org/10.1093/imanum/drab046 doi: 10.1093/imanum/drab046
    [34] L. M. Ma, C. Wang, Z. Y. Xia, Convergence analysis of a BDF finite element method for the resistive magnetohydrodynamic equations, Adv. Appl. Math. Mech., 17 (2025), 633–662. https://doi.org/10.4208/aamm.OA-2023-0118 doi: 10.4208/aamm.OA-2023-0118
    [35] C. Wang, J. L. Wang, Z. Y. Xia, L. W. Xu, Optimal error estimates of a second-order projection finite element method for magnetohydrodynamic equations, Math. Model. Numer. Anal., 56 (2022), 767–789. https://doi.org/10.1051/m2an/2022020 doi: 10.1051/m2an/2022020
    [36] C. Wang, J. L. Wang, S. M. Wise, Z. Y. Xia, L. W. Xu, Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn-Hilliard-magnetohydrodynamics system of equations, J. Comput. Appl. Math., 436 (2023), 115409. https://doi.org/10.1016/j.cam.2023.115409 doi: 10.1016/j.cam.2023.115409
    [37] F. E. Browder, Semigroup approach to nonlinear diffusion equations, in Nonlinear Elliptic Boundary Value Problems, (1963), 81–136. https://doi.org/10.1090/S0002-9904-1963-11068-X
    [38] G. J. Minty, On a "monotonicity" method for the solution of nonlinear equations in Banach spaces, Proc. Natl. Acad. Sci. U.S.A., 50 (1963), 1038–1041. https://doi.org/10.1073/pnas.50.6.1038 doi: 10.1073/pnas.50.6.1038
    [39] J. Ding, S. Zhou, Second-order, positive, and unconditional energy dissipative scheme for modified Poisson-Nernst-Planck equations, J. Comput. Phys., 510 (2024), 113094. https://doi.org/10.1016/j.jcp.2024.113094 doi: 10.1016/j.jcp.2024.113094
    [40] C. Liu, C. Wang, S. Wise, X. Yue, S. Zhou, A second order accurate, positivity preserving numerical method for the Poisson-Nernst-Planck system and its convergence analysis, J. Sci. Comput., 97 (2023), 23. https://doi.org/10.1007/s10915-023-02345-9 doi: 10.1007/s10915-023-02345-9
    [41] C. Liu, J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), 211–228. https://doi.org/10.1016/S0167-2789(03)00030-7 doi: 10.1016/S0167-2789(03)00030-7
    [42] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194 (2009), 463–506. https://doi.org/10.1007/s00205-008-0160-2 doi: 10.1007/s00205-008-0160-2
    [43] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, 343 (1984). https://doi.org/10.1090/chel/343
    [44] W. Q. Feng, A. J. Salgado, C. Wang, S. M. Wise, Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms, J. Comput. Phys., 334 (2017), 45–67. https://doi.org/10.1016/j.jcp.2016.12.046 doi: 10.1016/j.jcp.2016.12.046
    [45] C. Liu, N. J. Walkington, Approximation of liquid crystal flows, SIAM J. Numer. Anal., 37 (2000), 725–741. https://doi.org/10.1137/S0036142997327282 doi: 10.1137/S0036142997327282
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(438) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog