Research article

Active vibration control for fractional order systems based on multiple region eigenvalue assignment

  • Received: 13 June 2025 Revised: 20 July 2025 Accepted: 25 July 2025 Published: 14 August 2025
  • This work addresses active vibration control for fractional-order systems based on a multiple region eigenvalue assignment. First, we propose the selection criteria of fractional-order multiple stability regions and define multiple stability regions by generalized linear matrix inequality. Based on the inverse eigenvalue problem theory, we give the sufficient condition for solving the feedback control matrix under multiple region eigenvalue assignment and present the expression of the feedback control matrix. Then, we propose a numerical algorithm for solving this problem, which improves the control performance. Finally, we verify the feasibility and effectiveness of the proposed method through numerical examples of fractional-order simulation and actual physical systems.

    Citation: Binxin He, Hao Liu. Active vibration control for fractional order systems based on multiple region eigenvalue assignment[J]. Electronic Research Archive, 2025, 33(8): 4693-4722. doi: 10.3934/era.2025211

    Related Papers:

  • This work addresses active vibration control for fractional-order systems based on a multiple region eigenvalue assignment. First, we propose the selection criteria of fractional-order multiple stability regions and define multiple stability regions by generalized linear matrix inequality. Based on the inverse eigenvalue problem theory, we give the sufficient condition for solving the feedback control matrix under multiple region eigenvalue assignment and present the expression of the feedback control matrix. Then, we propose a numerical algorithm for solving this problem, which improves the control performance. Finally, we verify the feasibility and effectiveness of the proposed method through numerical examples of fractional-order simulation and actual physical systems.



    加载中


    [1] R. F. Meng, D. S. Yin, C. S. Drapaca, A variable order fractional constitutive model of the viscoelastic behavior of polymers, Int. J. Non-Linear Mech., 113 (2019), 171–177. https://doi.org/10.1016/j.ijnonlinmec.2019.04.002 doi: 10.1016/j.ijnonlinmec.2019.04.002
    [2] I. E. Saçu, A practical synthesis and analysis of the fractional-order FitzHugh-Nagumo neuronal model, J. Comput. Electron., 23 (2024), 188–207. https://doi.org/10.1007/s10825-023-02120-x doi: 10.1007/s10825-023-02120-x
    [3] Q. Zhang, K. Z. Wei, A comparative study of fractional-order models for supercapacitors in electric vehicles, Int. J. Electrochem. Sci., 19 (2024), 100441. https://doi.org/10.1016/j.ijoes.2023.100441 doi: 10.1016/j.ijoes.2023.100441
    [4] J. Espinoza, N. Hakim, D. Tan, T. Wilson, K. Bingi, E. Khan, et al., Fractional-order PID control of quadrotor drone, in 2023 Innovations in Power and Advanced Computing Technologies(i-PACT), IEEE, (2023), 1–6. https://doi.org/10.1109/i-PACT58649.2023.10434503
    [5] Z. Li, Optical solutions of the nonlinear Kodama equation with the M-truncated derivative via the extended (G′/G)-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [6] Z. Li, Y. Y. Jiang, Bifurcation, chaotic behavior, and traveling wave solutions for the fractional (4+1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili model, Open Phys., 23 (2025), 20250157. https://doi.org/10.1515/phys-2025-0157 doi: 10.1515/phys-2025-0157
    [7] K. Farooq, A. H. Tedjani, Z. Li, E. Hussain, Soliton dynamics of the nonlinear Kodama equation with M-truncated derivative via two innovative schemes: The generalized Arnous method and the Kudryashov method, Fractal Fract., 9 (2025), 436. https://doi.org/10.3390/fractalfract9070436 doi: 10.3390/fractalfract9070436
    [8] H. S. Li, Y. Luo, Y. Q. Chen, A fractional-order proportional and derivative (FOPD) motion controller: Tuning rule and experiments, IEEE Trans. Control Syst. Technol., 18 (2010), 516–520. https://doi.org/10.1109/TCST.2009.2019120 doi: 10.1109/TCST.2009.2019120
    [9] R. L. Magin, Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
    [10] X. F. Zhang, C. Lin, Y. Q. Chen, D. Boutat, A unified framework of stability theorems for LTI fractional order systems with $0 < \alpha < 2$, IEEE Trans. Circuits Syst. II Express Briefs, 67 (2020), 3237–3241. https://doi.org/10.1109/TCSII.2020.2978869 doi: 10.1109/TCSII.2020.2978869
    [11] A. Kyprianou, J. E. Mottershead, H. J. Ouyang, Assignment of natural frequencies by an added mass and one or more springs, Mech. Syst. Signal Process., 18 (2004), 263–289. https://doi.org/10.1016/S0888-3270(02)00220-0 doi: 10.1016/S0888-3270(02)00220-0
    [12] K. Farahani, H. Bahai, An inverse strategy for relocation of eigenfrequencies in structural design Part Ⅰ: First order approximate solutions, J. Sound Vib., 274 (2004), 481–505. https://doi.org/10.1016/j.jsv.2003.11.009 doi: 10.1016/j.jsv.2003.11.009
    [13] Y. M. Ram, J. E. Mottershead, Receptance method in active vibration control, AIAA J., 45 (2007), 562–567. https://doi.org/10.2514/1.24349 doi: 10.2514/1.24349
    [14] Y. Yuan, Y. Lu, X. J. Ma, J. L. Li, H. Y. Yue, Distributed active vibration control for helicopter based on diffusion collaboration, Chin. J. Aeronaut., 37 (2024), 208–232. https://doi.org/10.1016/j.cja.2024.04.006 doi: 10.1016/j.cja.2024.04.006
    [15] Q. Zhang, S. Y. Han, M. A. El-Meligy, M. Tlija, Active control vibrations of aircraft wings under dynamic loading: Introducing PSO-GWO algorithm to predict dynamical information, Aerosp. Sci. Technol., 153 (2024), 109430. https://doi.org/10.1016/j.ast.2024.109430 doi: 10.1016/j.ast.2024.109430
    [16] S. Zhang, L. Liu, X. M. Zhang, Y. K. Zhou, Q. Yang, Active vibration control for ship pipeline system based on PI-LQR state feedback, Ocean Eng., 310 (2024), 118559. https://doi.org/10.1016/j.oceaneng.2024.118559 doi: 10.1016/j.oceaneng.2024.118559
    [17] P. L. Xu, X. Lan, C. J. Zeng, J. S. Leng, Y. J. Liu, Active vibration control effect of 3D printed cruciform honeycomb laminates based on fiber-reinforced shape memory polymer, Compos. Struct., 346 (2024), 118415. https://doi.org/10.1016/j.compstruct.2024.118415 doi: 10.1016/j.compstruct.2024.118415
    [18] Y. Q. Tian, C. Zhang, L. Yang, Active control of vibration and radiated noise in the shaft-shell coupled system of an underwater vehicle, Appl. Ocean Res., 154 (2025), 104324. https://doi.org/10.1016/j.apor.2024.104324 doi: 10.1016/j.apor.2024.104324
    [19] A. O. Adelakun, S. T. Ogunjo, Active control and electronic simulation of a novel fractional order chaotic jerk system, Commun. Nonlinear Sci., 130 (2024), 107734. https://doi.org/10.1016/j.cnsns.2023.107734 doi: 10.1016/j.cnsns.2023.107734
    [20] M. H. Kazemi, R. Tarighi, PID-based attitude control of quadrotor using robust pole assignment and LPV modeling, Int. J. Dynam. Control, 12 (2024), 2385–2397. https://doi.org/10.1007/s40435-023-01372-6 doi: 10.1007/s40435-023-01372-6
    [21] C. C. Ku, W. J. Chang, C. Y. Yen, G. W. Chen, Gain-scheduled controller design for linear parameter varying systems subject to pole assignment, Optim. Control Appl. Methods, 41 (2020), 1439–1450. https://doi.org/10.1002/oca.2606 doi: 10.1002/oca.2606
    [22] S. J. Zhang, Z. D. Wang, D. R. Ding, H. S. Shu, T. Hayat, A. M. Dobaie, On design of robust fault detection filter in finite-frequency domain with regional pole assignment, IEEE Trans. Circuits Syst. II Express Briefs, 62 (2015), 382–386. https://doi.org/10.1109/TCSII.2014.2387684 doi: 10.1109/TCSII.2014.2387684
    [23] D. Richiedei, I. Tamellin, Active control of linear vibrating systems for antiresonance assignment with regional pole placement, J. Sound Vib., 494 (2020), 115858. https://doi.org/10.1016/j.jsv.2020.115858 doi: 10.1016/j.jsv.2020.115858
    [24] P. Schaub, P. Vogt, U. Konigorski, Robust coupling control using pole region assignment, Syst. Control Lett., 158 (2021), 105067. https://doi.org/10.1016/j.sysconle.2021.105067 doi: 10.1016/j.sysconle.2021.105067
    [25] A. Ç. Arıcan, E. H. Çopur, G. Inalhan, M. U. Salamci, State dependent regional pole assignment controller design for a 3-DOF helicopter model, in 2023 International Conference on Unmanned Aircraft Systems(ICUAS), IEEE, (2023), 1067–1072. https://doi.org/10.1109/ICUAS57906.2023.10155816
    [26] A. C. Arıcan, E. H. Copur, G. Inalhan, M. U. Salamci, An extension algorithm of regional eigenvalue assignment controller design for nonlinear systems, Aerospace, 10 (2023), 893. https://doi.org/10.3390/aerospace10100893 doi: 10.3390/aerospace10100893
    [27] T. T. Zhang, H. S. Zhang, X. P. Xie, Region stability/stabilization and ${H_\infty }$ control for discrete-time impulsive Takagi–Sugeno fuzzy systems, IEEE Trans. Fuzzy Syst., 32 (2024), 3410–3419. https://doi.org/10.1109/TFUZZ.2024.3372936 doi: 10.1109/TFUZZ.2024.3372936
    [28] H. S. Zhang, Y. E. Li, X. P. Xie, J. W. Xia, A novel stability criterion and precise control for linear time delay systems based on regional configuration of the poles, ISA Trans., 148 (2024), 349–357. https://doi.org/10.1016/j.isatra.2024.03.008 doi: 10.1016/j.isatra.2024.03.008
    [29] P. H. He, H. S. Zhang, S. F. Su, A sliding mode control method with variable convergence rate for nonlinear impulsive stochastic systems, IEEE Trans. Cybern., 55 (2025), 2213–2222. 10.1109/TCYB.2025.3551668 doi: 10.1109/TCYB.2025.3551668
    [30] S. X. Xiong, M. T. Chen, Z. Q. Wei, Tracking flight control of UAV based on multiple regions pole assignment method, Aerosp. Sci. Technol., 129 (2022), 107848. https://doi.org/10.1016/j.ast.2022.107848 doi: 10.1016/j.ast.2022.107848
    [31] D. Peaucelle, D. Arzelier, O. Bachelier, J. Bernussou, A new robust D-stability condition for real convex polytopic uncertainty, Syst. Control Lett., 40 (2000), 21–30. https://doi.org/10.1016/S0167-6911(99)00119-X doi: 10.1016/S0167-6911(99)00119-X
    [32] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 963–968.
    [33] O. Zarrag, I. Sarría, J. García-Barruetabeña, F. Cortés, An analysis of the dynamical behaviour of systems with fractional damping for mechanical engineering applications, Symmetry, 11 (2019), 1499. https://doi.org/10.3390/sym11121499 doi: 10.3390/sym11121499
    [34] L. Yu, Robust Control: Linear Matrix Lnequality Approach, Tsinghua University Press, Beijing, China, 2002.
    [35] B. W. Xu, R. Blok, P. Teuffel, An investigation of the effect of relative humidity on viscoelastic properties of flax fiber reinforced polymer by fractional-order viscoelastic model, Compos. Commun., 37 (2023), 101406. https://doi.org/10.1016/j.coco.2022.101406 doi: 10.1016/j.coco.2022.101406
    [36] Y. J. Wang, G. H. Zhao, A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy, Control Eng. Pract., 133 (2023), 105451. https://doi.org/10.1016/j.conengprac.2023.105451 doi: 10.1016/j.conengprac.2023.105451
    [37] P. Anbalagan, Y. H. Joo, Stabilization analysis of fractional-order nonlinear permanent magnet synchronous motor model via interval type-2 fuzzy memory-based fault-tolerant control scheme, ISA Trans., 142 (2023), 310–324. https://doi.org/10.1016/j.isatra.2023.08.021 doi: 10.1016/j.isatra.2023.08.021
    [38] A. W. A. Saif, K. B. Gaufan, S. El-ferik, M. Al-dhaifallah, Fractional order sliding mode control of quadrotor based on fractional order model, IEEE Access, 11 (2023), 79823–79837. https://doi.org/10.1109/ACCESS.2023.3296644 doi: 10.1109/ACCESS.2023.3296644
    [39] S. Y. Xi, Z. H. Chen, Z. H. Chen, Y. Chen, Trajectory tracking of fractional order quadrotor UAV based on adaptive fuzzy fractional order PID controller, in 2024 14th Asian Control Conference (ASCC), IEEE, (2024), 2054–2059.
    [40] R. Austin, Unmanned Aircraft Systems: UAVs Design, Development and Deployment, Wiley, 2010. https://doi.org/10.1002/9780470664797
    [41] D. Y. Xue, Fractional Calculus: Nemerical Algorithms and Implimentations, Tsinghua University Press, Beijing, China, 2023.
    [42] B. Zhang, X. J. Shu, Fractional-Order Electrical Circuit Theory, Springer, 2022. https://doi.org/10.1007/978-981-16-2822-1
    [43] H. Matsumori, K. Urata, T. Shimizu, K. Takano, H. Ishii, Capacitor loss analysis method for power electronics converters, Microelectron. Reliab., 88–90 (2018), 443–446. https://doi.org/10.1016/j.microrel.2018.07.049 doi: 10.1016/j.microrel.2018.07.049
    [44] T. Kaczorek, K. Rogowski, Fractional Linear Systems and Electrical Circuits, Springer, 2015. https://doi.org/10.1007/978-3-319-11361-6
    [45] T. Y. Yang, Robust Pole Assignment for Fractional-Order Control Systems via Neurodynamic Optimization (in Chinese), Master Thesis, Dalian University of Technology, 2018.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(420) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog