Research article

Generic properties of Darboux-type curves

  • Received: 02 June 2025 Revised: 23 July 2025 Accepted: 30 July 2025 Published: 13 August 2025
  • In this paper, we present a method for constructing Darboux-type curves by using spherical curves and smooth functions. We show that all Darboux-type curves can be generated using this method. We discuss the relationship between Darboux-type curves and rectifying curves. Moreover, we establish a connection between Darboux-type curves and geodesics on a rectifying developable surface from the viewpoint of curves on ruled surfaces.

    Citation: Jie Huang, Sining Wei. Generic properties of Darboux-type curves[J]. Electronic Research Archive, 2025, 33(8): 4679-4692. doi: 10.3934/era.2025210

    Related Papers:

  • In this paper, we present a method for constructing Darboux-type curves by using spherical curves and smooth functions. We show that all Darboux-type curves can be generated using this method. We discuss the relationship between Darboux-type curves and rectifying curves. Moreover, we establish a connection between Darboux-type curves and geodesics on a rectifying developable surface from the viewpoint of curves on ruled surfaces.



    加载中


    [1] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Gauthier-Villars, 1915.
    [2] M. Düldül, Vector fields and planes in $\mathbb{E}^{4}$ which play the role of Darboux vector, Turk. J. Math., 44 (2020), 274–283. https://doi.org/10.3906/mat-1908-9 doi: 10.3906/mat-1908-9
    [3] Z. Wang, D. Pei, Null Darboux developable and pseudo-spherical Darboux image of null Cartan curve in Minkowski 3-space, Hokkaido Math. J., 40 (2011), 219–240. https://doi.org/10.14492/hokmj/1310042829 doi: 10.14492/hokmj/1310042829
    [4] C. Ekici, M. Dede, On the Darboux vector of ruled surfaces in Pseudo-Galilean space, Math. Comput. Appl., 16 (2011), 830–838. https://doi.org/10.3390/mca16040830 doi: 10.3390/mca16040830
    [5] B. Bukcu, M. K. Karacan, Special Bishop motion and Bishop Darboux rotation axis of the space curve, J. Dyn. Syst. Geom. Theor., 6 (2008), 27–34. https://doi.org/10.1080/1726037X.2008.10698542 doi: 10.1080/1726037X.2008.10698542
    [6] B. Chen, F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sin., 33 (2005), 77–90.
    [7] S. D. Gertzbein, J. Seligman, R. Holtby, K. H. Chan, A. Kapasouri, M. Tile, et al., Centrode patterns and segmental instability in degenerative disc disease, Spine, 10 (1985), 257–261. https://doi.org/10.1097/00007632-198504000-00014 doi: 10.1097/00007632-198504000-00014
    [8] N. G. Ogston, G. J. King, S. D. Gertzbein, M. Tile, A. Kapasouri, J. D. Rubenstein, Centrode patterns in the lumbar spine, Baseline studies in normal subjects, Spine, 11 (1986), 591–595. https://doi.org/10.1097/00007632-198607000-00010 doi: 10.1097/00007632-198607000-00010
    [9] P. J. Weiler, E. R. Bogoch, Kinematics of the distal radioulnar joint in rheumatoid arthritis: An In vivo study using centrode analysis, J. Hand Surg., 20 (1995), 937–943. https://doi.org/10.1016/S0363-5023(05)80140-6 doi: 10.1016/S0363-5023(05)80140-6
    [10] Y. Yu, Y. Yang, H. Liu, Darboux curves in 3-dimensional Euclidean space, J. Shenyang Norm. Univ. (Nat. Sci. Ed.), 31 (2013), 503–508. https://doi.org/10.3969/j.issn.1673-5862.2013.04.014 doi: 10.3969/j.issn.1673-5862.2013.04.014
    [11] J. Qian, M. Sun, P. Yin, Y. Kim, Null Darboux curve pairs in Minkowski 3-space, Axioms, 10 (2021), 142. https://doi.org/10.3390/axioms10030142 doi: 10.3390/axioms10030142
    [12] R. Encheva, G. Georgiev, Shapes of space curves, J. Geom. Graphics, 7 (2003), 145–155.
    [13] S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74 (2002), 97–109. https://doi.org/10.1007/PL00012543 doi: 10.1007/PL00012543
    [14] Y. Wang, Y. Chang, Mannheim curves and spherical curves, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050101. https://doi.org/10.1142/S0219887820501017 doi: 10.1142/S0219887820501017
    [15] B. Chen, When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon., 110 (2003), 147–152. https://doi.org/10.1080/00029890.2003.11919949 doi: 10.1080/00029890.2003.11919949
    [16] S. Izumiya, N. Takeuchi, Special curves and ruled surfaces, Beitr. Algebra Geom., 44 (2003), 203–212.
    [17] M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.
    [18] S. Deshmukh, B. Chen, S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turk. J. Math., 42 (2018), 609–620. https://doi.org/10.3906/mat-1701-52 doi: 10.3906/mat-1701-52
    [19] J. J. Koenderink, Solid Shape, MIT Press, 1990.
    [20] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153–163.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(434) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog