The purpose of this article is to investigate a class of nonlinear p-Laplacian Hadamard fractional differential equations. By employing two fixed–point theorems of the sum operator, we get the uniqueness of a positive solution for such p-Laplacian equations. In addition, an iterative sequence can be constructed to approximate the unique positive solution. The validity of the results is demonstrated through two illustrative numerical examples in the final of this paper.
Citation: Zichun Wang, Kemei Zhang. Unique positive solution for a nonlinear p-Laplacian Hadamard fractional differential boundary value problem[J]. Electronic Research Archive, 2025, 33(8): 4658-4678. doi: 10.3934/era.2025209
The purpose of this article is to investigate a class of nonlinear p-Laplacian Hadamard fractional differential equations. By employing two fixed–point theorems of the sum operator, we get the uniqueness of a positive solution for such p-Laplacian equations. In addition, an iterative sequence can be constructed to approximate the unique positive solution. The validity of the results is demonstrated through two illustrative numerical examples in the final of this paper.
| [1] |
L. Guo, C. Li, J. Zhao, Existence of monotone positive solutions for caputo-hadamard nonlinear fractional differential equation with infinite-point boundary value conditions, Symmetry, 15 (2023), 970. https://doi.org/10.3390/sym15050970 doi: 10.3390/sym15050970
|
| [2] |
Y. Li, Y. Liu, Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives, AIMS Math., 6 (2021), 13119–13142. https://doi.org/10.3934/math.2021758 doi: 10.3934/math.2021758
|
| [3] |
X. Zuo, W. Wang, Existence of solutions for fractional differential equation with periodic boundary condition, AIMS Math., 7 (2022), 6619–6633. https://doi.org/10.3934/math.2022369 doi: 10.3934/math.2022369
|
| [4] |
C. Ciftci, F. Deren, Analysis of p-Laplacian Hadamard fractional boundary value problems with the derivative term involved in the nonlinear term, Math. Method Appl. Sci., 46 (2023), 8945–8955. https://doi.org/10.1002/mma.9028 doi: 10.1002/mma.9028
|
| [5] |
L. Guo, H. Liu, C. Li, J. Zhao, J. Xu, Existence of positive solutions for singular p-Laplacian hadamard fractional differential equations with the derivative term contained in the nonlinear term, Nonlinear Anal. Modell. Control, 28 (2023), 491–515. https://doi.org/10.15388/namc.2023.28.31728 doi: 10.15388/namc.2023.28.31728
|
| [6] |
K. Zhang, J. Wang, W. Ma, Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Funct. Spaces, 2018 (2018), 1–10. https://doi.org/10.1155/2018/2193234 doi: 10.1155/2018/2193234
|
| [7] | A. Tudorache, R. Luca, Positive solutions to a system of coupled Hadamard fractional boundary value problems, Fractal Fract., 8 (2024). https://doi.org/10.3390/fractalfract8090543 |
| [8] |
J. Xu, J. Liu, D. O'Regan, Solvability for a Hadamard-type fractional integral boundary value problem, Nonlinear Anal. Model. Control, 28 (2023), 672–696. https://doi.org/10.15388/namc.2023.28.32130 doi: 10.15388/namc.2023.28.32130
|
| [9] | H. Lu, Z. Han, S. Sun, Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian, Adv. Differ. Equations, 30 (2013). https://doi.org/10.3390/fractalfract8090543 |
| [10] |
L. Guo, Y. Wang, H. Liu, C. Li, W. Wang, Y. Cui, et al., On iterative positive solutions for a class of singular infinite-point p-Laplacian fractional differential equation with singular source terms, J. Appl. Anal. Comput., 13 (2023), 2827–2842. https://doi.org/10.15388/NA.2018.2.3 doi: 10.15388/NA.2018.2.3
|
| [11] |
K. Jong, H. Choi, Y. Ri, Existence of positive solutions of a class of multi-point boundary value problems for p-Laplacian fractional differential equations with singular source terms, Commun. Nonlinear Sci. Numer. Simul., 72 (2019), 272–281. https://doi.org/10.1016/j.cnsns.2018.12.021 doi: 10.1016/j.cnsns.2018.12.021
|
| [12] | J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound Value Probl., 82 (2018). https://doi.org/10.1186/s13661-018-1003-1 |
| [13] |
X. Zhang, C. Mao, L. Liu, Y. Wu, Exact iterative solution for an abstract fractional dynamic system model for bioprocess, Qual. Theory Dyn. Syst., 16 (2017), 205–222. https://doi.org/10.1007/s12346-015-0162-z doi: 10.1007/s12346-015-0162-z
|
| [14] |
X. Zhang, L. Liu, Y. Wu, Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach, J. Math. Anal. Appl., 464 (2018), 1089–1106. https://doi.org/10.1016/j.jmaa.2018.04.040 doi: 10.1016/j.jmaa.2018.04.040
|
| [15] | X. Zhang, P. Chen, Y. Wu, B. Wiwatanapataphee, A necessary and sufficient condition for the existence of entire large solutions to a k-Hessian system, Appl. Math. Lett., 145 (2023). https://doi.org/10.1016/j.aml.2023.108745 |
| [16] | Z. Zhang, X. Yang, S. Wang, The alternating direction implicit difference scheme and extrapolation method for a class of three dimensional hyperbolic equations with constant coefficients, Electron. Res. Arch., 33 (2025), 3348–3377. https://doi.org/10.3934/era.2025148 |
| [17] |
J. Zhang, X. Yang, S. Wang, The ADI difference and extrapolation scheme for high-dimensional variable coefficient evolution equations, Electron. Res. Arch., 33 (2025), 3305–3327. https://doi.org/10.3934/era.2025146 doi: 10.3934/era.2025146
|
| [18] |
T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., 71 (2025), 1–29. https://doi.org/10.1007/s12190-025-02386-3 doi: 10.1007/s12190-025-02386-3
|
| [19] |
K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comput. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
|
| [20] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [21] | J. Wang, X. Jiang, H. Zhang, X. Yang, A new fourth-order nonlinear difference scheme for the nonlinear fourth-order generalized Burgers-type equation, J. Appl. Math. Comput., (2025), 1–31. https://doi.org/10.1007/s12190-025-02467-3 |
| [22] |
X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
|
| [23] |
Y. Shi, X. Yang, The pointwise error estimate of a new energy-preserving nonlinear difference method for supergeneralized viscous Burgers' equation, Comput. Appl. Math., 44 (2025), 257. https://doi.org/10.1007/s40314-025-03222-x doi: 10.1007/s40314-025-03222-x
|
| [24] |
L. Guo, W. Wang, C. Li, J. Zhao, D. Min, Existence results for a class of nonlinear singular p-Laplacian Hadamard fractional differential equations, Electron. Res. Arch., 32 (2024), 928–944. http://doi.org/10.3934/era.2024045 doi: 10.3934/era.2024045
|
| [25] |
C. Zhai, Y. Ma, H. Li, Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral, AIMS Math., 5 (2020), 4754–4769. https://doi.org/10.3934/math.2020304 doi: 10.3934/math.2020304
|
| [26] | B. Ahmad, A. Alsaedi, S. Ntouyas, J. Tariboon, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer: Cham, Switzerland, 2017. http://dx.doi.org/10.1007/978-3-319-52141-1 |
| [27] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam, 2003. http://doi.org/10.1016/S0304-0208(06)80001-0 |
| [28] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, Academic Press, Boston, 1998. https://doi.org/10.1016/c2013-0-10750-7 |
| [29] |
C. Zhai, D. Anderson, A sum operator equation and applications to nonlinear elastic beam equations and Lane-Emden-Fowler equations, J. Math. Anal. Appl., 375 (2011), 388–400. https://doi.org/10.1016/j.jmaa.2010.09.017 doi: 10.1016/j.jmaa.2010.09.017
|
| [30] |
C. Yang, C. Zhai, M. Hao, Uniqueness of positive solutions for several classes of sum operator equations and applications, J. Inequal. Appl., 2014 (2014), 58. https://doi.org/10.1186/1029-242X-2014-58 doi: 10.1186/1029-242X-2014-58
|