Research article

On $ {{\rm{ \mathsf{ λ}}} } $-biharmonic hypersurfaces in $ {{L}}^{{m}}\times \mathbb{R} $

  • Received: 02 July 2025 Revised: 07 August 2025 Accepted: 08 August 2025 Published: 14 August 2025
  • This paper investigated $ \lambda $-biharmonic hypersurfaces in $ {L}^{m}\times \mathbb{R} $, where $ {L}^{m} $ represents an Einstein space, and $ \mathbb{R} $ denotes the real line. We demonstrated that such hypersurfaces with some curvature conditions are either of two types: minimal or vertical cylinders over $ \lambda $-biharmonic hypersurfaces in $ {L}^{m} $. Particularly, when the Einstein space $ {L}^{m} $ has constant sectional curvature, we classify $ \lambda $-biharmonic hypersurfaces as totally umbilical or semi-parallel.

    Citation: Jiarui Chen, Zhen Zhao, Chao Yang. On $ {{\rm{ \mathsf{ λ}}} } $-biharmonic hypersurfaces in $ {{L}}^{{m}}\times \mathbb{R} $[J]. Electronic Research Archive, 2025, 33(8): 4723-4739. doi: 10.3934/era.2025212

    Related Papers:

  • This paper investigated $ \lambda $-biharmonic hypersurfaces in $ {L}^{m}\times \mathbb{R} $, where $ {L}^{m} $ represents an Einstein space, and $ \mathbb{R} $ denotes the real line. We demonstrated that such hypersurfaces with some curvature conditions are either of two types: minimal or vertical cylinders over $ \lambda $-biharmonic hypersurfaces in $ {L}^{m} $. Particularly, when the Einstein space $ {L}^{m} $ has constant sectional curvature, we classify $ \lambda $-biharmonic hypersurfaces as totally umbilical or semi-parallel.



    加载中


    [1] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd edition, World Scientific, Hackensack, 2014.
    [2] B. Y. Chen, Null 2-type surfaces in $ {E}^{3} $ are circular cylinders, Kodai Math. J., 11 (1988), 295–299. https://doi.org/10.2996/kmj/1138038880 doi: 10.2996/kmj/1138038880
    [3] A. Ferrández, P. Lucas, Null finite type hypersurfaces in space forms, Kodai Math. J., 14 (1991), 406–419. https://doi.org/10.2996/kmj/1138039464 doi: 10.2996/kmj/1138039464
    [4] B. Y. Chen, O. J. Garay, $ {\rm{ \mathsf{ δ} }}\left(2\right) $-ideal null 2-type hypersurfaces of Euclidean space are spherical cylinders, Kodai Math. J., 35 (2012), 382–391. https://doi.org/10.2996/kmj/1341401058 doi: 10.2996/kmj/1341401058
    [5] L. Du, Submanifolds Satisfying the Condition $ {\tau }_{2}\left(\phi \right) = \eta \tau \left(\phi \right) $ in Pseudo-Riemannian Space Forms, Ph.D thesis, Northwest Normal University, 2016.
    [6] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, Hypersurfaces of $ {E}_{s}^{4} $ with proper mean curvature vector, J. Math. Soc. Jpn., 59 (2007), 797–809. https://doi.org/10.2969/jmsj/05930797 doi: 10.2969/jmsj/05930797
    [7] Y. Fu, Null 2-type hypersurfaces with at most three distinct principal curvatures in Euclidean space, Taiwan. J. Math., 19 (2015), 519–533. https://doi.org/10.11650/tjm.19.2015.4847 doi: 10.11650/tjm.19.2015.4847
    [8] Y. Fu, M. C. Hong, X. Zhan, On Chen's biharmonic conjecture for hypersurfaces in $ {\mathbb{R}}^{5} $, Adv. Math., 383 (2021), 107697. https://doi.org/10.1016/j.aim.2021.107697 doi: 10.1016/j.aim.2021.107697
    [9] T. Hasanis, T. Vlachos, Hypersurfaces with constant scalar curvature and constant mean curvature, Ann. Glob. Anal. Geom., 13 (1995), 69–77. https://doi.org/10.1007/BF00774569 doi: 10.1007/BF00774569
    [10] J. C. Liu, C. Yang, Hypersurfaces in $ {E}_{s}^{n+1} $ satisfying $ \mathrm{\Delta }H = {\rm{ \mathsf{ λ} }}H $ with at most three distinct principal curvatures, J. Math. Anal. Appl., 419 (2014), 562–573. https://doi.org/10.1016/j.jmaa.2014.04.066 doi: 10.1016/j.jmaa.2014.04.066
    [11] A. L. Albujer, J. A. Aledo, L. J. Alias, On the scalar curvature of hypersurfaces in spaces with a Killing field, Adv. Geom., 10 (2010), 478–503. https://doi.org/10.1515/advgeom.2010.017 doi: 10.1515/advgeom.2010.017
    [12] F. Dillen, J. Fastenakels, J. V. der Veken, Rotation hypersurfaces in $ {S}^{n}\times \mathbb{R} $ and $ {H}^{n}\times \mathbb{R} $, Note Mat., 29 (2009), 41–54. https://doi.org/10.1285/i15900932v29n1p41 doi: 10.1285/i15900932v29n1p41
    [13] S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670. https://doi.org/10.1512/iumj.1976.25.25051 doi: 10.1512/iumj.1976.25.25051
    [14] Y. Luo, S. Maeta, Biharmonic hypersurfaces in a sphere, Proc. Am. Math. Soc., 145 (2017), 3109–3116. https://doi.org/10.1090/proc/13320 doi: 10.1090/proc/13320
    [15] D. Fetcu, C. Oniciuc, H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in $ {S}^{n}\times \mathbb{R} $, J. Geom. Anal., 23 (2013), 2158–2176. https://doi.org/10.1007/s12220-012-9323-3 doi: 10.1007/s12220-012-9323-3
    [16] S. Andronic, S. Nistor, Gap results for biharmonic submanifolds in spheres, J. Math. Anal. Appl., 548 (2025), 129378. https://doi.org/10.1016/j.jmaa.2025.129378 doi: 10.1016/j.jmaa.2025.129378
    [17] Y. Fu, S. Maeta, Y. L. Ou, Biharmonic hypersurfaces in a product space $ {L}^{m}\times \mathbb{R} $, Math. Nachr., 294 (2021), 1724–1741. https://doi.org/10.1002/mana.201900457 doi: 10.1002/mana.201900457
    [18] G. Calvaruso, D. Kowalczyk, J. V. der Veken, On extrinsically symmetric hypersurfaces of $ {H}^{n}\times \mathbb{R} $, Bull. Aust. Math. Soc., 82 (2010), 390–400. https://doi.org/10.1017/S0004972710001760 doi: 10.1017/S0004972710001760
    [19] J. V. der Veken, L. Vrancken, Parallel and semi-parallel hypersurfaces of $ {S}^{n}\times \mathbb{R} $, Bull. Braz. Math. Soc., 39 (2008), 355–370. https://doi.org/10.1007/s00574-008-0010-8 doi: 10.1007/s00574-008-0010-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(508) PDF downloads(22) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog