This paper investigated $ \lambda $-biharmonic hypersurfaces in $ {L}^{m}\times \mathbb{R} $, where $ {L}^{m} $ represents an Einstein space, and $ \mathbb{R} $ denotes the real line. We demonstrated that such hypersurfaces with some curvature conditions are either of two types: minimal or vertical cylinders over $ \lambda $-biharmonic hypersurfaces in $ {L}^{m} $. Particularly, when the Einstein space $ {L}^{m} $ has constant sectional curvature, we classify $ \lambda $-biharmonic hypersurfaces as totally umbilical or semi-parallel.
Citation: Jiarui Chen, Zhen Zhao, Chao Yang. On $ {{\rm{ \mathsf{ λ}}} } $-biharmonic hypersurfaces in $ {{L}}^{{m}}\times \mathbb{R} $[J]. Electronic Research Archive, 2025, 33(8): 4723-4739. doi: 10.3934/era.2025212
This paper investigated $ \lambda $-biharmonic hypersurfaces in $ {L}^{m}\times \mathbb{R} $, where $ {L}^{m} $ represents an Einstein space, and $ \mathbb{R} $ denotes the real line. We demonstrated that such hypersurfaces with some curvature conditions are either of two types: minimal or vertical cylinders over $ \lambda $-biharmonic hypersurfaces in $ {L}^{m} $. Particularly, when the Einstein space $ {L}^{m} $ has constant sectional curvature, we classify $ \lambda $-biharmonic hypersurfaces as totally umbilical or semi-parallel.
| [1] | B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, 2nd edition, World Scientific, Hackensack, 2014. |
| [2] |
B. Y. Chen, Null 2-type surfaces in $ {E}^{3} $ are circular cylinders, Kodai Math. J., 11 (1988), 295–299. https://doi.org/10.2996/kmj/1138038880 doi: 10.2996/kmj/1138038880
|
| [3] |
A. Ferrández, P. Lucas, Null finite type hypersurfaces in space forms, Kodai Math. J., 14 (1991), 406–419. https://doi.org/10.2996/kmj/1138039464 doi: 10.2996/kmj/1138039464
|
| [4] |
B. Y. Chen, O. J. Garay, $ {\rm{ \mathsf{ δ} }}\left(2\right) $-ideal null 2-type hypersurfaces of Euclidean space are spherical cylinders, Kodai Math. J., 35 (2012), 382–391. https://doi.org/10.2996/kmj/1341401058 doi: 10.2996/kmj/1341401058
|
| [5] | L. Du, Submanifolds Satisfying the Condition $ {\tau }_{2}\left(\phi \right) = \eta \tau \left(\phi \right) $ in Pseudo-Riemannian Space Forms, Ph.D thesis, Northwest Normal University, 2016. |
| [6] |
A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, Hypersurfaces of $ {E}_{s}^{4} $ with proper mean curvature vector, J. Math. Soc. Jpn., 59 (2007), 797–809. https://doi.org/10.2969/jmsj/05930797 doi: 10.2969/jmsj/05930797
|
| [7] |
Y. Fu, Null 2-type hypersurfaces with at most three distinct principal curvatures in Euclidean space, Taiwan. J. Math., 19 (2015), 519–533. https://doi.org/10.11650/tjm.19.2015.4847 doi: 10.11650/tjm.19.2015.4847
|
| [8] |
Y. Fu, M. C. Hong, X. Zhan, On Chen's biharmonic conjecture for hypersurfaces in $ {\mathbb{R}}^{5} $, Adv. Math., 383 (2021), 107697. https://doi.org/10.1016/j.aim.2021.107697 doi: 10.1016/j.aim.2021.107697
|
| [9] |
T. Hasanis, T. Vlachos, Hypersurfaces with constant scalar curvature and constant mean curvature, Ann. Glob. Anal. Geom., 13 (1995), 69–77. https://doi.org/10.1007/BF00774569 doi: 10.1007/BF00774569
|
| [10] |
J. C. Liu, C. Yang, Hypersurfaces in $ {E}_{s}^{n+1} $ satisfying $ \mathrm{\Delta }H = {\rm{ \mathsf{ λ} }}H $ with at most three distinct principal curvatures, J. Math. Anal. Appl., 419 (2014), 562–573. https://doi.org/10.1016/j.jmaa.2014.04.066 doi: 10.1016/j.jmaa.2014.04.066
|
| [11] |
A. L. Albujer, J. A. Aledo, L. J. Alias, On the scalar curvature of hypersurfaces in spaces with a Killing field, Adv. Geom., 10 (2010), 478–503. https://doi.org/10.1515/advgeom.2010.017 doi: 10.1515/advgeom.2010.017
|
| [12] |
F. Dillen, J. Fastenakels, J. V. der Veken, Rotation hypersurfaces in $ {S}^{n}\times \mathbb{R} $ and $ {H}^{n}\times \mathbb{R} $, Note Mat., 29 (2009), 41–54. https://doi.org/10.1285/i15900932v29n1p41 doi: 10.1285/i15900932v29n1p41
|
| [13] |
S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25 (1976), 659–670. https://doi.org/10.1512/iumj.1976.25.25051 doi: 10.1512/iumj.1976.25.25051
|
| [14] |
Y. Luo, S. Maeta, Biharmonic hypersurfaces in a sphere, Proc. Am. Math. Soc., 145 (2017), 3109–3116. https://doi.org/10.1090/proc/13320 doi: 10.1090/proc/13320
|
| [15] |
D. Fetcu, C. Oniciuc, H. Rosenberg, Biharmonic submanifolds with parallel mean curvature in $ {S}^{n}\times \mathbb{R} $, J. Geom. Anal., 23 (2013), 2158–2176. https://doi.org/10.1007/s12220-012-9323-3 doi: 10.1007/s12220-012-9323-3
|
| [16] |
S. Andronic, S. Nistor, Gap results for biharmonic submanifolds in spheres, J. Math. Anal. Appl., 548 (2025), 129378. https://doi.org/10.1016/j.jmaa.2025.129378 doi: 10.1016/j.jmaa.2025.129378
|
| [17] |
Y. Fu, S. Maeta, Y. L. Ou, Biharmonic hypersurfaces in a product space $ {L}^{m}\times \mathbb{R} $, Math. Nachr., 294 (2021), 1724–1741. https://doi.org/10.1002/mana.201900457 doi: 10.1002/mana.201900457
|
| [18] |
G. Calvaruso, D. Kowalczyk, J. V. der Veken, On extrinsically symmetric hypersurfaces of $ {H}^{n}\times \mathbb{R} $, Bull. Aust. Math. Soc., 82 (2010), 390–400. https://doi.org/10.1017/S0004972710001760 doi: 10.1017/S0004972710001760
|
| [19] |
J. V. der Veken, L. Vrancken, Parallel and semi-parallel hypersurfaces of $ {S}^{n}\times \mathbb{R} $, Bull. Braz. Math. Soc., 39 (2008), 355–370. https://doi.org/10.1007/s00574-008-0010-8 doi: 10.1007/s00574-008-0010-8
|