Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Strict Arakelov inequality for a family of varieties of general type

  • Received: 13 April 2021 Revised: 26 December 2021 Accepted: 03 January 2022 Published: 16 May 2022
  • Let f:XY be a semistable non-isotrivial family of n-folds over a smooth projective curve with discriminant locus SY and with general fiber F of general type. We show the strict Arakelov inequality

    degfωνX/YrankfωνX/Y<nν2degΩ1Y(logS),

    for all νN such that the ν-th pluricanonical linear system |ωνF| is birational. This answers a question asked by Möller, Viehweg and the third named author [1].

    Citation: Xin Lu, Jinbang Yang, Kang Zuo. Strict Arakelov inequality for a family of varieties of general type[J]. Electronic Research Archive, 2022, 30(7): 2643-2662. doi: 10.3934/era.2022135

    Related Papers:

    [1] Daizhan Cheng, Zhengping Ji, Jun-e Feng, Shihua Fu, Jianli Zhao . Perfect hypercomplex algebras: Semi-tensor product approach. Mathematical Modelling and Control, 2021, 1(4): 177-187. doi: 10.3934/mmc.2021017
    [2] Wenxv Ding, Ying Li, Dong Wang, AnLi Wei . Constrainted least squares solution of Sylvester equation. Mathematical Modelling and Control, 2021, 1(2): 112-120. doi: 10.3934/mmc.2021009
    [3] Aidong Ge, Zhen Chang, Jun-e Feng . Solving interval type-2 fuzzy relation equations via semi-tensor product of interval matrices. Mathematical Modelling and Control, 2023, 3(4): 331-344. doi: 10.3934/mmc.2023027
    [4] Hongli Lyu, Yanan Lyu, Yongchao Gao, Heng Qian, Shan Du . MIMO fuzzy adaptive control systems based on fuzzy semi-tensor product. Mathematical Modelling and Control, 2023, 3(4): 316-330. doi: 10.3934/mmc.2023026
    [5] Naiwen Wang . Solvability of the Sylvester equation AXXB=C under left semi-tensor product. Mathematical Modelling and Control, 2022, 2(2): 81-89. doi: 10.3934/mmc.2022010
    [6] Jianhua Sun, Ying Li, Mingcui Zhang, Zhihong Liu, Anli Wei . A new method based on semi-tensor product of matrices for solving reduced biquaternion matrix equation lp=1ApXBp=C and its application in color image restoration. Mathematical Modelling and Control, 2023, 3(3): 218-232. doi: 10.3934/mmc.2023019
    [7] Xueling Fan, Ying Li, Wenxv Ding, Jianli Zhao . H-representation method for solving reduced biquaternion matrix equation. Mathematical Modelling and Control, 2022, 2(2): 65-74. doi: 10.3934/mmc.2022008
    [8] Weiwei Han, Zhipeng Zhang, Chengyi Xia . Modeling and analysis of networked finite state machine subject to random communication losses. Mathematical Modelling and Control, 2023, 3(1): 50-60. doi: 10.3934/mmc.2023005
    [9] K. P. V. Preethi, H. Alotaibi, J. Visuvasam . Analysis of amperometric biosensor utilizing synergistic substrates conversion: Akbari-Ganji's method. Mathematical Modelling and Control, 2024, 4(3): 350-360. doi: 10.3934/mmc.2024028
    [10] Ruxin Zhang, Zhe Yin, Ailing Zhu . Numerical simulations of a mixed finite element method for damped plate vibration problems. Mathematical Modelling and Control, 2023, 3(1): 7-22. doi: 10.3934/mmc.2023002
  • Let f:XY be a semistable non-isotrivial family of n-folds over a smooth projective curve with discriminant locus SY and with general fiber F of general type. We show the strict Arakelov inequality

    degfωνX/YrankfωνX/Y<nν2degΩ1Y(logS),

    for all νN such that the ν-th pluricanonical linear system |ωνF| is birational. This answers a question asked by Möller, Viehweg and the third named author [1].



    In probability theory and other related fields, a stochastic process is a mathematical tool generally characterized as a group of random variables. Verifiably, the random variables were related with or listed by a lot of numbers, normally saw as focuses in time, giving the translation of a stochastic process speaking to numerical estimations some system randomly changing over time, for example, the development of a bacterial populace, an electrical flow fluctuating because of thermal noise, or the development of a gas molecule. Stochastic processes are broadly utilized as scientific models of systems that seem to shift in an arbitrary way. They have applications in numerous areas including sciences, for example, biology, chemistry, ecology, neuroscience, and physics as well as technology and engineering fields, for example, picture preparing, signal processing, data theory, PC science, cryptography and telecommunications. Furthermore, apparently arbitrary changes in money related markets have inspired the broad utilization of stochastic processes in fund. For the detailed survey about convex functions, inequality theory and applications, we refer [1,2,3,4] and references therein.

    The study of convex stochastic process was initiated by Nikodem in 1980 [5]. He also investigated some regularity properties of convex stochastic process. Later on, some further results on convex stochastic process are derived in 1992 by Skowronski [6]. In recent developments on convex stochastic process, Kotrys [7] investigated Hermite–Hadamard type inequality for convex stochastic process and gave results for strongly convex stochastic process. In [8], the inequality for h-convex stochastic process were derived. The interesting work on stochastic process are [17,18,19,20,21].

    The aim of this paper is to introduce the notion of η-convex stochastic process and derive Hermite–Hadamard and Jensen Type inequality for η-convex stochastic process. The main motivation for this paper is the idea of ϕ-convex function and η-convex function [9,10], respectively. For other interesting generalizations, we refer [13,14,15,16,22,23,24,25] to the readers and references therein.

    The mapping ξ defined for a σ field Ω to R is F-measurable for each Borel set Bβ(R), if

    {ωΩ/ξ(ω)B}F.

    For a probability space (Ω,F,P), the mapping ξ is said to be random variable. The random variable ξ becomes integrable if

    Ω|ξ|dp<.

    If the random variable ξ is integrable, then E(ξ)=Ωξdp exists and is called expectation of ξ. The family of integrable random variables ξ:ΩR is denoted by L(Ω,F,P).

    Now we present the definition and basic properties of mean-square integral [11].

    Suppose that ξ1:I×ΩR is a stochastic process with E[ξ1(t)2]< for all tI and [a,b]I, a=t0<t1<t2<<tn=b is a partition of [a,b] and Θk[tk1,tk] for all k=1,,n. Further, suppose that ξ2:I×ΩR be a random variable. Then, it is said to be mean-square integral of the process ξ1 on [a,b], if for each normal sequence of partitions of the interval [a,b] and for each Θk[tk1,tk], k=1,,n, we have

    limnE[(nk=1ξ1(Θk)·(tktk1)ξ2)2]=0.

    Then, we can write

    ξ2(.)=baξ1(s,.)ds(a.e.). (1.1)

    The monotonicity of the mean square integral will be used frequently throughout the paper. If ξ1(t,.)ξ2(t,.) (a.e.) for the interval [a,b], then

    baξ1(t,.)dtbaξ2(t,.)dt(a.e.) (1.2)

    The inequality (1.2) is the immediate consequence of the definition of the mean-square integral.

    Lemma 1.1. If X:I×ΩR is a stochastic process of the form X(t,.)=A(.)t+B(.), where A,B:ΩR are random variables such that E[A2]<,E[B2]< and [a,b]I, then

    baX(t,.)dt=A(.)b2a22+B(.)(ba)(a.e.). (1.3)

    Now, we present the definition of η-convex stochastic process.

    Definition 1.2. Let (Ω,A,P) be a probability space and IR be an interval, then ξ:I×ΩR is an η-convex stochastic process, if

    ξ(λb1+(1λ)b2,.)ξ(b2,.)+λη(ξ(b1,.),ξ(b2,.))(a.e) (1.4)

    for all b1,b2I and λ[0,1].

    In (1.4), if we take η(b1,b2)=b1b2, we obtain convex stochastic process. By taking ξ(b1,.)=ξ(b2,.) in (1.4) we get

    λη(ξ(b1,.),ξ(b1,.))0

    for any b1I and t[0,1]. Which implies that

    η(ξ(b1,.),ξ(b1,.))0

    for any b1I.

    Also, if we take λ=1 in (1.4), we get

    ξ(b1,.)ξ(b2,.)η(ξ(b1,.),ξ(b2,.))

    for any b1,b2I. The second condition implies the first one, so if we want to define η convex stochastic process on an interval I of real numbers, we should assume that

    η(b1,b2)b1b2 (1.5)

    for any b1,b2I.

    One can observe that, if ξ:IR is convex stochastic process and η:ξ(I)×ξ(I)R is an arbitrary bi-function that satisfies the condition (1.5), then for any b1,b2I and t[0,1], we have

    ξ(tb1+(1t)b2,.)ξ(b2,.)+λ(ξ(b1,.)ξ(b2,.))ξ(b2,.)+λη(η(b1,.),η(b2,.)),

    which tells that ξ is η convex stochastic process.

    Definition 1.3. (η Quasi-convex stochastic process) A stochastic Process ξ:I×ΩR is said to be η quasi-convex stochastic process if

    ξ(tb1+(1t)b2,.)max{ξ(b2,.),ξ(b2,.)+η(ξ(b1,.),ξ(b2,.))(a.e.)

    Definition 1.4. (η-affine) A stochastic process ξ:I×ΩR is said to be η-affine if

    ξ(tb1+(1t)b2,.)=ξ(b2,.)+tη(ξ(b1,.),ξ(b2,.))(a.e.)

    for all b1,b2I and t[0,1]

    Definition 1.5. (Non-Negatively Homogeneous) A function η:A×BR is said to be non-negatively homogenous if

    η(γb1,γb2)=γη(b1,b2) (1.6)

    for all b1,b2R and γ0.

    Definition 1.6. (Additive) A function η is said to be additive if

    η(x1,y1)+η(x2,y2)=η(x1+x2,y1+y2) (1.7)

    for all x1,x2,y1,y2R.

    Definition 1.7. (Non-negatively linear function) A function η is said to be non-negatively linear, if it satisfy (1.6) and (1.7).

    Definition 1.8. (Non-decreasing in first variable) A function η is said to be non-decreasing in first variable if b1b2 implies η(b1,b3)η(b2,b3) for all b1,b2,b3R.

    Definition 1.9. (Non-negatively sub-linear in first variable) A function η is said to be non-negatively sub-linear in first variable if

    η(γ(b1+b2),b3)γη(b1,b3)+γη(b2,b3)

    for all b1,b2,b3R and γ0.

    We shall begin with few preliminary proposition for η-convex function.

    Proposition 1. Consider two η convex stochastic process ξ1,ξ2:I×ΩR, such that

    1.If η is additive then ξ1+ξ2:IR is η convex stochastic process.

    2. If η is non-negatively homogenous, then for any γ0, γξ1:I×ΩR is η- convex stochastic process.

    Proof. The proof of the proposition is straight forward.

    Proposition 2. If ξ:[b1,b2]R is η convex stochastic process, then

    maxx[b1,b2]ξ(x,.)max{ξ(b2,.),ξ(b2,.)+η(ξ(b1,.),ξ(b2,.))}.

    Proof. Consider x=αb1+(1α)b2 for arbitrarily x[b1,b2] and some α[0,1]. We can write

    ξ(x,.)=ξ(αb1+(1α)b2,.).

    Since ξ is η convex stochastic process, so by definition

    ξ(x,.)ξ(b2,.)+αη(ξ(b1,.),ξ(b2,.)) (1.8)

    and

    ξ(b2,.)+αη(ξ(b1,.),ξ(b2,.))max{ξ(b2,.),ξ(b2,.)+η(ξ(b1,.),ξ(b2,.)). (1.9)

    Since x is arbitrary, so from (1.8) and (1.9), we get our desired result.

    Theorem 1.10. A random variable ξ:I×ΩR is η convex stochastic process if and only if for any c1,c2,c3I with c1c2c3, we have

    det((c3c2)ξ(c2,.)ξ(c3,.)(c3c1)η(ξ(c1,.),ξ(c3,.)))0.

    Proof. Suppose that ξ is an η-convex stochastic process and c1,c2,c3I such that c1c2c3. Then, their exits α1(0,1), such that

    c2=α1c1+(1α1)c3

    where α1=c2c3c1c3.

    By definition of η convex stochastic process, we have

    ξ(c2,.)=ξ(α1c1+(1α1)c3,.)ξ(c3,.)+(c2c3c1c3)η(ξ(c1,.),ξ(c3,.))so0ξ(c3,.)ξ(c2,.)+(c2c3)(c1c3)η(ξ(c1,.),ξ(c3,.))0(ξ(c3,.)ξ(c2,.))(c3c1)+(c3c2)η(ξ(c1,.),ξ(c3,.)).

    Hence

    det((c3c2)ξ(c2,.)ξ(c3,.)(c3c1)η(ξ(c1,.),ξ(c3,.)))0.

    For the reverse inequality, take y1,y2I with y1y2. Choose any α1(0,1), then, we have

    y1α1y1+(1α1)y2y2.

    So, the above determinant is;

    0[y2[α1y1+(1α1)y2]]η(ξ(y1,.),ξ(y2,.))(y2y1)(ξ(α1y1+(1α1)y2,.)ξ(y2,.)

    implies

    (ξ(α1y1+(1α1)y2,.)ξ(y2,.)+α1(y2y1)(y2y1)η(ξ(y1,.),ξ(y2,.))ξ(y2,.)+α1η(ξ(y1,.),ξ(y2,.)).

    Which is as required.

    We will use the following relation to prove the Jesen type inequality for η-convex stochastic process. Let ξ:I×ΩR be an η-convex stochastic process. For x1,x2 I and α1+α2 = 1, we have

    ξ(α1x1+α2x2,.)ξ(x2,.)+α1η(ξ(x1,.),ξ(x2,.)).

    Also, when n>2 for x1,x2,...,xnI,ni=1αi=1 and Ti=ij=1αj, we have

    ξ(ni=1αixi,.)=ξ(Tn1n1i=1αiTn1xi+αnxn,.)ξ(xn,.)+Tn1η(ξ(n1i=1αiTn1xi,.),ξ(xn,.)) (2.1)

    Theorem 2.1. Let ξ:I×ΩR be an η-convex stochastic process and η:A×BR be the non-decreasing non-negatively sub-linear in first variable. If Ti=ij=1αj for i=1,2,...,n such that Tn=1, then

    ξ(ni=1αixi,.)ξ(xn,.)+n1i=1Tiηξ(xi,xi+1,...,xn) (2.2)

    where ηξ(xi,xi+1,...,xn)=η(ηξ(xi,xi+1,...,xn1,.),ξ(xn,.)) and ηξ(x,.)=ξ(x,.) for all xI.

    Proof. Since η is non-decreasing, non-negatively, sub-linear in first variable, so from (2.1)

    ξ(ni=1αixi,.)ξ(xn,.)+Tn1η(ξ(n1i=1αiTn1xi),f(xn))=ξ(xn,.)+Tn1η(ξ(Tn2Tn1n2i=1αiTn2xi,+αn1Tn1xn1,.),ξ(xn,.))ξ(xn,.)+Tn1η(ξ(xn1,.)+(Tn2Tn1)η(ξ(n2i=1αiTn2xi,ξ(xn1,.)),ξ(xn,.))ξ(xn,.)+Tn1η(ξ(xn1,x.),ξ(xn,.))+Tn2η(η(ξ(n2i=1αiTn2xi,.),ξ(xn1,.)),ξ(xn,.))(xn)+Tn1η(ξ(xn1,.),ξ(xn,.))+Tn2η(ξ(xn2,.),ξ(xn1,.)),ξ(xn,.))++T1(η(xi(x1,.),ξ(x2,.)),ξ(x3,.)),ξ(xn1,.)),ξ(xn,.))=ξ(xn,.)+n1i=1Tiηξ(xi,xi+1,,xn,.).

    Hence the proof is complete.

    Now, we established new inequality for the η-convex stochastic process that is connected with the Hermite–Hadamard inequality.

    Theorem 3.1. Suppose that ξ:[c1,c2]×ΩR is an η convex stochastic process such that η is bounded above ξ[c1,c2]×ξ[c1,c2], then

    ξ(c1+c22)12Mη1c2c1c2c1ξ(y,.)dy12[ξ(c1,.)+ξ(c2,.)]+12[η(ξ(c1,.),ξ(c2,.))+η(ξ(c2,.),ξ(c1,.))2]12[ξ(c1,.)+ξ(c2,.)]+12Mη (3.1)

    where Mη is upper bound of η.

    Proof. For the right side of inequality, consider an arbitrary point y=α1c1+(1α1)c2 with α1[0,1]. We can write as

    ξ(y,.)=ξ((α1c1+(1α1)c2),.).

    Since ξ is η convex stochastic process, so by definition

    ξ(y,.)ξ(c2,.)+α1η(ξ(c1,.),ξ(c2,.))

    with α1=yc2c1c2. It follows that

    ξ(y,.)ξ(c2,.)+(yc2c1c2)η(ξ(c1,.),ξ(c2,.)).

    Now, using Lemma 1.1, we get

    ξ(y,.)1c2c1[(ξ(c2,.)(c2c1)+(c2c1)2η(ξ(c1,.),ξ(c2,.)))]1c2c1c2c1ξ(y,.)dyξ(c2,.)+12η(ξ(c1,.),ξ(c2,.)).

    Also, we have

    1c2c1c2c1ξ(y,.)dyξ(c1,.)+12η(ξ(c2,.),ξ(c1,.)).

    Therefore, we get

    1c2c1c2c1ξ(y,.)dymin{ξ(c2,.)+12η(ξ(c1,.),ξ(c2,.)),ξ(c1,.)+12η(ξ(c2,.),ξ(c1,.))}12[ξ(c1,.)+ξ(c2,.)]+[η(ξ(c1,.),ξ(c2,.))+η(ξ(c2,.),ξ(c1,.))]12[ξ(c1,.)+ξ(c2,.)]+Mη,

    where Mη=[η(ξ(c1,.),ξ(c2,.))+η(ξ(c2,.),ξ(c1,.))].

    For the left side of inequality, the definition of η-convex stochastic process of ξ implies that

    ξ(c1+c22,.)=ξ(c1+c24α1(c2c1)4+c1+c24+α1(c2c1)4,.)=ξ(12c1+c2α1(c2c1)2+12c1+c2+α1(c2c1)2,.)ξ(c1+c2+α1(c2c1)2,.)+(12)η(ξ(c1+c2α1(c2c1)2),ξ(12c1+c2α1(c2c1)2,.))ξ(c1+c2+α1(c2c1)2,.)+12Mηα1[0,1].

    Here

    (c1+c2+α1(c2c1)2,.)ξ(c1+c22,.)12Mη(a.e.) (3.2)

    and

    ξ(c1+c2α1(c2c1)2,.)ξ(c1+c22,.)12Mη(a.e.). (3.3)

    Finally, using change of variable, we have

    1c2c1c2c1ξ(y,.)dy=1c2c1[c1+c22c1ξ(y,.)dy+c2c1+c22ξ(y,.)dy]=1210[ξ(c1+c2α1(c2c1)2,.)+ξ(c1+c2+α1(c2c1)2,.)]dα1.

    From (3.2) and (3.3), we get

    1c2c1c2c1ξ(y,.)dy1210[ξ(c1+c22,.)12Mη+ξ(c1+c22,.)12Mη)]dα11210[2ξ(c1+c22,.)22Mη]dα112[2ξ(c1+c22,.)Mη]ξ(c1+c22,.)12Mη.

    Hence, the proof is completed.

    Remark 1. By taking η(x,y)=xy in (3.1), we get the classical Hermite–Hadamard inequality for convex stochastic process [7].

    In order to prove Ostrowski type inequality for η-convex stochastic process, the following Lemma is required.

    Lemma 4.1. [12] Let ξ:I×ΩR be a stochastic process which is mean square differentiable on I. If ξ is mean square integrable on [c1,c2], where c1,c2I with c1<c2, then the following equality holds

    ξ(t,.)1c2c1c2c1ξ(u,.)du=(xc1)2c2c110tξ(tx+(1t)c1,.)dt(c2x)2c2c110tξ(tx+(1t)c2,.)dt,(a.e.), (4.1)

    for each x[c1,c2].

    Theorem 4.2. Let ξ:I×ΩR be a mean square stochastic process such that ξ is mean square integrable on [c1,c2], where c1,c2I with c1<c2. If |ξ| is an η- convex stochastic process on I and |ξ(t,.)|M for every t, then

    |ξ(t,.)1c2c1c2c1ξ(u,.)du|M2[(tc1)2+(c2t)2c2c1]+(tc1)23(c2c1)η(|ξ(t,.)|,|ξ(c1,.)|)+(c2t)23(c2c1)η(|ξ(t,.)|,|ξ(c2,.)|),(a.e.).

    Proof. Since |ξ| is an η–convex stochastic process, so by (4.1), we have

    |ξ(t,.)1c2c1c2c1ξ(u,.)du|(tc1)2c2c110y|ξ(yt+(1y)c1,.)|dy+(c2t)2c2c110y|ξ(yt+(1y)c2,.)|dy(tc1)2c2c110y[|ξ(c1,.)|+yη(|ξ(t,.)|,|ξ(c1,.)|)]dy+(c2t)2c2c110y[|ξ(c2)|+yη(|ξ(t,.)|,|ξ(c2,.)|)]dyM[(tc1)2+(c2t)2c2c1]10ydy+(tc1)2c2c110y2η(|ξ(t,.)|,|ξ(c1,.)|)dt+(c2t)2c2c110y2η(|ξ(t,.)|,|ξ(c2,.)|)dyM2[(tc1)2+(c2t)2c2c1]+(tc1)23(c2c1)η(|ξ(t,.)|,|ξ(c1,.)|)+(c2t)23(c2c1)η(|ξ(t,.)|,|ξ(c2,.)|).

    Hence proof is completed.

    There are many applications of Stochastic-processes, for example, Kolmogorov-Smirnoff test on equality of distributions [26,27,28]. The other application includes Sequential Analysis [29,30] and Quickest Detection [31,32]. In this paper, we introduced η-convex Stochastic processes and proved Jensen, Hermite-Hadamard and Fejr type inequalities. Our results are applicable, because the expected value of a random variable is always bounded above by the expected value of the convex function of the random variable.

    The authors declare that no competing interests exist.



    [1] M. Möller, E. Viehweg, K. Zuo, Special families of curves, of abelian varieties, and of certain minimal manifolds over curves, Global aspects of complex geometry, Springer, Berlin, 2006,417–450. https://doi.org/10.1007/3-540-35480-8_11
    [2] E. Viehweg, K. Zuo, Base spaces of non-isotrivial families of smooth minimal models, Complex geometry, (Göttingen, 2000), Springer, Berlin, 2002, pp. 279–328. https://doi.org/10.1007/978-3-642-56202-0
    [3] E. Viehweg, K. Zuo, On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds, Duke Math. J., 118 (2003), 103–150. https://doi.org/10.1215/S0012-7094-03-11815-3 doi: 10.1215/S0012-7094-03-11815-3
    [4] W. To, S. Yeung, Finsler metrics and Kobayashi hyperbolicity of the moduli spaces of canonically polarized manifolds, Ann. Math., 181 (2015), 547–586. https://doi.org/10.4007/annals.2015.181.2.3 doi: 10.4007/annals.2015.181.2.3
    [5] Ya Deng, Steven Lu, Ruiran Sun, and Kang Zuo, Picard theorems for moduli spaces of polarized varieties, arXiv Preprint, (2019), arXiv: 1911.02973.
    [6] E. Viehweg, K. Zuo, On the isotriviality of families of projective manifolds over curves, J. Algebraic Geom., 10 (2001), 781–799.
    [7] K. Zuo, On the negativity of kernels of Kodaira-Spencer maps on Hodge bundles and applications, Kodaira's issue, Asian J. Math., 4 (2000), 279–301. https://doi.org/10.4310/AJM.2000.v4.n1.a17 doi: 10.4310/AJM.2000.v4.n1.a17
    [8] G. Faltings, Arakelov's theorem for abelian varieties, Invent. Math., 73 (1983), 337–347. https://doi.org/10.1007/BF01388431 doi: 10.1007/BF01388431
    [9] P. Deligne, Un théorème de finitude pour la monodromie, (French) [A finiteness theorem for monodromy], Discrete groups in geometry and analysis(New Haven, Conn., 1984), 1–19.
    [10] C. Peters, Arakelov-type inequalities for hodge bundles, arXiv preprint math, (2000), 0007102.
    [11] J. Jost, K. Zuo, Arakelov type inequalities for Hodge bundles over algebraic varieties. I. Hodge bundles over algebraic curves, J. Algebraic Geom., 11 (2002), 535–546. https://doi.org/10.1090/S1056-3911-02-00299-0 doi: 10.1090/S1056-3911-02-00299-0
    [12] E. Viehweg, K. Zuo, Families over curves with a strictly maximal Higgs field, Asian J. Math., 7 (2003), 575–598. https://doi.org/10.4310/AJM.2003.v7.n4.a8 doi: 10.4310/AJM.2003.v7.n4.a8
    [13] M. Green, P. Griffiths, M. Kerr, Some enumerative global properties of variations of Hodge structures, Mosc. Math. J., 9 (2009), 469–530. https://doi.org/10.17323/1609-4514-2009-9-3-469-530 doi: 10.17323/1609-4514-2009-9-3-469-530
    [14] O. Biquard, B. Collier, O. Garcia-Prada, D. Toledo, Arakelov-milnor inequalities and maximal variations of hodge structure, arXiv Preprint, (2021), arXiv2101.02759.
    [15] S. L. Tan, The minimal number of singular fibers of a semistable curve over P1, J. Algebraic Geom., 4 (1995), 591–596.
    [16] K. Liu, Geometric height inequalities, Math. Res. Lett., 3 (1996), 693–702. https://doi.org/10.4310/MRL.1996.v3.n5.a10 doi: 10.4310/MRL.1996.v3.n5.a10
    [17] Y. Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159–171. https://doi.org/10.1007/BF01456083 doi: 10.1007/BF01456083
    [18] G. Xiao, Fibered algebraic surfaces with low slope, Math. Ann., 276 (1987), 449–466. https://doi.org/10.1007/BF01450841 doi: 10.1007/BF01450841
    [19] E. Viehweg, K. Zuo, A characterization of certain Shimura curves in t he moduli stack of abelian varieties, J. Differ. Geom., 66 (2004), 233–287. https://doi.org/10.4310/jdg/1102538611 doi: 10.4310/jdg/1102538611
    [20] E. Viehweg, K. Zuo, Numerical bounds for semistable families of curves or of certain higher-dimensional manifolds, J. Algebraic Geom., 15 (2006), 771–791. https://doi.org/10.1090/S1056-3911-05-00423-6 doi: 10.1090/S1056-3911-05-00423-6
    [21] B. Moonen, F. Oort, The Torelli locus and special subvarieties, Handbook of moduli. Vol. Ⅱ, 25 (2013), 549–594.
    [22] I. Reider, Vector bundles of rank 2 and linear systems on algebraic surfaces, Ann. of Math., 127 (1988), 309–316. https://doi.org/10.2307/2007055 doi: 10.2307/2007055
    [23] J. A. Chen, M. Chen, On projective threefolds of general type, Electron. Res. Announc. Math. Sci., 14 (2007), 69–73.
    [24] M. Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., 19 (2006), 327–344. https://doi.org/10.1090/S0894-0347-05-00512-6 doi: 10.1090/S0894-0347-05-00512-6
    [25] C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math., 127 (1992), 5–95. https://doi.org/10.1007/BF02699491 doi: 10.1007/BF02699491
    [26] P. Griffiths, Periods of integrals on algebraic manifolds. Ⅲ. Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math., 38 (1970), 125–180. https://doi.org/10.1007/BF02684654 doi: 10.1007/BF02684654
    [27] N. Katz, T. Oda, On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., 8 (1968), 199–213. https://doi.org/10.1215/kjm/1250524135 doi: 10.1215/kjm/1250524135
    [28] K. Kodaira, Complex manifolds and deformation of complex structures, Translated from the 1981 Japanese original by Kazuo Akao. Reprint of the 1986 English edition. Classics in Mathematics. Springer-Verlag, Berlin, 2005. https://doi.org/10.1007/3-540-26961-4_2
    [29] Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math., 363 (1985), 1–46. https://doi.org/10.1515/crll.1985.363.1 doi: 10.1515/crll.1985.363.1
    [30] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces, Algebraic varieties and analytic varieties (Tokyo, 1981), Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 329–353.
    [31] F. A. Bogomolov, C. Böhning, H.-C. G. von Bothmer, Birationally isotrivial fiber spaces, Eur. J. Math., 2 (2016), 45–54. https://doi.org/10.1007/s40879-015-0037-5 doi: 10.1007/s40879-015-0037-5
    [32] H. Esnault, E. Viehweg, Lectures on vanishing theorems, DMV Seminar, vol. 20, Birkhäuser Verlag, Basel, 1992.
    [33] M. Popa, C. Schnell, Viehweg's hyperbolicity conjecture for families with maximal variation, Invent. Math., 208 (2017), 677–713. https://doi.org/10.1007/s00222-016-0698-9 doi: 10.1007/s00222-016-0698-9
    [34] J. Lu, S. Tan, K. Zuo, Canonical class inequality for fiberd spaces, Math. Ann., 368 (2017), 1311–1332. https://doi.org/10.1007/s00208-016-1474-2 doi: 10.1007/s00208-016-1474-2
    [35] M. Möller, E. Viehweg, K. Zuo, Stability of Hodge bundles and a numerical characterization of Shimura varieties, J. Differ. Geom., 92 (2012), 71–151. https://doi.org/10.4310/jdg/1352211224 doi: 10.4310/jdg/1352211224
  • This article has been cited by:

    1. Wenxv Ding, Ying Li, Anli Wei, Xueling Fan, Mingcui Zhang, LC
    structure-preserving method based on semi-tensor product of matrices for the QR decomposition in quaternionic quantum theory, 2022, 41, 2238-3603, 10.1007/s40314-022-02115-7
    2. Weiwei Han, Zhipeng Zhang, Chengyi Xia, Modeling and analysis of networked finite state machine subject to random communication losses, 2023, 3, 2767-8946, 50, 10.3934/mmc.2023005
    3. Daizhan Cheng, Zhengping Ji, Jun-e Feng, Shihua Fu, Jianli Zhao, Perfect hypercomplex algebras: Semi-tensor product approach, 2021, 1, 2767-8946, 177, 10.3934/mmc.2021017
    4. Xiaoyu Zhao, Shihua Fu, Trajectory tracking approach to logical (control) networks, 2022, 7, 2473-6988, 9668, 10.3934/math.2022538
    5. Wenxv Ding, Ying Li, Zhihong Liu, Ruyu Tao, Mingcui Zhang, Algebraic method for LU decomposition in commutative quaternion based on semi‐tensor product of matrices and application to strict image authentication, 2024, 47, 0170-4214, 6036, 10.1002/mma.9905
    6. Xiaomeng Wei, Haitao Li, Guodong Zhao, Kronecker product decomposition of Boolean matrix with application to topological structure analysis of Boolean networks, 2023, 3, 2767-8946, 306, 10.3934/mmc.2023025
    7. Tiantian Mu, Jun‐e Feng, A survey on applications of the semi‐tensor product method in Boolean control networks with time delays, 2024, 6, 2577-8196, 10.1002/eng2.12760
    8. Zejiao Liu, Yu Wang, Yang Liu, Qihua Ruan, Reference trajectory output tracking for Boolean control networks with controls in output, 2023, 3, 2767-8946, 256, 10.3934/mmc.2023022
    9. Yunsi Yang, Jun-e Feng, Zhe Gao, 2023, Controllability of Multi-agent Systems over Finite Fields Based on High-order Fully Actuated System Approaches, 979-8-3503-3216-2, 283, 10.1109/CFASTA57821.2023.10243352
    10. Yunsi Yang, Jun-e Feng, Lei Jia, Stabilisation of multi-agent systems over finite fields based on high-order fully actuated system approaches, 2024, 55, 0020-7721, 2478, 10.1080/00207721.2024.2307951
    11. Rong Zhao, Jun-e Feng, Biao Wang, Renato De Leone, Disturbance decoupling of Boolean networks via robust indistinguishability method, 2023, 457, 00963003, 128220, 10.1016/j.amc.2023.128220
    12. Zhe Gao, Jun-e Feng, A novel method for driven stability of NFSRs via STP, 2023, 360, 00160032, 9689, 10.1016/j.jfranklin.2023.07.011
    13. Fei Wang, Jun‐e Feng, Biao Wang, Qingchun Meng, Matrix expression of Myerson Value, 2025, 1561-8625, 10.1002/asjc.3582
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2062) PDF downloads(104) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog