Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Some computable quasiconvex multiwell models in linear subspaces without rank-one matrices

  • Received: 22 August 2021 Revised: 12 February 2022 Accepted: 17 February 2022 Published: 24 March 2022
  • In this paper we apply a smoothing technique for the maximum function, based on the compensated convex transforms, originally proposed by Zhang in [1] to construct some computable multiwell non-negative quasiconvex functions in the calculus of variations. Let KEMm×n with K a finite set in a linear subspace E without rank-one matrices of the space Mm×n of real m×n matrices. Our main aim is to construct computable quasiconvex lower bounds for the following two multiwell models with possibly uneven wells:

    i) Let f:KEE be an L-Lipschitz mapping with 0L1/α and H2(X)=min{|PEXAi|2+α|PEXf(Ai)|2+βi:i=1,2,,k}, where α>0 is a control parameter, and

    ii) H1(X)=α|PEX|2+min{|Ui(PEXAi)|2+γi:i=1,2,,k}, where AiE with Ui:EE invertible linear transforms for i=1,2,,k. If the control paramenter α>0 is sufficiently large, our quasiconvex lower bounds are 'tight' in the sense that near each 'well' the lower bound agrees with the original function, and our lower bound are of C1,1. We also consider generalisations of our constructions to other simple geometrical multiwell models and discuss the implications of our constructions to the corresponding variational problems.

    Citation: Ke Yin, Kewei Zhang. Some computable quasiconvex multiwell models in linear subspaces without rank-one matrices[J]. Electronic Research Archive, 2022, 30(5): 1632-1652. doi: 10.3934/era.2022082

    Related Papers:

    [1] Huiying Zhang, Jiayan Lin, Lan Zhou, Jiahui Shen, Wenshun Sheng . Facial age recognition based on deep manifold learning. Mathematical Biosciences and Engineering, 2024, 21(3): 4485-4500. doi: 10.3934/mbe.2024198
    [2] Mubashir Ahmad, Saira, Omar Alfandi, Asad Masood Khattak, Syed Furqan Qadri, Iftikhar Ahmed Saeed, Salabat Khan, Bashir Hayat, Arshad Ahmad . Correction: Facial expression recognition using lightweight deep learning modeling. Mathematical Biosciences and Engineering, 2023, 20(6): 10675-10677. doi: 10.3934/mbe.2023472
    [3] R Nandhini Abiram, P M Durai Raj Vincent . Identity preserving multi-pose facial expression recognition using fine tuned VGG on the latent space vector of generative adversarial network. Mathematical Biosciences and Engineering, 2021, 18(4): 3699-3717. doi: 10.3934/mbe.2021186
    [4] Basem Assiri, Mohammad Alamgir Hossain . Face emotion recognition based on infrared thermal imagery by applying machine learning and parallelism. Mathematical Biosciences and Engineering, 2023, 20(1): 913-929. doi: 10.3934/mbe.2023042
    [5] Jia-Gang Qiu, Yi Li, Hao-Qi Liu, Shuang Lin, Lei Pang, Gang Sun, Ying-Zhe Song . Research on motion recognition based on multi-dimensional sensing data and deep learning algorithms. Mathematical Biosciences and Engineering, 2023, 20(8): 14578-14595. doi: 10.3934/mbe.2023652
    [6] Shuai Cao, Biao Song . Visual attentional-driven deep learning method for flower recognition. Mathematical Biosciences and Engineering, 2021, 18(3): 1981-1991. doi: 10.3934/mbe.2021103
    [7] Yuanyao Lu, Kexin Li . Research on lip recognition algorithm based on MobileNet + attention-GRU. Mathematical Biosciences and Engineering, 2022, 19(12): 13526-13540. doi: 10.3934/mbe.2022631
    [8] C Willson Joseph, G. Jaspher Willsie Kathrine, Shanmuganathan Vimal, S Sumathi., Danilo Pelusi, Xiomara Patricia Blanco Valencia, Elena Verdú . Improved optimizer with deep learning model for emotion detection and classification. Mathematical Biosciences and Engineering, 2024, 21(7): 6631-6657. doi: 10.3934/mbe.2024290
    [9] Yufeng Qian . Exploration of machine algorithms based on deep learning model and feature extraction. Mathematical Biosciences and Engineering, 2021, 18(6): 7602-7618. doi: 10.3934/mbe.2021376
    [10] Chelsea Harris, Uchenna Okorie, Sokratis Makrogiannis . Spatially localized sparse approximations of deep features for breast mass characterization. Mathematical Biosciences and Engineering, 2023, 20(9): 15859-15882. doi: 10.3934/mbe.2023706
  • In this paper we apply a smoothing technique for the maximum function, based on the compensated convex transforms, originally proposed by Zhang in [1] to construct some computable multiwell non-negative quasiconvex functions in the calculus of variations. Let KEMm×n with K a finite set in a linear subspace E without rank-one matrices of the space Mm×n of real m×n matrices. Our main aim is to construct computable quasiconvex lower bounds for the following two multiwell models with possibly uneven wells:

    i) Let f:KEE be an L-Lipschitz mapping with 0L1/α and H2(X)=min{|PEXAi|2+α|PEXf(Ai)|2+βi:i=1,2,,k}, where α>0 is a control parameter, and

    ii) H1(X)=α|PEX|2+min{|Ui(PEXAi)|2+γi:i=1,2,,k}, where AiE with Ui:EE invertible linear transforms for i=1,2,,k. If the control paramenter α>0 is sufficiently large, our quasiconvex lower bounds are 'tight' in the sense that near each 'well' the lower bound agrees with the original function, and our lower bound are of C1,1. We also consider generalisations of our constructions to other simple geometrical multiwell models and discuss the implications of our constructions to the corresponding variational problems.





    [1] K. Zhang, Compensated convexity and its applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 743–771. https://doi.org/10.1016/j.anihpc.2007.08.001 doi: 10.1016/j.anihpc.2007.08.001
    [2] Y. Chen, X. Ye, Projection onto a simplex, arXiv preprint, (2011), arXiv: 1101.6081.
    [3] C. W. Combettes, S. Pokutta, Complexity of linear minimization and projection on some sets, Oper. Res. Lett., 49 (2021), 565–571. https://doi.org/10.1016/j.orl.2021.06.005 doi: 10.1016/j.orl.2021.06.005
    [4] L. Condat, Fast projection onto the simplex and the l1 ball, Math. Program., 158 (2016), 575–585. https://doi.org/10.1007/s10107-015-0946-6 doi: 10.1007/s10107-015-0946-6
    [5] E. Y. Pee, J. O. Royset, On solving large-scale finite minimax problems using exponential smoothing, J. Optim. Theory Appl., 148 (2011), 390–421. https://doi.org/10.1023/B:JOTA.0000006685.60019.3e doi: 10.1023/B:JOTA.0000006685.60019.3e
    [6] K. Zhang, Convex analysis based smooth approximations of maximum functions and squared distance functions, J. Nonlinear Convex Anal., 9 (2008), 379–406.
    [7] K. Zhang, A. Orlando, E. Crooks, Compensated convexity and Hausdorff stable geometric singularity extractions, Math. Models Methods Appl. Sci., 25 (2015), 747–801. https://doi.org/10.1142/S0218202515500189 doi: 10.1142/S0218202515500189
    [8] K. Zhang, A. Orlando, E. Crooks, Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds, Math. Models Methods Appl. Sci., 25 (2015), 839–873. https://doi.org/10.1142/S0218202515500207 doi: 10.1142/S0218202515500207
    [9] K. Zhang, E. Crooks, A. Orlando, Compensated convexity, multiscale medial axis maps and sharp regularity of the squared distance function, SIAM J. Math. Anal., 47 (2015), 4289–4331. https//doi.org/10.1137/140993223 doi: 10.1137/140993223
    [10] K. Zhang, E. Crooks, A. Orlando, Compensated convexity methods for approximations and interpolations of sampled functions in Euclidean spaces: theoretical foundations, SIAM J. Math. Anal., 48 (2016), 4126–4154. https://doi.org/10.1137/15M1045673 doi: 10.1137/15M1045673
    [11] K. Zhang, E. Crooks, A. Orlando, Compensated convexity methods for approximations and interpolations of sample functions in Euclidean spaces: Applications to sparse data, contour lines and inpainting, SIAM J. Imaging Sci., 11 (2018), 2368–2428. https://doi.org/10.1137/17M116152X doi: 10.1137/17M116152X
    [12] C. B. Morrey Jr, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966. https://doi.org/10.1007/978-3-540-69952-1
    [13] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd edition, Springer-Verlag, New York, 1989. https://doi.org/10.1007/978-0-387-55249-1
    [14] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337–403. https://doi.org/10.1007/BF00279992 doi: 10.1007/BF00279992
    [15] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., 86 (1984), 125–145. https://doi.org/10.1007/BF00275731 doi: 10.1007/BF00275731
    [16] J. M. Ball, R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13–52. https://doi.org/10.1007/BF00281246 doi: 10.1007/BF00281246
    [17] J. M. Ball, R. D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem, Philos. Trans. R. Soc. A, 338 (1992), 389–450. https://doi.org/10.1098/rsta.1992.0013 doi: 10.1098/rsta.1992.0013
    [18] V. Šverák, Quasiconvex functions with subquadratic growth, Proc. Royal Soc. London Ser. A, 433 (1991), 723–F725. https://doi.org/10.1098/rspa.1991.0073 doi: 10.1098/rspa.1991.0073
    [19] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 313–326.
    [20] R. V. Kohn, The relaxation of a double-well energy, Cont. Mech. Therm., 3 (1991), 981–1000. https://doi.org/10.1007/BF01135336 doi: 10.1007/BF01135336
    [21] N. B. Firoozye, Optimal use of the translation method and relaxations of variational problems, Comm. Pure Appl. Math., 44 (1991), 643–678. https://doi.org/10.1002/cpa.3160440603 doi: 10.1002/cpa.3160440603
    [22] K. Bhattacharya, N. B. Firoozye, R. D. James, R.V. Kohn, Restrictions on microstructures, Proc. Royal Soc. Edinb. - A, 124 (1994), 843–878. https://doi.org/10.1017/S0308210500022381 doi: 10.1017/S0308210500022381
    [23] M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems, Lectures in Mathematics ETH Zürich, Birkhüser Verlag, Basel, 1993. https://doi.org/10.1007/978-88-7642-443-4
    [24] A. A. Ahmadi, A. Olshevsky, P. Parrilo, J. N. Tsitsiklis, NP-hardness of deciding convexity of quartic polynomials and related problems, Math. Program., 137 (2013), 453–476. https://doi.org/10.1007/s10107-011-0499-2 doi: 10.1007/s10107-011-0499-2
    [25] G. Dolzmann, Numerical computation of rank-one convex envelopes, SIAM J. Numer. Anal., 36 (1999), 1621–1635. https://doi.org/10.1137/S0036142997325581 doi: 10.1137/S0036142997325581
    [26] K. Zhang, E. Crooks, A. Orlando, Compensated convexity on bounded domains, mixed Moreau envelopes and computational methods, Appl. Math. Model., 94 (2021), 688–720. https://doi.org/10.1016/j.apm.2021.01.040 doi: 10.1016/j.apm.2021.01.040
    [27] K. Zhang, Mountain pass solutions for a double-well energy, J. Differ. Equ., 182 (2002), 490–510. https://doi.org/10.1006/jdeq.2001.4113 doi: 10.1006/jdeq.2001.4113
    [28] K. Zhang, An elementary derivation of the generalized Kohn-Strang relaxation formulae, J. Convex Anal., 9 (2002), 269–285.
  • This article has been cited by:

    1. Jassim AlMulla, Mohammad Tariqul Islam, Hamada R. H. Al-Absi, Tanvir Alam, Rahul Gomes, SoccerNet: A Gated Recurrent Unit-based model to predict soccer match winners, 2023, 18, 1932-6203, e0288933, 10.1371/journal.pone.0288933
    2. Chaolin Tang, Dong Zhang, Qichuan Tian, Convolutional Neural Network–Bidirectional Gated Recurrent Unit Facial Expression Recognition Method Fused with Attention Mechanism, 2023, 13, 2076-3417, 12418, 10.3390/app132212418
    3. Edy Winarno, Anindita Septiarini, Wiwien Hadikurniawati, Hamdani Hamdani, The Hybrid Features and Supervised Learning for Batik Pattern Classification, 2024, 17, 1556-4673, 1, 10.1145/3631131
    4. Samla Salim, R. Sarath, BREAST CANCER DETECTION AND CLASSIFICATION USING HISTOPATHOLOGICAL IMAGES BASED ON OPTIMIZATION-ENABLED DEEP LEARNING, 2024, 36, 1016-2372, 10.4015/S101623722350028X
    5. Shengfu Zhang, Zhongjie Xiao, Facial Expression Recognition Using a Semantic-Based Bottleneck Attention Module, 2024, 20, 1552-6283, 1, 10.4018/IJSWIS.352418
    6. Haoyu Zhou, Lingfeng Sang, Jingjing Luo, Hongbo Wang, Yongfei Feng, Xueze Zhang, Li Chen, Development of a multifunctional nursing bed system for in-bed position recognition and automatic repositioning, 2024, 238, 0954-4062, 5437, 10.1177/09544062231223878
    7. Fen Wang, Kim Ju Kyoung, Leather Defect Detection Method in Clothing Design Based on TDENet, 2023, 11, 2169-3536, 104890, 10.1109/ACCESS.2023.3308493
    8. A Çelik, E Tekin, Classification of Hatchery Eggs Using a Machine Learning Algorithm Based on Image Processing Methods: A Comparative Study, 2024, 26, 1806-9061, 10.1590/1806-9061-2023-1882
    9. Jian‐Ting Shi, Gui‐Xu Qu, Zhi‐Jun Li, UCSwin‐UNet model for medical image segmentation based on cardiac haemangioma, 2024, 18, 1751-9659, 3302, 10.1049/ipr2.13175
    10. P Karthikeyan, Kirutheesvar S, Sivakumar S, 2024, Facial Emotion Recognition for Enhanced Human-Computer Interaction using Deep Learning and Temporal Modeling with BiLSTM, 979-8-3315-0440-3, 1791, 10.1109/ICOSEC61587.2024.10722687
    11. Muhammad Hameed Siddiqi, Irshad Ahmad, Yousef Alhwaiti, Faheem Khan, Facial Expression Recognition for Healthcare Monitoring Systems Using Neural Random Forest, 2025, 29, 2168-2194, 30, 10.1109/JBHI.2024.3482450
    12. Kun Zheng, Li Tian, Jinling Cui, Junhua Liu, Hui Li, Jing Zhou, Junjie Zhang, An Adaptive Thresholding Method for Facial Skin Detection in HSV Color Space, 2025, 25, 1530-437X, 3098, 10.1109/JSEN.2024.3506579
    13. Muhammed Telceken, Devrim Akgun, Sezgin Kacar, Kübra YESİN, Metin Yıldız, Can artificial intelligence understand our emotions? Deep learning applications with face recognition, 2025, 1046-1310, 10.1007/s12144-025-07375-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2007) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog