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Abstract: In this paper we apply a smoothing technique for the maximum function, based on the
compensated convex transforms, originally proposed by Zhang in [1] to construct some computable
multiwell non-negative quasiconvex functions in the calculus of variations. Let K ⊆ E ⊆ Mm×n with K
a finite set in a linear subspace E without rank-one matrices of the space Mm×n of real m × n matrices.
Our main aim is to construct computable quasiconvex lower bounds for the following two multiwell
models with possibly uneven wells:
i) Let f : K ⊆ E → E⊥ be an L-Lipschitz mapping with 0 ≤ L ≤ 1/α and
H2(X) = min{|PEX − Ai|

2 + α|PE⊥X − f (Ai)|2 + βi : i = 1, 2, . . . , k}, where α > 0 is a control parameter,
and
ii) H1(X) = α|PE⊥X|2 + min{

√
|Ui(PEX − Ai)|2 + γi : i = 1, 2, . . . , k}, where Ai ∈ E with Ui : E → E

invertible linear transforms for i = 1, 2, . . . , k. If the control paramenter α > 0 is sufficiently large, our
quasiconvex lower bounds are ‘tight’ in the sense that near each ‘well’ the lower bound agrees with the
original function, and our lower bound are of C1,1. We also consider generalisations of our construc-
tions to other simple geometrical multiwell models and discuss the implications of our constructions
to the corresponding variational problems.

Keywords: multiwell models; vectorial calculus of variations; quasiconvex functions; quasiconvex
envelope; quasiconvex lower bounds; computational lower boundes; translation method; maximum
function; compensated convex transforms; C1,1-smooth approximation
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1. Introduction

In this paper we use the formula for the smooth approximations of the maximum function in Rn

based on compensated convex transforms [1] (see Definition 2 below) to construct computable quasi-
convex lower bounds with multiwell structure in the calculus of variations. By ‘computable’ we mean
that the evaluation of the quasiconvex lower bounds only involves projection onto a linear subspace E
without rank-one matrices in Mm×n, and a projection onto the simplex ∆k where k ≥ 2 is the number
of ‘wells’. The complexity of the former is O(mn), while the complexity of the latter is theoretically
O(k log k) for the algorithm proposed in [2, 3] or observed O(k) in the algorithm proposed in [4].

The maximum function

fm(x) = max{x1, . . . , xm}, x = (x1, x2, . . . , xm) ∈ Rm (1.1)

plays an important role in many optimization problems, in the sense that many problems can be pro-
posed as minimization of the maximum function composed with other functions [5]. In [1] a smooth
approximation for the maximum function was introduced by the upper compensated convex transform
Cu
λ( fm) for λ > 0, where the formula for the transform is given by

Cu
λ( fm)(x) = λ|x|2 − λdist2

(
x, co

(
∆m

2λ

))
+

1
4λ
, x ∈ Rm, (1.2)

where co(∆m/(2λ)) is the convex hull of the set of the scaled basis vectors ∆m/(2λ) =

{e1/(2λ), e2/(2λ), . . . , em/(2λ)} with e j = (δ j,1, δ j,1, . . . , δ j,m) ∈ Rm where δ j,k = 1 if j = k and δ j,k = 0
if j , k for j = 1, 2, . . . ,m are Kronecker delta. Let Pco(∆m/(2λ))x be the projection of x ∈ Rm to the
simplex co(∆m/(2λ)), we can write

Cu
λ( fm)(x) = λ|x|2 − λ

∣∣∣∣x − Pco
(
∆m
2λ

)x∣∣∣∣2 + 1
4λ

(1.3)

and the complexity for evaluatiing Cu
λ( fm)(x) is the same as finding the convex projection Pco

(
∆m
2λ

)x.
There are numerical schemes with complexity O(m log m) to compute the convex projection above [2].
Our computable quasiconvex functions rely on this fact. Some generalisations of approximations by
compensated convex transforms to maximum-like functions can be found in [6].

It is known [1] that Cu
λ( fm)(x) is a C1,1 approximation of fm(x) from above, that is, fm(x) ≤ Cu

λ( fm)(x)
and limλ→+∞Cu

λ( fm)(x) = fm(x) [1], and in general compensated convex trnasforms are ‘tight’ approx-
imations. For the special case of the maximum function, we will show in Proposition 2 below that
Cu
λ( fm)(x) is a tight approximation in the sense that if the vector x = (x1, x2, . . . , xm) is sorted with the

order x1 ≥ x2 ≥ · · · ≥ xm, then Cu
λ( fm)(x) = fm(x) if x1 − x2 ≥ 1/(2λ).

For the minimum function gm(x) = min{x1, . . . , xm} = −max{−x1, . . . ,−xm} for x ∈ Rm, it is easy to
verify that the lower compensated convex transform of gm is given by

Cl
λ(gm)(x) = −Cu( fm)(−x) = λdist2

(
−x, co

(
∆m

2λ

))
− λ|x|2 −

1
4λ
. (1.4)
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In this paper we apply the lower compensated convex transforms to two multiwell models in the
calculus of variations. Compensated convex transforms have been applied to problems involving geo-
metric singular extraction, shape analysis and approximation and interpolations of sampled data [7–11].

The first type of multiwell functions is defined as follows. Let α > 0 be a control parameter.
Let E ⊆ Mm×n be a linear subspace without rank-one matrices and let f : K ⊆ E → E⊥ be an L-
Lipschitz mapping with 0 ≤ L ≤ 1/α, where E⊥ is the orthogonal complement of E in Mm×n and
K = {Ai : i = 1, 2, . . . , k} ⊆ E is a finite set. We define the multiwell function H2(X) with quadratic
growth by

H2(X) = min{|PEX − Ai|
2 + α|PE⊥X − f (Ai)|2 + βi : i = 1, 2, . . . , k}, X ∈ Mm×n (1.5)

for k ≥ 2. If we define the quadratic function qi(X) = |PEX−Ai|
2+α|PE⊥X− f (Ai)|2+βi for i = 1, 2, . . . , k,

then we may write
H2(X) = min{qi(X) : i = 1, 2, . . . , k}.

We see that the point Xi = Ai + f (Ai) is a local minimum point of H2(·) if for j , i,

qi(Ai + f (Ai)) = βi < q j(Ai + f (Ai) = |Ai − A j|
2 + α| f (Ai) − f (A j)|2 + β j.

A sufficient condition for every Xi = Ai + f (Ai) to be a local minimum point is |Ai − A j|
2 > |βi − β j|

for 1 ≤ i , j ≤ k. So, under this additional restriction, H2(X) has a multiwell structure with each
Xi = Ai + f (Ai) a local minimum point.

The second type of multiwell functions is in the form

H1(X) = α|PE⊥X|2 +min{
√
|Ui(PEX − Ai)|2 + γi : i = 1, 2, . . . , k}, (1.6)

where Ai ∈ E andUi : E → E are invertible linear transforms and γi ≥ 0 for i = 1, 2, . . . , k. Again we
can show that every Ai ∈ E is a local minimum point of H1 if |U j(Ai − A j)|2 > |γi − γ j|.

Our aim is to use the lower compensated convex transform Cu
λ( fk) to construct composite functions

that are quasiconvex lower bounds of H1 and H2. We will also consider simple generalisations of these
constructions.

Next we discuss backgrounds and motivations. The Quasiconvex function in the sense of Mor-
rey [12] is an important tool in the vectorial calculus of variations [13], with applications in nonlinear
elasticity [14] and material microstructure. For example, under the growth condition 0 ≤ F(X) ≤
C|X|p +C1 for X ∈ Mm×n, the variational integral I(u) :=

∫
Ω

F(Du) dx is weakly lower-semicontinuous
in the Sobolev space W1,p(Ω, Rm) if and only if F is quasiconvex [15], where Mm×n is the linear space
of real m × n matrices.

A continuous function F : Mm×n → R is quasiconvex [12] if for every X ∈ Mm×n, for every open set
Ω ⊆ Rn and for every ϕ ∈ C∞0 (Ω, Rm), we have∫

Ω

F(X + Dϕ(x)) dx ≥
∫
Ω

F(X). (1.7)

Convex functions are quasiconvex but the converse is not true. A large class of functions, called
polyconvex functions [14] are quasiconvex. Quasiconvex functions satisfying certain geometric con-
ditions have been constructed by studying the quasiconvex envelope [13] of a given function with
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the multiwell property which describes the macroscopic properties of material microstructure for non-
quasiconvex multiwell models [16, 17]. A simplified multiwell model is in the form of an (Euclidean)
p-distance function to a compact set K in Mm×n [18–20]. A typical example is the p-distance func-
tion distp(X, {−I, I}) to the set {−I, I} for X ∈ M2×2, 1 ≤ p < 2, whose quasiconvex envelope
Qdistp(X, {−I, I}) vanishes exactly at −I and I ∈ M2×2. So far a more explicit geometric lower bound of
Qdistp(X, {−I, I}) above is still not known. Some more explicit quasiconvex functions can be obtained
by establishing lower bounds for the quasiconvex envelope via the so-called ‘translation method’ (see
e.g., [21]). In particular, the explicit formula of the quasiconvex envelope for a double-well model [20]
and the systematic study of restrictions of microstructure [22] lead to the study of linear subspaces of
matrices without rank-one matrices, which are simple linear ‘elliptic’ objects in Mm×n. Here a linear
subspace E is called simple linear elliptic if divPE⊥(grad·) is a linear elliptic operator satisfying the
strong Legendre-Hadamard ellipticity condition for some constant coefficient.

The following is a motivating example for our construction of computable quasiconvex lower
bounds for a class of multiwell functions [1].

Let E ⊆ Mm×n be a linear subspace without rank-one matrices, where m, n ≥ 2. It is known [22]
that there exists ε > 0 such that

|PE⊥a ⊗ b|2 ≥ ε|a|2|b|2, a ∈ Rm, b ∈ Rn,

where PE⊥ : Mm×n → E⊥ is the Euclidean orthogonal projection of Mm×n to the orthogonal complement
E⊥ of E, a ∈ Rm and b ∈ Rn are treated as column vectors and a⊗b = abT ∈ Mm×n with bT the transpose
of b.

Now we optimise the above construction [1] by defining

λ0 = inf{|PE⊥a ⊗ b|2 : a ∈ Rm, b ∈ Rn, |a| = |b| = 1},

where |a| and |b| are the Euclidean norms of a and b in Rm and Rn respectively, so that we have
0 < λ0 < 1 and

|PE⊥a ⊗ b|2 ≥ λ0|a ⊗ b|2 = λ0|PEa ⊗ b|2 + λ0|PE⊥a ⊗ b|2

hence if we define λE = λ0/(1 − λ0), we have

|PE⊥a ⊗ b|2 ≥ λE |PEa ⊗ b|2 (1.8)

for all a ∈ Rm and b ∈ Rn. Thus the quadratic form qE(X) = |PE⊥X|2 − λE |PEX|2 is a rank-one convex
quadratic form as qE(a ⊗ b) ≥ 0 for all a ∈ Rm and b ∈ Rn, hence is a quasiconvex function (see,
e.g., [23]).

Now we consider a simple multiwell model. Let E ⊆ Mm×n be a linear subspace without rank-
one matrices and let K ⊆ E be a closed set. Consider the (Euclidean) squared-distance function
dist2(X, K) = dist2(PE(X), K) + |PE⊥X|2, then (see [1])

FλE (X) = co(dist2(PE(·), K) + λE |PE(·)|2)(X) + qE(X)

is a quasiconvex lower bound of the squared-distance function as co(dist2(PE(·), K)+ λE |PE(·)|2)(X) is
a convex function and qE(X) = |PE⊥X|2 − λE |PEX|2 is a rank-one convex quadratic form.
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However, in the above construction, even when K ⊆ E is a finite set, in general, the computation
of the convex envelope co(dist2(PE(·), K) + λE |PE(·)|2)(X) is not a simple task whose complexity is
generally not known. As a general reference, it is known that to determine the convexity of a quartic
polynomial is an NP-hard question [24]. The computation of the values of quasiconvex functions
whose existence are known is one of the motivations for us to find computable quasiconvex functions
with multiwell structure. For numerical computation of the rank-one convex envelope for general
functions, we refer to [25]. On the other hand, for numerical computation of compensated convex
transforms in the discrete setting, there are efficient methods [26].

Before we state our main results, let us first introduce some preliminary notions and results.

Definition 1. (Quasiconvex functions [12–14]) Suppose f : Mm×n → R is continuous. Then f is
quasiconvex if ∫

G
f (X + Dϕ(x))dx ≥

∫
G

f (X)dx

∀X ∈ Mm×n, ∀G ⊆ Rn open and ∀ϕ ∈ C∞0 (G,Rm).

For a continuous function f : Mm×n → R bounded below, the quasiconvex envelope Q f : Mm×n → R

is the largest quesiconvex function satisfying Q( f ) ≤ f . For the precise definition, we refer to [13]. In
this paper we only consider quasiconvex lower bound g of a given function f .

The translation method (see, e.g., [21]) is a simple and effective method for finding quasiconvex
lower bounds. Suppose f : Mm×n → R is continuous and bounded below and assume that g : Mm×n →

R is quasiconvex, then the function h defined by

h(X) := co[ f − g](X) + g(X) (1.9)

is quasiconvex and satisfies h(X) ≤ f (X) for all X ∈ Mm×n. We call h a translation lower bound which
is quasiconvex as the sum of a convex function and a quasiconvex function remains quasiconvex.

The following example, which is a generalisation of a double-well function in [20] using a different
method, can be used to show how the translation method applies to multiwell models when the wells
are contained in subspaces without rank-one matrices [1]. This example is one of the motivations for
the definition of compensated convex transforms [1].

Example 1. Let E ⊆ Mm×n be a linear subspace without rank-one matrices where m, n ≥ 2. Let K ⊆ E
be a non-empty closed set.

Consider the squared Euclidean distance function to the set K

H(X) = dist2(X, K), X ∈ Mm×n,

which is not quasiconvex. We see that

dist2(X, K) = |PE⊥X|2 + dist2(PEX, K).

Let λE > 0 be defined by

λE =
λ0

1 − λ0
with λ0 = inf{|PE⊥a ⊗ b|2 : a ∈ Rm, b ∈ Rn, |a| = |b| = 1}. (1.10)
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Then the translation bound by the rank-one convex quadratic form qE(X) := |PE⊥X|2 − λE |PEX|2 given
by

G(X) := co[dist2(PE·, K) + λE |PE · |
2](X) + [|PE⊥X|2 − λE |PEX|2] (1.11)

is the quasiconvex envelope of dist2(X, K). Note that rank-one convex quadratic functions are quasi-
convex [23]. For detailed calculations, we refer to [1].

Next we briefly describe the main tool used in this paper: the compensated convex transforms.

Motivated from the translation method, in particular, formula (1.9), compensated convex transforms
were introduced in [1].

Definition 2. Let f : Rn → R be a continuous function with at most quadratic growth and let λ > 0 be
large if needed, we define λ-parametrised convexity-based transforms.

The Lower compensated convex transform is defined by

Cl
λ( f )(x) := co

[
λ| · |2 + f (·)

]
(x) − λ|x|2, x ∈ Rn.

The Upper compensated convex transform is defined by

Cu
λ( f )(x) := λ|x|2 − co

[
λ| · |2 − f (·)

]
(x), x ∈ Rn

where co[g] = convex envelope of g, and | · | denotes the Euclidean norm.

We also have Cu
λ( f )(x) = −Cl

λ(− f )(x), and both Cl
λ( f ) and Cu

λ( f ) are ‘tight’ approximations of f
from below and above respectively as λ → +∞ in the sense that if f is of C1,1 in a neiighbourhood of
x0 ∈ R

n, then when λ > 0 is sufficiently large, we have f (x0) = Cl
λ( f )(x0) = Cu

λ( f )(x).

Next we briefly describe the properties of the smooth approximation of the finite maximum function
fm(x) = max{x1, x2, . . . , xm} for x = (x1, x2, . . . , xm) ∈ Rm by the upper compensated convex transform
given by [1]

Cu
λ( fm)(x) = λ|x|2 − λdist2

(
x, co

(
∆m

2λ

))
+

1
4λ
.

If we consider the minimum function gm(x) = min{xi : 1 ≤ i} = − fm(−x), then the lower compen-
sated convex transform Cl

λ(gm)(x) satisfies

Cl
λ(gm)(x) = −Cu

λ( fm)(−x) = λdist2
(
−x,
∆m

2λ

)
− λ|x|2 −

1
4λ
.

It is known that there are numerical schemes to compute the convex projection P∆m/(2λ) with com-
plexity O(m log m), e.g., [2].

The following are some properties of Cu
λ( fm) and Cl

λ(gm). We will discuss their proofs in Section 5.

Proposition 2. i) The function Cu
λ( fm) is a C1,1 approximation of fm with linear growth and

|DCu
λ( fm)(x) − DCu

λ( fm)(y)| ≤ 8λ|x − y|.
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ii) Tight approximation: Assume x = (x1, x2, . . . , xm) is ‘sorted’ in the increasing order: x1 ≥ x2 ≥

· · · ≥ xm, then fm(x) = Cu
λ( fm)(x) if and only if x1 − x2 ≥

1
2λ .

iii) Similar to ii), if x = (x1, x2, . . . , xm) is ‘sorted’ in the decreasing order: x1 ≤ x2 ≤ · · · ≤ xm,
Then gm(x) = Cl

λ(gm)(x) iff x2 − x1 ≥
1

2λ .

iv) Error estimate:

fm(x) ≤ Cu
λ( fm)(x) ≤ fm(x) +

1
2λ
.

vi) Cu
λ( fm) is a ‘monotone’ convex function [1]:

if x ≥ y in the sense that xi ≥ yi for i = 1, 2, . . . ,m, then Cu
λ( fm)(x) ≥ Cu

λ( fm)(y).

The plan for the rest of the paper is as follows. In Section 2 we consider the multiwell function
H2 with quadratic growth. We give conditions on parameters involved to construct quasiconvex lower
bounds H2 by Cl

λ(gm) so that the resulting quasiconvex functions are computable. In Section 3 we
consider the multiwell function H1 with mixed linear-quadratic growth and take a slightly different
approach from the method used for H2. We present a generalisation of H1 in Section 4 and conclude
the paper with the proof of tight approximation of Cu

λ( fm).

2. A construction of quasiconvex lower bounds for H2

In this section we construct quasiconvex lower bounds for the multiwell function H2 by the lower
compensated convex transform Cl

λ(gk)(·) where gk(x) = min{x1, x2, . . . , xk} is the minimum function
defined on Rk.

Let E ⊆ Mm×n be a linear subspace without rank-one matrices. Let K = {A1, A2, · · · , Ak} ⊆ E and
let f : K → E⊥ be a Liptschitz function with a small Lipschitz constant L ≥ 0.

Recall the definition of H2 : Mm×n → R:

H2(X) = min{|PE(X − Ai)|2 + α|PE⊥X − f (Ai)|2 + βi : i = 1, 2, . . . , k}, X ∈ Mm×n. (2.1)

In this section we give conditions on K, α > 0, βi and L > 0 so that the quasiconvex lower bound
G2 defined below preserves the shape of H2 near the graph of f defined by Γ f = {(Ai + f (Ai) : i =
1, 2, . . . , k}, i.e., H2(X) = G2(X) if X is near Γ f .

We define
qi(X) := |PE(X − Ai)|2 + α|PE⊥X − f (Ai)|2 + βi, (2.2)

so that
H2(X) = q(X) +min{ℓi(X) : i = 1, 2, . . . , k}, X ∈ Mm×n, (2.3)

where
q(X) := |PE(X)|2 + α|PE⊥(X)|2 − 2A1 · PE(X) − 2α f (A1) · PE⊥(X),
ℓi(X) = −2(Ai − A1) · PE(X) − 2α( f (Ai) − f (A1)) · PE⊥(X) + ci,

(2.4)

with ci = |Ai|
2 + α| f (Ai))|2 + βi. Note that ℓ1(X) = c1 is a constant.
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We also define
Lk(X) = (ℓ1(X), . . . , ℓk(X)). (2.5)

The following is the main result of this section.

Theorem 3. Suppose E ⊆ Mm×n is a linear subspace without rank-one matrices with the ellipticity
constant λE > 0 defined by (1.10). Let

D = max
i, j
|Ai − A j|, d = min

i, j
|Ai − A j|, β = max

i, j
|βi − β j|

Suppose f : K → E⊥ is a Lipschitz mapping with Lipschitz constant 0 ≤ L ≤ 1/α. If d2 > 2β, α > 1,

1 + λEα >
32(1 + λE)(k − 1)D2

d2 − 2β
and λ =

1 + λEα

8(1 + λE)(k − 1)D2 . (2.6)

Then
G2(X) := q(X) −Cu

λ( fk(−Lk(X))), X ∈ Mm×n (2.7)

is a quasiconvex lower bound of H2(X), where fk is the maximum function in Rk.

Also G2(X) = H2(X) if

|PEX − Ai|
2 + |PE⊥X − f (Ai)|2 ≤

1
4λ
, i = 1, 2, . . . , k. (2.8)

Remark 4. The assumption d2 > 2β implies that every ‘energy well’ Xi := Ai + f (Ai) for i = 1, 2, . . . , k
is a local minimum point of H2.

Also if X is close to the ‘well’ Xi, the quasiconvex lower bound G2(X) agrees with H2(X).

The computation of G2(X) requires the computation of Cu
λ( fk(−Lk(X)) which has the complexity of

O(k log k).

Proof of Theorem 3 By the the formula for the upper transform in the definition of G2(X), we have

G2(X) := [q(X) − λ| − Lk(X)|2] +
(
λdist2

(
−Lk(X), co

(
∆k

2λ

))
−

1
4λ

)
.

Since the function λdist2
(
−Lk(X), co

(
∆k

2λ

))
−

1
4λ

is convex as −Lk(X) is an affine mapping, hence this

function is convex. So, we need to show:

i) the quadratic function q(X) − λ|Lk(X)|2 is a rank one convex quadratic function, which implies
that G2(X) is quasiconvex.

ii) near Ai + f (Ai) we have ℓ j(X) ≥ ℓi(X) + 1/(2λ) so that −Cu
λ( fk)(−Lk(X)) = ℓi(X) for all j , i

hence G2(X) = H2(X).
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Proof of i) Let τk = 8(k − 1)D2. We may write

q(X) − λ| − Lk(X)|2 = q(X) − λ|Lk(X)|2

= |PEX|2 + α|PE⊥X|2

−4λ
∑k

i=2[((Ai − A1) · PEX)2 + α2(( f (Ai) − f (A1)) · PE⊥X)2]
−8λα

∑k
i=2((Ai − A1) · PEX)(( f (Ai) − f (A1)) · PE⊥X)

+affine terms
≥ (1 − τkλ)|PEX|2 + (α − τkλ)|PE⊥X|2 + affine terms, where τk = 8(k − 1)D2.

We observe that
α − τkλ =

α − 1
1 + λE

> 0

and
1 − τkλ =

λE(1 − α)
1 + λE

< 0.

Now let X ∈ Mm×n be a rank-one matrix, we have

(1 − τkλ)|PEX|2 + (α − τkλ)|PE⊥X|2 ≥ (λEα + 1 − (1 + λE)τkλ)|PEX|2 = 0.

Thus q(X) − λ|Lk(X)|2 is a rank-one convex quadratic function, hence is quasiconvex. Therefore G2(X)
is quasiconvex on Mm×n.

Proof of ii) We need to show that for each i, if (2.8) holds, i.e.,

|PEX − Ai|
2 + |PE⊥X − f (Ai)|2 ≤

1
4λ
,

then for each j , i, we have ℓ j(X) ≥ ℓi(X) +
1

2λ
. Equivalently we need to prove that

q(X) + ℓi(X) +
1

2λ
≤ q(X) + ℓ j(X) ⇐⇒ qi(X) +

1
2λ
≤ q j(X).

We have
q j(X) − qi(X) − 1

2λ
= |A j − Ai|

2 + α| f (A j) − f (Ai)|2 − 2(PEX − Ai) · (A j − Ai)
−2α(PE⊥X − f (Ai)) · ( f (A j) − f (Ai)) + β j − βi −

1
2λ

≥ |A j − Ai|
2 − 2|A j − Ai||PEX − Ai|

−2α| f (A j) − f (Ai)||PE⊥X − f (Ai)| − β − 1
2λ

≥ |A j − Ai|
2 −

√
2
√
λ
|A j − Ai| − β −

1
2λ .

Next we show that

|A j − Ai|
2 −

√
2
√
λ
|A j − Ai| − β −

1
2λ
> 0 (2.9)

if (2.6) and (2.8) hold.

Let x1 < 0 < x2 be the two roots of the quadratic polynomial x2 −
√

2
√
λ

x − β − 1
2λ . It remains to show

that |A j − Ai| > x2. From (2.6) we see that

λ >
4

d2 − 2β
,
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so

x2 =
1
√

2λ
+

√
β +

1
λ

<
1
√

2

√
d2 − 2β

4
+

√
d2 + 2β

4

<
1
2

√
d2 − 2β +

1
2

√
d2 + 2β

<d < |A j − Ai|.

Note that by our assumption on f , we have | f (A j) − f (Ai)| ≤ |Ai − A j|/α. Thus by Property iii) in

Proposition 2, we have −Cu
λ( fk(−Lk(X)) = Cl

λ(gk(Lk(X)) = gk(Lk(X)) = ℓi(X) as ℓ j(X) ≥ ℓi(X) +
1

2λ
,

hence H2(X) = G2(X).

Remark 5. Due to Property iv) of the upper compensated convex transform in Propostion 2, we have
the error estimate

G2(X) ≤ H2(X) ≤ G2(X) +
1

2λ
, X ∈ Mm×n.

Therefore if α > 0 is large, then G2(X) is a very good quasiconvex lapproximation of H2(X).

The structure of the quasiconvex lower bound G2(·) of the multiwell function H2(·) suggests that
G2(·) is of C1,1(Mm×n) and is of quadratic growth for X ∈ Mm×n. Therefore when we consider the
variational integral

I2(u) =
∫
Ω

G2(Du(x)) dx

for minimisers or more general stationary points [27] the natural space would be W1,2(Ω, Rm). This is
in contrast with quasiconvex lower bounds G1 for H1 which will be discussed in the next section, where
we will see that G1 has a mixed growth which might lead to some more challenges for us to choose a
proper function space to accommodate such energy density (integrands).

The following figure (Figure 1) gives an illustration of an example of a three well model H2 re-
stricted to E ≃ R2, where f ≡ 0 :

H2(x, y) = min{(x + 2)2 + y2 + 1, x2 + 9(y + 2)2 − 1, (x − 2)2 + (y − 2)2}

with the three wells at (−2, 0), (0, −2), (2, 2), with different heights and a quasiconvex lower bound
(λ = 0.25) restricted on E.

3. A construction of quasiconvex lower bounds for H1

In this section we construct quasiconvex lower bounds for the multiwell function H1 defined in (1.6)
by taking the lower compensated convex transform Cl

λ(gk)(·) = −Cu
λ(− fk)(·), where gk(x) and fk(x) are

the minimum and maximum functions defined on Rk respectively.
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Figure 1. Views of H2(x, y) from two angles and a quasiconvex lower bound (λ = 0.25).

Similar to what we have defined in Section 2, let E ⊆ Mm×n be a linear subspace without rank-one
matrices and let K = {A1, A2, · · · , Ak} ⊆ E be a finite set with k distinct elements.

We recall the definition of H1 : Mm×n → R:

H1(X) = α|PE⊥X|2 +min{hi(PEX) : i = 1, 2, . . . , k}, X ∈ Mm×n, (3.1)

where
hi(Y) =

√
|Ui(Y − Ai)|2 + γi, ,Y ∈ E

with Ui : E → E an invertible linear transform and γi ≥ 0 for i = 1, 2, . . . , k. We also define

qi(X) = α|PE⊥X|2 + hi(PEX), X ∈ Mm×n

for i = 1, 2, . . . , k.

Let Fk(Y) = (h1(Y), h2(Y), . . . , hk(Y)) for Y ∈ E.We define for λ > 0.

G1(X) = α|PE⊥X|2 −Cu
λ( fk)(−Fk(PEX))

= λ|dist2
(
−Fk(PEX), ∆k

2λ

)
+ [α|PE⊥X|2 − λ|Fk(PEX)|2].

Note that α|PE⊥X|2 − λ|Fk(PEX)|2 is a quadratic function.

Let d = min1≤i, j≤k |Ai − A j|, γ = max1≤i≤k γi, and umax = max1≤i≤k ∥Ui∥op, where ∥Ui∥op is the
operator norm of Ui. Let u j = inf{|U jY | : Y ∈ E, |Y | = 1} for j = 1, 2, . . . , k. Since U j : E → E is
an invertible linear transform for j = 1, 2, . . . , k, we see that u j > 0 for all j = 1, 2, . . . , k. We define
umin = min{u j : j = 1, 2, . . . , k}. Clearly, umin > 0. If γ is small enough and α > 0 is sufficiently large,
we can establish a similar result for H1 as we have done for H2.

Theorem 6. Suppose umind >
√

2γ. Let λE > 0 be defined by (1.10). If

λ :=
λEα

ku2
max
>

(1 +
√

2)u2
max + 1/

√
2

umind −
√

2γ
,

then
G1(X) = α|PE⊥X|2 −Cu

λ( fk)(−Fk(PEX))
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is a quasiconvex lower bound of H1(X) for X ∈ Mm×n and G1(X) = H1(X) if |PEX − Ai| ≤ 1/λ for
i = 1, 2, . . . , k.

The condition for α is a rough sufficient condition as we have just used the fact

√
a +
√

b
√

2
≤
√

a + b ≤
√

a +
√

b, for a, b ≥ 0

in our estimates for g j(PEX) ≥ gi(PEX) + 1/(2λ) for j , i.

The condition umind >
√

2γ is essentially a sufficient geometric assumption which means the mini-
mum distance among the wells |A j−Ai| is larger that the maximum height

√
γ so that any given well Ai

is a genuine ‘well’ with Ai a local minimum point of the energy density G1(X) not swallowed by other
wells.

Proof of Theorem 6 Observe that by the formula for the upper transform of the maximum function
we have

G1(X) = [α|PE⊥X|2 − λ|Fk(PEX)|2] + λdist2
(
−Fk(PEX), co

(
∆k

2λ

))
−

1
4λ
.

We need to show that α|PE⊥X|2 − λ|Fk(PEX)|2 is a rank-one convex quadratic function and

X 7→ dist2
(
−Fk(PEX), co

(
∆k

2λ

))
is convex, that is, for Y ∈ E,

Y 7→ dist2
(
−Fk(Y),

∆k

2λ

)
is convex.

Note that h j(Y) =
√
|U j(Y − A j)|2 + γ2

j is a non-negative convex function for Y ∈ E and for j =

1, 2, . . . , k. We define, for u ∈ Rk, the function

f (u) = dist2
(
−u,
∆k

2λ

)
.

Clearly f (u) is convex. The key observation is that f (u) is also positively increasing in the sense that
if u ≥ v ≥ 0, i.e., ui ≥ vi ≥ 0 for all of the corresponding components, then f (u) ≥ f (v). This requires
some more detailed structural properties of the convex projection P∆k/(2λ). We have

Lemma 7. Let

f (u) = dist2
(
−u,
∆m

2λ

)
, u ∈ Rm.

If u = (u1, . . . , um), h = (h1, . . . , hm) ∈ Rm satisfy that u ≥ 0 and h ≥ 0 componentwise in the sense
that ui ≥ 0 and hi ≥ 0 for i = 1, 2, . . . ,m, then D f (u) · h ≥ 0. Consequently, f (u) ≥ f (v) if u ≥ v ≥ 0
componentwise.
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Proof We have

f (u) = dist2
(
−u,
∆m

2λ

)
=

∣∣∣∣−u − P ∆m
2λ

(−u)
∣∣∣∣2 = ∣∣∣∣u + P ∆m

2λ
(−u)

∣∣∣∣2 ,
where the convex projection is in the form

P ∆m
2λ

(−u) =
m∑

j=1

λ j

2λ
e j

with λ j ≥ 0 for j = 1, 2, . . . ,m and
∑m

j=1 λ j = 1. If u ≥ 0 and h ≥ 0 componentwise, then

D f (u) · h = Ddist2
(
−u, ∆m

2λ

)
· h = 2

(
u + P ∆m

2λ
(−u)

)
· h

= 2
∑m

j=1 u jh j + 2
∑m

i=1
λi
2λei · h = 2

∑m
j=1 u jh j + 2

∑m
i=1
λi
2λhi ≥ 0

as uihi ≥ 0, λi ≥ 0 and ei · h = hi ≥ 0 for i = 1, 2, . . . ,m with e1, e2, . . . , em the standard Euclidean
basis vectors. The last claim follows from the fundamental theorem of calculus that if u ≥ v ≥ 0, i.e.,
ui ≥ vi ≥ 0 for i = 1, 2, . . . ,m, then f (u)− f (v) =

∫ 1

0
D f (tu+ (1− t)v) · (u− v) dt ≥ 0 as tu+ (1− t)v ≥ 0

and u − v ≥ 0 componentwise.

Proof of Theorem 6 (continued) Now we can show that

V1(X) := dist2
(
−Fk(PEX), co

(
∆k

2λ

))
= f (Fk(PEX)), X ∈ Mm×n

is convex, where f : Rk → R is defined as in Lemma 7 with m = k. Let 0 < t < 1 and X, Y ∈ Mm×n,
since Fk(PEX) = (h1(PE(X)), h2(PE(X)), . . . , hk(PE(X))) and every component function h j(PE(X)) ≥ 0
is convex, we first have

h j(PE(tX + (1 − t)Y)) = h j(tPEX + (1 − t)PEY)) ≤ th j(PEX) + (1 − t)h j(PEY), j = 1, 2, . . . , k

hence Fk(PE(tX + (1 − t)Y)) ≤ tFk(PEX) + (1 − t)Fk(PEY) componentwise.

Since f is positively increasing, we have

V1(tX + (1 − t)Y) = f (Fk(PE(tX + (1 − t)Y))) ≤ f (tFk(PEX) + (1 − t)Fk(PEY)).

Also f is convex, which implies

f (tFk(PEX) + (1 − t)Fk(PEY)) ≤ t f (Fk(PEX)) + (1 − t) f (Fk(PEY)) = tV1(X) + (1 − t)V1(Y).

Therefore V1(X) is a convex function in Mm×n.

Next we show that the quadratic function Q1(X) = α|PE⊥X|2 − λ|Fk(PEX)|2 is a rank-one convex
quadratic function in Mm×n. We have for every X ∈ Mm×n, we have

Q1(X) = α|PE⊥X|2 − λ
∑k

j=1 h2
j(PEX) = α|PE⊥X|2 − λ

∑k
j=1(|Ui(PEX − Ai)|2 + γi)

α|PE⊥X|2| − (λ
∑k

j=1(|Ui(PEX)|2) + L(PEX),
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where

L(PEX) = −λ
k∑

j=1

(−2Ui(PEX) · Ui(Ai) + |Ui(Ai)|2 + γ j)

is an affine function of PEX hence is a convex function. So, we only need to show that the quadratic
form

α|PE⊥X|2 − λ
k∑

j=1

|Ui(PEX)|2

is rank-one convex. We have, for every rank-one matrix X ∈ Mm×n,

α|PE⊥X|2| − (λ
∑k

j=1 |Ui(PEX)|2 ≥ αλE |PEX|2| − λu2
maxk|PEX|2 = (αλE − λu2

maxk)|PEX|2 = 0,

as αλE = λu2k.

Next we prove that G1(X) = H1(X) if |PEX − Ai| ≤ 1/λ for each i = 1, 2, . . . , k.
By definition of the upper transform, G1(X) = H1(X) if and only if −Cu

λ( fk)(−Fk(PEX)) =
min{h1(PEX), h2(PEX), . . . , hk(PEX)}. By Property iii) in Proposition 2, if |PEX − Ai| ≤ 1/λ, we show
that h j(PEX) ≥ hi(PEX)+1/(2λ) for all j = 1, 2, . . . , k with j , i so that −Cu

λ( fk)(−Fk(PEX)) = hi(PEX)
hence G1(X) = H1(X). If we write PEX = Ai + Y ∈ E, the assumption |PEX − Ai| ≤ 1/λ implies
|Y | ≤ 1/λ. We have

h j(PEX) ≥ hi(PEX) + 1
2λ ⇐⇒

√
|U j(PEX − A j)|2 + γ j ≥

√
|Ui(PEX − Ai)|2 + γi +

1
2λ

⇐=
|U j(PE X−A j)|+

√
γ j

√
2

≥ |Ui(PEX − Ai)| +
√
γi +

1
2λ

⇐⇒
|U j(Ai−A j+Y)|+√γ j

√
2

≥ |Ui(Y)| +
√
γi +

1
2λ

⇐=
|U j(Ai−A j)|−|U j(Y)|

√
2

≥ |Ui(Y)| +
√
γi +

1
2λ

⇐=
umin |Ai−A j |
√

2
≥
|U j(Y)|
√

2
+ |Ui(Y)| +

√
γ + 1

2λ

⇐= umind ≥
√

2
(

umax |Y |√
2
+ umax|Y | +

√
γ + 1

2λ

)
⇐= umind −

√
2γ ≥ (1+

√
2)umax
λ

+ 1
√

2λ
as |Y | ≤ 1/λ

⇐⇒ λ ≥ (1+
√

2)umax+1/
√

2

umind−
√

2γ
.

The last inequality holds as we have assumed that umind >
√

2γ and λ =
λEα

ku2
max

is large if α > 0 is large.

Remark 8. In Theorem 6, if we consider the special case thatUi = I - the identity transform, then we
have umax = umin = 1 and in this special case the assumptions will be much simpler as we can assume
that

λ =
λEα

k
>

1 +
√

2 + 1/
√

2

d −
√

2γ
.
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Remark 9. We may generalise Theorem 6 to deal with more complicated multiwell models. Even for
a single non-elliptic well model in the form

H1(X) = α|PE⊥X|2 +min{|UiPEX| : i = 1, 2, . . . , k}, X ∈ Mm×n, (3.2)

where Ui : E → E is an invertible linear transform, we see that under the assumption that

λ =
λEα

k
, (3.3)

we can show that the corresponding lower bound G1(X) is still a quasiconvex lower bound. However,
at X = 0 we have H1(0) = 0 but G1(0) < 0. This is due to the fact that

−Cu
λ( fk(−Fk(0)) = λdist2(0, ∆k/(2λ)) − 1

4λ = λ|P∆k/(2λ)(0)|2 − 1
4λ

= λ
∣∣∣∑k

j=1
e j

2kλ

∣∣∣2 − 1
4λ = −

k−1
4kλ < 0.

Here we have used the fact that the distance between 0 and the simplex ∆k/(2λ) is attained at the center

of the simplex
k∑

j=1

e j

2kλ
.

At any point where |U jPEX| ≥ |UiPEX| + 1/(2λ) for all j , i, we still have H1(X) = G1(X).
Thus if we just wish to construct a quasiconvex function with the ‘desired’ geometric feature which is
differentiable except at 0, then we can make a simple lift by considering G1(X) + (k − 1)/(4kλ).

Remark 10. From Theorem 6 we see that both the multiwell function H1 and its quasiconvex lower
bound G1 are of mixed growth. In the subspace E⊥ ⊆ Mm×n both H1 and G1 are of quadratic growth.
In the subspace E, both H1 and G1 are of linear growth.

If the height γ j > 0 for all j = 1, 2, . . . , k, then we see that G1 is at least of C1,1
loc(Mm×n). However, if

for some j, γ j = 0, then G1 is not differentiable at A j.

For the variational integral I(u) =
∫
Ω

G1(Du) dx, if we consider the Dirichlet problem, say u = 0
on ∂Ω, the natural space is W1,2

0 (Ω, Rm) where Ω ⊆ Rn is, say, a bounded Lipchitz domain. The main
reason is that I(u) is coercive in W1,2

0 (Ω, Rm) because we have∫
Ω

|PE⊥Dϕ(x)|2 dx ≥ λE

∫
Ω

|PEDϕ(x)|2 dx

for ϕ ∈ W1,2
0 (Ω, Rm). As G1(PEX) ≥ c0 for some c0 ∈ R we have both

∫
Ω

G1(Du) dx ≥ α|PE⊥Du|2 dx +
c0meas(Ω) and

∫
Ω

G1(Du) dx ≥ αλE |PEDu|2 dx + c0meas(Ω).

If we consider the natural boundary value problem for I(u) =
∫
Ω

G1(Du) dx under the constraint, say∫
Ω

u(x) dx = 0, then W1,2(Ω, Rm) does not seem to be the right space to study such a variational integral
as I(u) is not coercive in this space. We have α|PE⊥X|2 − Cu

λ( fk)(−Fk(PEX)) and it can be verified that
there are c0 > 0, c1 > 0, C0 > 0 and C1 > 0 such that c0|PEX| − c1 ≤ −Cu

λ( fk)(−Fk(PEX)) ≤ C0|PEX| +
C1. However, the integral

∫
Ω
|PE⊥Du|2 dx does not contribute to the coercivity of I(u) in the subspace
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E. An example is in [28] that if we consider the two dimensional conformal subspace E∂ ⊆ M2×2 which
does not have rank-one matrices, then E⊥∂ = E∂̄ is the two-dimensional anti-conformal subspace. If
u = u1 + iu2 is a holomophic function in Ω and we define v := (u1, u2) : Ω → R2, then we have
|PE∂̄Dv|2 = |∂̄u|2 = 0 by the Cauchy-Riemann equations. Therefore

∫
Ω
|PE∂̄Dv|2 dx does not contribute

to the coercivity of I(v) under the condition
∫
Ω

v dx = 0.

It seems that some spaces with mixed growth condition might be the correct spaces to accommodate
such variational integrals. Furthermore the study of (partial) regularity of minimisers and more gen-
eral critical points for I(u) under the natural boundary condition seems to be a challenging question.

The following figure (Figure 2) gives and illustration of an example of a three well model H1

restricted to E ≃ R2 in the form

min
{ √

9(x + 2)2 + y2 + 1,
√

x2 + 9(y + 2)2 + 0.52,
√

(x − 2)2 + (y − 2)2
}

with the three ‘anisotropic’ wells and with different heights at (−2, 0), (0, −2), (2, 2) (λ = 1/2).

Figure 2. H1(x, y), lower bound G1(x, y) with λ = 1/2, and their sublevel set at 1.8211.

The following figure (Figure 3) gives and illustration of an example of a single non-elliptic well
model H1 restricted to E ≃ R2 in the form

min
{ √

x2/100 + y2,
√

(x cos(π/3) + sin(π/3)2/100 + (x sin(π/3) − y cos(pπ/3))2,√
(x cos(2π/3) + sin(2π/3)2/100 + (x sin(2π/3) − y cos(2π/3))2

}
with the three ‘anisotropic’ wells and with different heights at (−2, 0), (0, −2), (2, 2) (λ = 1/2).

4. A generalised H1 with affine wells

Suppose dim(E) = s. Using an orthonormal basis of E given by B1, B2, . . . , Bs and let xi = PEX · Bi

and x = (x1, x2, . . . , xs) ∈ Rs, we define Li(x) = Aix − bi for y ∈ Rs with Ai ∈ Mmi×s and bi ∈ R
mi with

1 ≤ mi < s and i = 1, 2 . . . , k.
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Figure 3. H1(x, y), lower bound G1(x, y) with λ = 0.25, and their difference H1(x, y) −
G1(x, y).

We may consider the following more general model

H1(X) = α|PE⊥X|2 + V0(PEX),

where
V0(PE(X) = min{|Aix − bi| : i = 1, 2, . . . , k}, x ∈ Rd,

or more generally,

Vγ(x) = min{
√
|Aix − bi|

2 + γ2
i : i = 1, 2, . . . , k}, x ∈ Rd,

where |Aix − bi| is the Euclidean norm in Rmi and γi ≥ 0. For the function V0, the zero set of can be the
union of finitely many planes.

Let Fk(x) = (|A1x − b1|, . . . , |Akx − bk|). We can approximate H1(x) from below by G1(x) =
α|PE⊥X|2 −Cu

λ( fk)(−Fk(x)), with x = (PEX · B1, .(PEX · B1, . . . , (PEX · Bk).

We can use G1 to define quasiconvex functions as before. However due to the special fea-
ture of −Cu

λ( fk)(−x), at intersections of the planes defined by the zero set of V0(x), we see that
−Cu
λ( fk)(−Fk(x)) < 0 at points of intersections. As we commented earlier, this is due to the fact

that if x1 = x2 ≤ x3 ≤ · · · ≤ xm, then by Lemma 12 in Section 5 and the fact that Cl
λ(g2(x1, x2)) =

−Cu
λ( f2(−x1,−x2)) in R2, we have

Cl
λ(gm)(x) = −Cu

λ( fm(−x)) ≤ −Cu
λ( f2(−x1,−x2)) = x1 −

1
8λ
= gm(x) −

1
8λ
.

If x1 = x2 = 0, we see that

−
1

4λ
≤ −Cu

λ( fm(−x)) ≤ −
1

8λ
< 0.

Example 11. Let H1(x, y) = 2 min{|x|, |y|,
√

(x − 1)2 + (y − 1)2} and let G1(x, y) = −Cu
λ( f3)(−F3(x, y))

with F3(x, y) = (|x|, |y|,
√

(x − 1)2 + (y − 1)2) ∈ R3. The graphs of H1(x, y) and G1(x, y) with λ =
1/2 are shown in Figure 4.
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Figure 4. Views of H1, G1 and the difference H1 −G1 in the 2d subspace E (λ = 0.5).

4.1. Proof of the tight approximation of the upper trasnform of the maximum function

In this section we prove the tight approximation of the upper compensated convex transform of the
maximum function (Proposition 2 (ii)) . Recall from [1] that

Cu
λ( fm)(x) = λ|x|2 − λdist2

(
x, co

(
∆m

2λ

))
+

1
4λ

for x ∈ Rm and λ > 0. Items i) and iv) of Proposition 2 were established in [1] with the maximum
function as a special case. The fact that The function Cu

λ( fm) is a C1,1 approximation of fm and satisfies

|DCu
λ( fm)(x) − DCu

λ( fm)(y)| ≤ 8λ|x − y|,

for x, y ∈ Rm is a consequence of a general result in [1] (Theorem 4.1). The error estimate in iv) that

fm(x) ≤ Cu
λ( fm)(x) ≤ fm(x) +

1
2λ

for x ∈ Rm was established in [1] (Theorem 5.1) which also contains the estimate |DCu
λ( fm)(x)| ≤ 1 for

x ∈ Rm. Thus the statement in i) that Cu
λ( fm) is of linear growth is a direct consequence of this gradient

estimate.

Before we prove Proposition 2 (ii) we state the following simple lemma which can be verified
through a direct calculation using the definition of the upper compensated convex transform.

Lemma 12. Let f2(x) = max{x1, x2} for x = (x1, x2) ∈ R2. We have

Cu
λ( f2)(x) = λ|x|2 − λdist2(x, ∆2/(2λ)) +

1
4λ

=


x1 + x2

2
+
λ

2
(x1 − x2)2 +

1
8λ
, |x1 − x2| ≤

1
2λ
,

f2(x), |x1 − x2| ≥
1

2λ
.

(4.1)

Electronic Research Archive Volume 30, Issue 5, 1632–1652.



1650

Next we prove ii), the ‘Tight approximation’ property: Assume x = (x1, x2, . . . , xm) is ‘sorted’ in
the increasing order: x1 ≥ x2 ≥ · · · ≥ xm, then fm(x) = Cu

λ( fm)(x) = x1 if and only if x1 − x2 ≥
1

2λ .
Note that Item iii) for the lower transform of the minimum function can be proved by using the identity
Cl
λ(gm)(x) = −Cu

λ( fm(−x)).

Proof of Proposition 2 Item ii) If x(0)
1 − x(0)

2 ≥ 1/(2λ), we see that fm is differentiable at x(0). By the
translation invariance property of compensated convex transforms [7], we have,

Cu
λ( fm)(x(0)) = − co(λ| · −x(0)|2 − fm(·))(x(0)).

The conclusion in this case follows if we can show that co(λ| ·−x(0)|2− fm(·))(x(0)) = − fm(x(0)). To prove
this we only need to show that the tangent plane for − fm defined by ℓ(x) = − fm(x(0))−∇ fm(x(0))·(x−x(0))
lies below the graph of the function λ|x − x(0)|2 − fm(x) for all x ∈ Rm, that is,

− fm(x(0)) − ∇ fm(x(0)) · (x − x(0)) ≤ λ|x − x(0)|2 − fm(x), x ∈ Rm. (4.2)

Since fm(x) = x1 for x near x(0), we have fm(x(0)) = x(0)
1 and ∇ fm(x(0)) = e1, hence (4.2) is equivalent to

− x(0)
1 − (x1 − x(0)

1 ) ≤ λ|x − x(0)|2 − xk, (4.3)

where xk = fm(x) for some k ∈ {1, 2, . . . ,m} by definition. If k = 1, then inequality (4.3) clearly holds.
If k , 1, we have, as (4.3) is equivalent to

A := λ|x − x(0)|2 − (xk − x(0)
k ) + (x1 − x(0)

1 ) + (x(0)
1 − x(0)

k ) ≥ 0. (4.4)

If we complete squares in A defined in (4.4) above, we obtain

A =
m∑

j,k, 1

λ(x j − x(0)
j )2 + λ

(
xk − x(0)

k −
1

2λ

)2

+ λ

(
x1 − x(0)

1 +
1

2λ

)2

+ (x(0)
1 − x(0)

k ) −
1

2λ
.

Therefore A ≥ 0 if and only if

x(0)
1 − x(0)

k −
1

2λ
≥ 0.

Since k , 1 we have

x(0)
1 − x(0)

k ≥ x(0)
1 − x(0)

2 ≥
1

2λ
.

The conclusion follows.
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