Research article

Changes in soft coral Sarcophyton sp. abundance and cytotoxicity at volcanic CO2 seeps in Indonesia

  • Received: 18 January 2016 Accepted: 19 April 2016 Published: 25 April 2016
  • This study presents the relationship between benthic cover of Sarcophyton sp. living on coral reefs and their cytotoxicity (an assumption of soft coral allelochemical levels) along acidification gradients caused by shallow water volcanic vent systems. Stations with moderate acidification (pH 7.87 ± 0.04), low acidification (pH 8.01 ± 0.04), and reference conditions (pH 8.2 ± 0.02) were selected near an Indonesian CO2 seep (Minahasa, Gunung Api Island, and Mahengetang Island). Cover of the dominant soft coral species (Sarcophyton sp.) was assessed and tissue samples were collected at each site. The cytotoxicity tissue extracts were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinon bromide (MTT) method. Levels of cytotoxicity were strongly correlated with Sarcophyton sp. cover (p < 0.05; R2 = 0.60 at 30 ppm and 0.56 at 100 ppm), being highest at mean pH 8.01 where the soft corals were most abundant. This finding suggests that Sarcophyton sp. can be expected to survive ocean acidification near Indonesia in the coming decades. How the species might be adversely affected by further ocean acidification later in the century unless CO2 emissions are reduced remains a concern.

    Citation: Hedi Indra Januar, Neviaty Putri Zamani, Dedi Soedarma, Ekowati Chasanah. Changes in soft coral Sarcophyton sp. abundance and cytotoxicity at volcanic CO2 seeps in Indonesia[J]. AIMS Environmental Science, 2016, 3(2): 239-248. doi: 10.3934/environsci.2016.2.239

    Related Papers:

    [1] Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the $p$--System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495
    [2] Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016
    [3] Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57
    [4] Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008
    [5] Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012
    [6] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [7] Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001
    [8] Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030
    [9] Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813
    [10] Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65
  • This study presents the relationship between benthic cover of Sarcophyton sp. living on coral reefs and their cytotoxicity (an assumption of soft coral allelochemical levels) along acidification gradients caused by shallow water volcanic vent systems. Stations with moderate acidification (pH 7.87 ± 0.04), low acidification (pH 8.01 ± 0.04), and reference conditions (pH 8.2 ± 0.02) were selected near an Indonesian CO2 seep (Minahasa, Gunung Api Island, and Mahengetang Island). Cover of the dominant soft coral species (Sarcophyton sp.) was assessed and tissue samples were collected at each site. The cytotoxicity tissue extracts were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolinon bromide (MTT) method. Levels of cytotoxicity were strongly correlated with Sarcophyton sp. cover (p < 0.05; R2 = 0.60 at 30 ppm and 0.56 at 100 ppm), being highest at mean pH 8.01 where the soft corals were most abundant. This finding suggests that Sarcophyton sp. can be expected to survive ocean acidification near Indonesia in the coming decades. How the species might be adversely affected by further ocean acidification later in the century unless CO2 emissions are reduced remains a concern.


    [1] Evenhuis C, Lenton A, Cantin NE, et al. (2015) Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification. Biogeosci 12: 2607-2630.
    [2] Guinottea JM, Fabry VJ (2008) Ocean Acidification and Its Potential Effects on Marine Ecosystems. Ann NY Acad Sci 1134: 320-342. doi: 10.1196/annals.1439.013
    [3] Cyronak T, Schulz KG, Jokiel PL (2015) The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J Mar Sci 73: 558-562.
    [4] Suwa R, Nakamura M, Morita M, et al. (2010) Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fish Sci 76: 93-99. doi: 10.1007/s12562-009-0189-7
    [5] Hii YS, Ambok Bolong AM, Yang TT, et al. (2009) Effect of elevated carbon dioxide on two Scleractinian corals: Porites cylindrica (Dana, 1846) and Galaxea fascicularis (Linnaeus, 1767). J Mar Biol 2009: 215196.
    [6] Kerrison P, Hall-Spencer JM, Suggett DJ, et al. (2011) Assessment of pH variability at a coastal CO2 vent for ocean acidification studies. Estuar Coast Shelf Sci 94: 129-137. doi: 10.1016/j.ecss.2011.05.025
    [7] Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, et al. (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96-99. doi: 10.1038/nature07051
    [8] Cigliano M, Gambi MC, Rodolfo-Metalpa R, et al. (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157: 2489-2502. doi: 10.1007/s00227-010-1513-6
    [9] Johnson VR, Brownlee C, Rickaby REM, et al. (2013) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160: 1813-1824.
    [10] Inoue S, Kayanne H, Yamamoto S, et al. (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Chang 3: 683-687. doi: 10.1038/nclimate1855
    [11] Gabay Y, Benayahu Y, Fine M (2013) Does elevated pCO2 affect reef octocorals? Ecol Evol 3: 465-473. doi: 10.1002/ece3.351
    [12] Gabay Y, Fine M, Barkay Z (2014) Octocoral Tissue Provides Protection from Declining Oceanic pH. PloS ONE 9: e91553. doi: 10.1371/journal.pone.0091553
    [13] Michalek-Wagner K, Bourne DJ, Bowden BF (2001) The effects of different strains of zooxanthellae on the secondary-metabolite chemistry and development of the soft-coral host Lobophytum compactum. Mar Biol 138: 753-760. doi: 10.1007/s002270000505
    [14] Changyun W, Haiyan L, Changlun S, et al. (2008) Chemical defensive substances of soft corals and gorgonians. Acta Ecol Sin 28: 2320-2328. doi: 10.1016/S1872-2032(08)60048-7
    [15] Sotka E, Forbey J, Horn M, et al. (2009) The emerging role of pharmacology in understanding consumer-prey interactions in marine and freshwater systems. Integr Comp Biol 49: 291-313. doi: 10.1093/icb/icp049
    [16] Lages BG, Fleury BG, Ferreira CE, et al. (2006) Chemical defense of an exotic coral as invasion strategy. J Exp Mar Biol Ecol 328: 127-135.
    [17] Kahng SE, Grigg RW (2005) Impact of an alien octocoral, Carijoa riisei, on black corals in Hawaii. Coral Reefs 24: 556-562. doi: 10.1007/s00338-005-0026-0
    [18] Aceret TL, Sammarco PW, Coll JC (1995) Toxic effects of alcyonacean diterpenes on scleractinian corals. J Exp Mar Biol Ecol 188: 63-78.
    [19] Sammarco PW, Coll JC, Barre SL (1995). Competitive strategies of soft coral (Coelenterata : Octocorallia), II, variable defensive responses and susceptibility to scleractinian corals. J Exp Mar Biol Ecol 91: 199-215.
    [20] Sammarco PW, Coll JC (1990) Lack of predictability in terpenoid function - multiple roles and integration with related adaptations in soft corals. J Chem Ecol 16: 273-289. doi: 10.1007/BF01021284
    [21] Yang B, Liu J, Wang J, et al. (2015) Cytotoxic Cembrane Diterpenoids. InHandbook of Anticancer Drugs from Marine Origin. Springer International Publishing, 649-672.
    [22] Liu X, Zhang J, Liu Q, et al. (2015) Bioactive Cembranoids from the South China Sea Soft Coral Sarcophyton elegans. Molecules 20: 13324-13335. doi: 10.3390/molecules200713324
    [23] Rocha J, Peixe L, Gomes N, et al. (2011) Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting. Mar Drugs 9: 1860-1886. doi: 10.3390/md9101860
    [24] Fabricius KE, Langdon C, Uthicke S, et al. (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1: 165-169. doi: 10.1038/nclimate1122
    [25] Pierrot DE, Lewis E, Wallace DWR (2006) MS Exel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. Oak Ridge, Tennessee, USA: Carbon Dioxide Information Analysis Centre, Oak Ridge National Laboratory, US Department of Energy.
    [26] Fabricius KE, Alderslade P (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the central west Pacific, the Indian Ocean and the Red Sea. Australian Institute of Marine Science, 264.
    [27] Zachary I (2003) Determination of cell number, in: Cell proliferation and apoptosis. D. Hughes and H Mehmet (eds), Bios Scientific Publishers, 13-35.
    [28] Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point coral methodology,”. Comput Geosci 32: 1259-1269. doi: 10.1016/j.cageo.2005.11.009
    [29] Hammer O, Harper DAT, Ryan PD (2001) Past: Paleontological Statistics Software package for education and data analysis. Palaeontol Electron 4: 9.
    [30] Anthony KR, Kline DI, Diaz-Pulido G (2008) Acidification causes bleaching and productivity loss in coral reef builders. P Natl Acad Sci USA 105: 17442-17446. doi: 10.1073/pnas.0804478105
    [31] Crook ED, Potts D, Rebolledo-Vieyra M (2012) Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31: 239-245. doi: 10.1007/s00338-011-0839-y
    [32] Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites sp. Limnol Oceanogr 56: 2402-2410. doi: 10.4319/lo.2011.56.6.2402
    [33] Doney SC, Fabry VJ, Feely RA, et al. (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1: 169-192. doi: 10.1146/annurev.marine.010908.163834
    [34] Sammarco PJ, Coll JC (1992) Chemical adaptations in the Octocorallia: evolutionary considerations. Mar Ecol Prog Ser 88: 93-93.
    [35] Luter HM, Duckworth AR (2010) Influence of size and spatial competition on the bioactivity of coral reef sponges. Biochem Syst Ecol 38: 146-153.
    [36] Januar HI, Marraskuranto E, Patantis G, et al. (2012) LC-MS Metabolomic Analysis of Environmental Stressors Impacts to the Metabolites Diversity in Nephthea sp.. Chron Young Sci 2: 57-62.
    [37] Januar HI, Pratitis A, Bramandito A (2015) Will the increasing of anthropogenic pressures reduce the biopotential value of sponges? Scientifica 2015: 734385.
    [38] Januar HI, Chasanah E, Tapiolas DM, et al. (2015) Influence of anthropogenic pressures on the bioactivity potential of sponges and soft corals in the coral reef environment. Squallen Bull Mar Fish Postharvest Biotech 10: 51-59.
    [39] Arnold T, Mealey C, Leahey H, et al. (2012) Ocean Acidification and the Loss of Phenolic Substances in Marine Plants. PLoS ONE 7: e35107.
    [40] Suggett DJ, Hall-Spencer J, Rodofo-Metalpa R, et al. (2012) Sea anemones may thrive in a high CO2 world. Global Chang Biol 18: 3015-3025. doi: 10.1111/j.1365-2486.2012.02767.x
  • This article has been cited by:

    1. R. M. Colombo, M. Herty, V. Sachers, On $2\times2$ Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298
    2. BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817
    3. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057
    4. M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197
    5. RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025
    6. Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927
    7. Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535
    8. Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X
    9. CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042
    10. Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8
    11. Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7
    12. Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138
    13. Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027
    14. Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x
    15. Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300
    16. Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841
    17. J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004
    18. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066
    19. Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016
    20. H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373
    21. Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005
    22. Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283
    23. Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929
    24. Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13
    25. Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212
    26. Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719
    27. Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759
    28. R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957
    29. Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034
    30. Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017
    31. Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9
    32. Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011
    33. Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001
    34. Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15
    35. Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054
    36. Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042
    37. Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948
    38. Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022
    39. Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004
    40. Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006
    41. Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3
    42. Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049
    43. Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049
    44. F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055
    45. Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3
    46. Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66
    47. F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010
    48. Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112
    49. Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X
    50. Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531
    51. RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593
    52. Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021
    53. Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X
    54. Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006
    55. Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485
    56. Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7
    57. Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580
    58. Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003
    59. MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X
    60. Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002
    61. Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576
    62. Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65
    63. Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245
    64. Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013
    65. Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5933) PDF downloads(1222) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog