
The field of energy harvesting has grown rapidly, with the huge development in low-power devices and the Internet of Things (IoT). With the intent of harvesting electrical energy for self-powered devices, piezoelectric technology is considered. In this study, we proposed several electrical and mechanical improvements to enhance the electrical energy produced through piezoelectricity. To determine the best electrical configuration to harvest piezoelectric energy, three harvesting electric circuits were proposed and tested using a piezoelectric material (PZT-5H) mounted directly on a vibration exciter. The harvested electrical energy by each circuit was determined at different excitation frequencies, from 20 to 50 Hz, with an excitation amplitude of 2 mm. The favorable electric circuit produced approximately 35 μJ of electrical energy at an excitation frequency of 50 Hz. This circuit was subsequently used for the remaining aspects of this work. To enhance the obtained electrical energy, a fixed-free metallic plate was used. First, free vibration was tried, imposing an excitation displacement of different values to the free end of the plate. The plate consisted of different materials: copper, aluminum, and steel. The PZT-5H was mounted at different positions on the plate. The harvested electrical energy was determined for each plate material, each piezoelectric material position, and each excitation displacement. The highest harvested energy was around 6 μJ. Second, forced vibration was tried, imposing an excitation amplitude of 0.5 mm at different excitation frequencies, from 10 to 50 Hz, to the fixed end of the plate. The plate was of different lengths. The highest harvested energy was around 540 μJ. Third, we showed that it is possible to further increase the harvested electrical energy by tuning the plate resonance to 50 Hz. The harvested energy was then around 1010 μJ. The obtained results allowed optimizing piezoelectric energy harvesting toward supplying low-power devices for different applications.
Citation: Amine Ben Alaya, Charfeddine Mrad, Férid Kourda. Piezoelectric energy harvesting under free and forced vibrations for different operating conditions[J]. AIMS Energy, 2024, 12(6): 1334-1365. doi: 10.3934/energy.2024060
[1] | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier . High resolution finite difference schemes for a size structured coagulation-fragmentation model in the space of radon measures. Mathematical Biosciences and Engineering, 2023, 20(7): 11805-11820. doi: 10.3934/mbe.2023525 |
[2] | Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito . Finite difference approximations for measure-valued solutions of a hierarchicallysize-structured population model. Mathematical Biosciences and Engineering, 2015, 12(2): 233-258. doi: 10.3934/mbe.2015.12.233 |
[3] | Horst R. Thieme . Discrete-time population dynamics on the state space of measures. Mathematical Biosciences and Engineering, 2020, 17(2): 1168-1217. doi: 10.3934/mbe.2020061 |
[4] | Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis . A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679 |
[5] | Lin Zhang, Yongbin Ge, Xiaojia Yang . High-accuracy positivity-preserving numerical method for Keller-Segel model. Mathematical Biosciences and Engineering, 2023, 20(5): 8601-8631. doi: 10.3934/mbe.2023378 |
[6] | Suzanne M. O'Regan, John M. Drake . Finite mixture models of superspreading in epidemics. Mathematical Biosciences and Engineering, 2025, 22(5): 1081-1108. doi: 10.3934/mbe.2025039 |
[7] | Ting Kang, Yanyan Du, Ming Ye, Qimin Zhang . Approximation of invariant measure for a stochastic population model with Markov chain and diffusion in a polluted environment. Mathematical Biosciences and Engineering, 2020, 17(6): 6702-6719. doi: 10.3934/mbe.2020349 |
[8] | Xiaobing Feng, Tingao Jiang . Mathematical and numerical analysis for PDE systems modeling intravascular drug release from arterial stents and transport in arterial tissue. Mathematical Biosciences and Engineering, 2024, 21(4): 5634-5657. doi: 10.3934/mbe.2024248 |
[9] | Qihua Huang, Hao Wang . A toxin-mediated size-structured population model: Finite difference approximation and well-posedness. Mathematical Biosciences and Engineering, 2016, 13(4): 697-722. doi: 10.3934/mbe.2016015 |
[10] | Sandra Vaz, Delfim F. M. Torres . A dynamically-consistent nonstandard finite difference scheme for the SICA model. Mathematical Biosciences and Engineering, 2021, 18(4): 4552-4571. doi: 10.3934/mbe.2021231 |
The field of energy harvesting has grown rapidly, with the huge development in low-power devices and the Internet of Things (IoT). With the intent of harvesting electrical energy for self-powered devices, piezoelectric technology is considered. In this study, we proposed several electrical and mechanical improvements to enhance the electrical energy produced through piezoelectricity. To determine the best electrical configuration to harvest piezoelectric energy, three harvesting electric circuits were proposed and tested using a piezoelectric material (PZT-5H) mounted directly on a vibration exciter. The harvested electrical energy by each circuit was determined at different excitation frequencies, from 20 to 50 Hz, with an excitation amplitude of 2 mm. The favorable electric circuit produced approximately 35 μJ of electrical energy at an excitation frequency of 50 Hz. This circuit was subsequently used for the remaining aspects of this work. To enhance the obtained electrical energy, a fixed-free metallic plate was used. First, free vibration was tried, imposing an excitation displacement of different values to the free end of the plate. The plate consisted of different materials: copper, aluminum, and steel. The PZT-5H was mounted at different positions on the plate. The harvested electrical energy was determined for each plate material, each piezoelectric material position, and each excitation displacement. The highest harvested energy was around 6 μJ. Second, forced vibration was tried, imposing an excitation amplitude of 0.5 mm at different excitation frequencies, from 10 to 50 Hz, to the fixed end of the plate. The plate was of different lengths. The highest harvested energy was around 540 μJ. Third, we showed that it is possible to further increase the harvested electrical energy by tuning the plate resonance to 50 Hz. The harvested energy was then around 1010 μJ. The obtained results allowed optimizing piezoelectric energy harvesting toward supplying low-power devices for different applications.
Since inception, Data Envelopment Analysis (DEA) developed by Charnes et al. (1978), has been widely used to evaluate the performance of a set of Decision Making Units (DMUs), especially those with multiple inputs and multiple outputs (e.g., Cook et.al, 2009; Cooper et al., 2007; Liang et al., 2008; Thanassoulis et al., 2011 and Wu and Liang, 2010). In the original DEA models, all DMUs are treated as a black box and the internal structure is always ignored; see, e.g., Lewis and Sexton (2004) for more details. However, there are cases where DMUs may consist of two-stage network structures with intermediate measures. In other words, DMUs under evaluation share a common feature found in many two-stage network structures, namely the outputs from the first stage become the inputs to the second stage. This is referred to intermediate measure. For instance, Seiford and Zhu (1999) developed the profitability and marketability of US commercial banks based on a two-stage Network Data Envelopment Analysis (NDEA) model. Kao and Hwang (2008) studied the efficiency of 24 insurance firms based on a two-stage model where operating and insurance expenses are applied to generate premiums in the first stage and the underwriting and investment profits are produced in the second stage by employing the intermediate premiums as a resource. Liang et al. (2008) developed cooperative and non-cooperative models to address the tension between two stages caused by the intermediate measures.
The DEA models are classified into four series: original DEA models; efficiency decomposition models; NDEA models; and game-theoretic models (e.g., Cook et al., 2010). Also, Cook and Zhu (2014) revised various DEA models for measuring efficiency in the two-stage network structures. Li et al. (2018) presented an extended model of Despotis et al.'s model (2016) to generate a Pareto solution and identified the leader stage of a two-stage DEA model. They displayed that the optimal solution for the developed model is also a leader-follower solution and that the global optimal solution can be specified by comparing the efficiency scores difference for the upper and lower bounds of the two stages. In recent years, many researchers also studied two-stage NDEA models with shared resources; see, e.g., Yu and Shi (2014), Moreno et al. (2015), Wu et al. (2016 a, 2016 b), Ang and Chen (2016), Guo et al. (2017), Li et al. (2017 c) and Izadikhah et al. (2018).
In all the above mentioned DEA models, all inputs and outputs parameters are assumed to be exact and the effect of uncertainty is ignored. Research showed that a small perturbation in the problem data can lead to a serious variation in ranking. Robust optimization is a widely used approach to deal with the data uncertainty (e.g., Soyster, 1973; Mulvey et al., 1995; Despotis and Smirlis, 2002). This approach firstly takes the percentage of the perturbation in the data into consideration and then obtains the robust efficiency (e.g., Ben-Tal and Nemirovski, 1999). In the realm of robust DEA, Sadjadi and Omrani (2008) considered uncertainty in output parameters for the performance evaluation of electricity distribution firms. They showed that models presented by Bertsimas and Sim(2003, 2004) and Bertsimas and Thiele (2006) were easier and more practical than the robust DEA model introduced by Ben-Tal and Nemirovski (2000). Salahi et al. (2016) presented the robust counterpart of the CCR model in the envelopment form and showed that it is the same as the optimistic robust counterpart of the multiplier form of the CCR model. Then they computed robust solutions for common set of weights under interval uncertainties using robust efficiency scores of units considering as ideal solutions. In another research, Wu et al. (2017) transformed a robust DEA optimization model into a second-order cone equivalent to immunize against output perturbation in an uncertainty set. As well, in a recent study, Salahi et al. (2018) proposed equivalent formulizations of the robust Russell measure model and its enhanced model for interval and ellipsoidal uncertainties in their best- and worst-cases. The authors indicated that the built formulizations remain convex for both best- and worst-cases under interval uncertainty as well as worst-case with ellipsoidal uncertainty. The effect of uncertainty also is studied in two-stage models. Kao and Liu (2011) developed a two-stage DEA model from deterministic to uncertain situations, where the observations are represented by fuzzy numbers. In their study, the extension principle is utilized to develop a pair of two-level mathematical program to calculate the lower and upper bounds of the α-cut of the fuzzy efficiency. As well, Liu (2014) proposed a fuzzy two-stage NDEA model with assurance region. A new two-stage Stackelberg fuzzy DEA model with utilizing the Monte Carlo simulation is proposed by Tavana and Khalili-Damghani (2014), that discriminately ranked the efficiency scores in each stage for branches of a commercial bank. In another study, Alimohammadi (2016) proposed a robust two-stage DEA model in order to evaluate the efficiency of the electrical networks under uncertainty. Hatefi et al. (2016) applied an integrated forward-reverse logistics network with hybrid facilities under uncertainty in which the impact of random facility disruptions is relieved. Zhou et al. (2017) suggested stochastic NDEA models for two-stage systems under the centralized control organization mechanism and showed that ignoring the internal structure of the whole process is not convenient. Also, Huang et al. (2018) developed a NDEA model to Copula-Based network stochastic frontier analysis on evidence from the U.S. commercial banks in 2009 and evaluated technical efficiencies of the stochastic production and cost frontiers. Their dynamic model recognized multiple banks production processes that was independent of whether, more or less deposits are consistent with higher bank efficiency.
Another approach to deal with uncertainty is the p-robust approach. It was first introduced to deal with uncertainty in facility layout by Kouvelis et al. (1992) and used subsequently in a network design problem; see, e.g., Gutierrez et al. (1996). Next the p-robustness opinion by Mo and Horrison (2005) was first used in a supply-chain network design to show that the relative regret in each scenario must not be more than constant p. After that, Snyder and Daskin (2006) introduced a new approach for optimizing under uncertainty known as a stochastic p-robust optimization approach. In their approach, the objective function minimizes the expected costs, while the p-robustness condition is incorporated into the model as a constraint and the required decisions are partitioned into two stages. It is a combination of the robust optimization and traditional stochastic approaches, each of which has some disadvantages to cope the uncertainty. The stochastic models search to minimize the total expected cost among all scenarios. The optimal solution obtained using it may be very good for some scenarios but very poor for the others. The robust approach usually seeks min-max regret solutions that appear effective no matter which scenario is realized.
In this paper, we utilize stochastic p-robust approach for the Stackelberg (leader-follower) and centralized game-theoretic DEA models of Liang et al. (2008) to achieve robustness against the existing uncertainty. The developed models are based on the discrete robust and stochastic optimization approaches that apply probabilistic scenarios to obtain the effect of imprecise input and output parameters and calculate the efficiency scores for DMUs. It can overcome the difficulties of models under uncertain parameters and give reliable answers. In fact, the aim of this study is to create a robust system for NDEA models through comparison of game-theoretic models in which large reductions in regret are possible with little increases in the expected efficiency of branches. The proposed models are very sensitive to the parameters change. One of the main advantages of these models is that it enables decision makers to make a trade-off between the expected value and the regret value of the efficiency of DMUs under probable scenarios and also, a trade-off between robustness of the solution and the robustness of the model. Also, the uncertainty under different scenarios is formulated with a specified probability for input and output data instead of using point estimates. Like the fuzzy approach, this approach does not require any membership functions and the α-cut variables (i.e., minimizing the computational efforts). Also, it does not use a Monte Carlo simulation procedure to discriminately rank the efficient DUMs. Therefore, we can obtain the scenario ranking based on the p-values on the mind.
The rest of the paper is organized as follows. The next section reviews a short preliminary to the game-theoretic models utilized in two-stage DEA models. Section 3 presents the stochastic p-robust approach for centralized and non-centralized models. In Section 4, we apply the proposed models to a real numerical example to demonstrate its efficiency. Sensitivity analysis is provided in Section 5 and at the end, concluding remarks and some directions for future research are given in the last section.
In this section, we briefly review the game-theoretic models used in an original two-stage process. Liang et al. (2006) employed the notions of the Stackelberg game (or leader-follower/the seller and buyer) and the cooperative game to extend models for measuring performance in supply chain settings. In their model, the second stage includes both the outputs from the first stage and some additional inputs. Since some of the inputs to the second stage were not from the first stage, one of the DEA models was nonlinear. Although the model was nonlinear, it could be solved as parametric linear programming problems, and the best solution could be found using a heuristic technique.
Liang et al. (2008) applied the model of Liang et al. (2006) for two-stage processes (which includes only intermediate measures joining the to two stages, as illustrated in Figure 1) and then used the overall efficiency definition of Kao and Hwang (2008) to get linear DEA models. In fact, Liang et al. (2008) presented alternative models to address the conflict between stages caused by the intermediate measures, and at the same time provide efficiency scores for both individual stages and the overall process. Their non-cooperative and cooperative models displayed that the overall efficiency of the two-stage process was the product of efficiencies of the two stages.
In general, the two models derived from game-theoretic axioms are the cooperative (centralized) and the non-cooperative (non-centralized) game models; see, e.g., Cook et al. (2010). The non-centralized model considers the two stages as players in a game and pursues a leader-follower model. This model often mentioned to as a Stackelberg game, requires selecting one of the two stages as the leader and then obtaining multipliers for the inputs and outputs that produce the best feasible score for that stage. The efficiency score for the other stage, namely the follower is then attained by detecting the best potential weights for its inputs and outputs, but with the limitation that the score of the leader is not compromised. The centralized game model gains the best overall efficiency score for the two stages incorporated. Consider an original two-stage process as shown in Figure 1. Suppose we have n DMUs, and each DMUj (j = 1, …, n) uses m inputs xij s, (i = 1, …, m) in the first stage to produce D outputs zdjs , (d = 1, …, D) under scenario s = {1, …, S}. Then, these D outputs become the inputs to the second stage and will be referred to as intermediate measures. The outputs from the second stage are yrj s, (r = 1, …, t) under scenario s. Therefore, xijs, zdjs and y rjs show the i th input, the dth intermediate output and the rth output of DMUj based on the sth scenario.
For DMUj we denote the efficiency scores of the first stage as ej1s and the second as ej2s based on the sth scenario. Based upon the radial constant returns to scale (CRS) DEA model of Charnes et al. (1978), we have the following input-oriented DEA models for each stage:
e1sj=max∑Dd=1w1dzsdj0∑mi=1vixsij0 e2sj=max∑tr=1urysrj0∑Dd=1w2dzsdj0s.t. s.t. ∑Dd=1w1dzsdj∑mi=1 vixsij≤1, ∀j,∀sϵS, ∑tr=1urysrj∑Dd=1w2dzsdj≤1, ∀ j,∀sϵS, vi≥0, w1d≥0, ∀i,d. ur≥0, w2d≥0, ∀ r,d. | (1) |
In models (1), vi, wd1, wd2, and ur are non-negative decision variables of inputs, intermediate measures and outputs, respectively. Besides, xijs, zdjs and yrjs show uncertain parameters related to the ith input, the dth intermediate measure and the rth output of DMUj in terms of the sth scenario, respectively. It is noteworthy that, here, we assume the weights related to the intermediate parameters are the same, i.e., wd1 = wd2 regardless of whether they are considered as inputs or outputs; see, e.g., Kao and Hwang (2008) and Liang et al. (2008) for more details on the properties of models. As in Seiford and Zhu (1999), we can use two separate DEA analysis for the two stages, so that if the first stage is efficient and the second stage is not, then the second stage improves its performance by decreasing the inputs zdjs, that the reduced zdjs may make the first stage inefficient. However, to compute the overall efficiency, Chen et al. (2009) proposed an additive or arithmetic mean methodology for incorporating the two stages, as opposed to the geometric-type model of Kao and Hwang (2008).
Definition 2.1 If ej1s and ej2s are the efficiency scores of the first and the second stages under the sth scenario, respectively then the efficiency of the overall two-stage process either is 12(e1sj+e2sj) or e1sj×e2sj.
Definition 2.2 If ej1s≤1 and ej2s≤1 are the efficiency measures of the first and the second stages under the sth scenario, respectively in the input oriented model, then the two-stage process is efficient if and only if ej1s = ej2s = 1.
It is noted that, if esj=∑tr=1urysrj/∑mi=1vixSij is the two-stage overall efficiency score under the sth scenario, then at optimality, in the second stage we have e2s∗0=∑tr=1u∗rysro/e1s0 and ∑mi=1v∗ixsio=1, under the sth scenario. On the other hand, e1s∗0=∑Dd=1w1∗dzsdo therefore, e1s∗0×e2s∗0=∑tr=1u∗rysro/∑mi=1v∗ixsio. As a result, e1s∗0×e2s∗0=∑tr=1u∗rysro, and at optimality our proposed models give eSj=e1sj×e2sj.
As mentioned above, one form of a non-centralized game is the leader-follower model. In the game theory literature, the leader-follower model is also referred to as the Stackelberg model. If we consider the first stage as the leader, then the first stage's performance is more significant, and the efficiency of the second stage (follower) is computed subject to that the leader's efficiency stays constant. By accepting that the first and second stages are corresponding with the leader and the follower, respectively we compute the efficiency for the leader model under the sth scenario, applying the CCR model (2) as follows:
e1s∗0=maxD∑d=1w1dzsdos.t.D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS,m∑i=1vixsio=1, ∀sϵS, vi,w1d≥0, ∀i,d. | (2) |
For computing the second stage's efficiency, namely e02s* the model can be expressed as:
e2s∗0=max∑tr=1urysroe1s∗0s.t.t∑r=1urysrj−D∑d=1w1dzsdj≤0, ∀j,∀sϵS,D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, m∑i=1vixsio=1, ∀sϵS, D∑d=1w1dzsdo=e1s∗0, ∀sϵS, vi,ur,w1d≥0, ∀i,r,d. | (3) |
At last, in non-centralized model we state the overall efficiency with different scenarios as following. If e01s* and e02s* are the optimal efficiency scores of models (2) and (3), respectively then the overall efficiency is equal to e1s∗0×e2s∗0=∑tr=1u∗rySro. Accordingly, this illustrates that the overall efficiency in non-centralized model in the sth scenario is equal to the product of the efficiencies of individual stages.
Another model for evaluating the efficiency of the two-stage process is the centralized model that specifies a set of optimal weights on the intermediate factors in order to maximize the overall or agammaegate efficiency score.
Remark1. By assuming that in models (1) wd1= wd2, it can be seen that e1s0×e2s0=∑tr=1urysro/∑mi=1vixsio. As a result, instead of maximizing the average of e01s and e02s under the sth scenario, we maximize the product of e01s and e02s of individual stages. Therefore, in the centralized model by letting wd1 = wd2, the efficiency scores of both stages are computed simultaneously. As mentioned, we write the centralized model by replacing wd1 = wd2 in the models (1), as follows:
ec−s0=max e1s0×e2s0=∑tr=1urysro∑mi=1vixsio s.t. e1sj≤1, e2sj≤1, w1d=w2d. | (4) |
It is noted that the e0c-s 1 in model (4) is the optimal efficiency value for the centralized model. Model (4) can be transformed into the linear model (5) as
1 "c" stands for the centralized model.
ec−s0=maxt∑r=1urysros.t.t∑r=1urysrj−D∑d=1w1dzsdj≤0, ∀j,∀sϵS,D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, m∑i=1vixsio=1, ∀sϵS, vi,ur,w1d≥0, ∀i,r,d. | (5) |
Model (5) gives the overall efficiency of the two-stage process. Nonetheless, it is obvious that, if there is uncertainty in data set, models (2), (3) or (5) might be infeasible at optimal solution of nominal problem. Thus, it is essential to choose an alternative model such that a small variation in data set cannot change the rankings. To tackle this case, we apply the stochastic p-robust optimization approach of Snyder and Daskin (2006) that will be illustrated in the next section.
In this section, first we describe the p-robust concept, and afterwards present the mathematical formulation of two-stage NDEA models under uncertainty based on the stochastic p-robust approach.
Suppose S be a set of scenarios, and let Ps be a deterministic (i.e., single scenario) maximization problem for scenario index s, so that there is a different problem Ps for each scenario s ϵ S. Let Zs* > 0 be the optimal objective value for Ps. Also, let X be the feasible vector in terms of the weights of outputs and inputs, respectively, and Zs(X) be the objective value of problem Ps under solution X. Then X is called p-robust (p≥0 is a non-negative constant) if for all s ϵ S the following inequality holds:
Z∗s−Zs(X) Z∗s≤p. | (6) |
The left hand side of formula (6) shows the relative regret under sth scenario and p≥0 is a parameter that shows the robustness level between different values of each scenario. The relative regret for each scenario is limited by it. We can write inequality (6) as follows:
Zs(X)≥(1−p)Z∗s. | (7) |
Finally, in order to control the relative regret related to the scenarios, the p-robust restrictions are added to the model.
Definition 3.1 A DMUj under evaluation under the different scenarios is stochastic p-robust efficient if its optimal objective function value is one.
As mentioned before, in two-stage NDEA models each DMU is composed of two sub-DMUs in sequences, and the intermediate products of the sub-DMU in the first stage are used as input by the sub-DMU in the second stage. Nonetheless, to cope with uncertainty situations the precise models cannot lead to correct results. In fact, uncertainty can change final results and units rankings. Therefore, the original two-stage NDEA models must be robust upon uncertainty. In this case, we propose two stochastic p-robust two-stage NDEA models to cope with this theme.
Here we propose stochastic p-robust Stackelberg game models or the leader-follower versions of uncertain DEA models (2) and (3). At first, we formulate stochastic p-robust model for the first stage (i.e., the leader problem) as follows:
f1s∗0=maxS∑s=1qsD∑d=1w1dzsdo | (8.a) |
s.t.D∑d=1w1dzsdo≥(1−p)e1s∗0, ∀sϵS, | (8.b) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0, ∀j,∀sϵS, | (8.c) |
m∑i=1vixsio=1,∀sϵS, | (8.d) |
vi,w1d≥0,∀i,d. | (8.e) |
The objective function of model (8) computes the expected efficiency value of DMUs according to the data from each scenario in the leader stage. The first constraints represent the p-robust restrictions. Moreover, as retaining the leader's efficiency fixed, the stochastic p-robust model for the second stage (i.e. the follower problem) for all scenarios can be formulated as follows:
f2s∗0=maxS∑s=1qs(∑tr=1urysrof1s∗0) | (9.a) |
s.t. (∑tr=1urysrof1s∗0)≥(1−p)e2s∗0, ∀sϵS, | (9.b) |
t∑r=1urysrj−D∑d=1w1dzsdj≤0,∀j,∀sϵS, | (9.c) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0,∀j,∀sϵS, | (9.d) |
m∑i=1vixsio=1,∀sϵS, | (9.e) |
D∑d=1w1dzsdo=e1s∗0, ∀sϵS, | (9.f) |
vi,ur,w1d≥0, ∀i,r,d. | (9.g) |
The objective function of model (9) maximizes the expected efficiency value of DMUs according to data from each scenario in the follower stage. In the objective function, qs is the probability that scenario s happens (it is unclear which scenario will happen in the future, in other words, there is no information about the probability of chance of each scenario). In this model, the uncertainty in the parameters is defined by discrete scenarios. The objective function maximizes expected efficiency value of DMUs according to the data from each scenario. The first constraints show the p-robust restrictions and constraints (9.f) measure the efficiency value of the first stage (i.e., leader stage) under scenarios. Moreover, the relation between the overall efficiency and the efficiency score of each stage, i.e., f0s*, f01s* and f02s*, respectively are illustrated in the sequel.
Definition 3.2.1 DMUj under evaluation in the sth scenario is overall efficient if and only fjs = 1, j = 1, …, n.
Definition 3.2.2 The kth stage sub-DMUj, under the sth scenario is efficient if fjks = 1, j = 1, …, n and k = 1, 2.
Proposition 3.2.1 DMU0 in the sth scenario is overall efficient if and only if both stages in the sth scenario is efficient.
Proof. According to Definition 3.2.1, if DMU0 is overall efficient, then f0s = 1. Since f0s = f01s ×f02s, and f01s ≤1, f02s ≤1, therefore, the divisional efficiencies f01s and f02s must satisfy f01s = f02s = 1. On the contrary, if both stages are efficient, i.e., f01s = f02s = 1, then since f0s = f01s ×f02s, so the efficiency value of f0s must be equal to one. Hence, based on to Definition 3.2.1, DMU0 must be overall efficient.
The stochastic p-robust centralized model (5) under uncertainty is as follows:
fc−So=maxS∑s=1qst∑r=1urysro | (10.a) |
s.t. t∑r=1urysro≥(1−p)ec−s∗0 , ∀sϵS, | (10.b) |
m∑i=1vixsio=1,∀sϵS, | (10.c) |
t∑r=1urysrj−D∑d=1w1dzsdj≤0,∀j,∀sϵS, | (10.d) |
D∑d=1w1dzsdj−m∑i=1vixsij≤0,∀j,∀sϵS, | (10.e) |
vi,ur,w1d≥0, ∀i,r,d. | (10.f) |
In model (10), the objective function maximizes expected efficiency value of DMUs according to the data from each scenario. Constraints (10.b) are the p-robust restrictions. This set of restrictions may not allow the scenario efficiency take value more than 100 (1-p%) of the ideal efficiency scores gained by each scenario. The parameter p controls the relative regret between all scenarios. If p = ∞, then the p-robust constraints in models (8), (9) and (10) become redundant. Now we assume xko = max{xio|1≤i≤m}>0, and then setting (w1,…,wD,v1,…,vm)=(0,…,0,…,1/xko,0,…), constraints ∑mi=1vixsio=1 and ∑Dd=1 w1dzsdj−∑mi=1vixsij≤0, imply ∑Dd=1 w1dzsdo≤1. Thus, we get e1s∗0≤11−p. So for very small p's, there may not be p-robust solutions for models (8), (9) and (10), and they may be infeasible. We should note that the p-values can be different for any problem and are determined by the decision-maker. In general, the p-values usually should not be considered smaller than 0.2 and its upper bound is obtained by try and error, and can be increased to one.
Theorem 3.2.1 For a specific DMU0 under different scenarios, foc-S*≥ fo1S*×fo2S* where fo1S* and fo2S* are the optimal values of the non-centralized models (8) and (9), respectively and foc-S* is the optimal value of model (10).
Proof Suppose that the optimal value of model (10) is fc−S∗o=∑Ss=1qs∑tr=1u∗rysro, and the optimal value of models (8) and (9) are f1S∗o=∑Ss=1qs∑Dd=1w1∗dzsdo and f2S∗o=∑Ss=1qS(∑tr=1u∗rysrof1s∗0), respectively. Since ∑mi=1v∗ixsio=1 and ∑Dd=1w1∗dzsdo≤∑mi=1v∗ixsio, we further get ∑Ss=1qs∑mi=1v∗ixsio=1 and ∑Ss=1qs∑Dd=1w1∗dzsdo≤∑Ss=1qs∑mi=1v∗ixsi0, respectively. Then
f1S∗o×f2S∗o=(S∑s=1qsD∑d=1w1∗dzsdo)×S∑s=1qs(∑tr=1u∗rysro∑Ss=1qs∑Dd=1w1∗dzsdo)≤(S∑s=1qsm∑i=1v∗ixsio)×S∑s=1qs(∑tr=1u∗rysro∑Ss=1qs∑mi=1v∗ixsio)=S∑s=1qst∑r=1u∗rysro =fc−S∗o. |
Theorem 3.2.2 The expected efficiency values of the centralized model (5) under different scenarios are greater than those provided by model (10).
Proof. Since the feasible region of model (10) is the subset of the feasible region of model (5) and both models have the same objective function, thus the result follows.
Theorem 3.2.3 The expected regret values of model (5) in different scenarios are greater than those provided by model (10).
Proof. Let the difference between the expected efficiency values of each model with the expected ideal efficiency is
α=∑sϵSqsZs−∑sϵSqsZ∗s. | (11) |
It is clear that the smaller value of α for a model shows that model produces more exact results. According to the Theorem 3.2.2, we have
ϕ∗≤ˉπ | (12) |
in which ˉπ and ϕ∗ are the optimal objective values to dual of the expected model (5) and dual of model (10), respectively. From inequality (12), we further can get
ϕ∗−∑sϵSqsZ∗s≤ ˉπ−∑sϵSqsZ∗s. | (13) |
The left hand side of (13) is the α-value of expected value model (10) and the right hand side shows the α-value of expected value model (5) and thus the result follows.
The proposed models in the previous section are used to evaluate the technical efficiency of an Iranian commercial bank branches. In the realm of performance measurement, banks' performance analysis has been of primary interest due to its socioeconomic importance. Several researchers studied uncertainty subject in the bank (e.g., Kao and Liu, 2009; Paradi and Zhu, 2013). As well, the study of two-stage NDEA models were relatively active in banking industry in recent years and several important works have been reported; see, e.g., Avkiran (2009), Fukuyama and Weber (2010), and Akther et al. (2013) for more details.
It is notable that, on the one hand, due to the existence of some variables, data obtained are not precise and they are estimated with a specific error level (e.g., Zhou et al., 2017). For instance, the earnings quality as a qualitative variable for a bank system is not exactly available; also, the number of customers is not often reported precisely. On the other hand, for the banks, it may be beneficial to conceal real information and reveal deceptive input and output data. Moreover, real and accurate data about key performance criteria of all banks do not always exist. Therefore, it is important to analyze efficiency of banks under uncertainty. Here, we evaluate the presented models under discrete scenarios, provided by the bank network analyzers (i.e., s1 = Pessimistic, s2 = Medium, s3 = Optimistic). We note that the Snyder and Daskin (2006) assumed that all scenarios have the same occurrence probability (i.e. qs=1╱|S|; ∀s∈S), which should be qs = 0.33 for each scenario. But, we considered the average probability of the second and third scenarios, because the data-set in these two scenarios were similar. Therefore, the occurrence probabilities of scenarios are considered as 0.25, 0.5 and 0.25, respectively. Table 1 shows the input, intermediate and output parameters employed in the first and second stages of the proposed models.
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
As well, the results of the normalized data under three scenarios are provided in Table 2.
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
First, we obtain the ideal efficiency score of each DMU based on each scenario by applying models (2), (3) and (5). Then we utilize models (8), (9) and (10) for the efficiency analysis of DMUs. The related results are given in Table 3. The columns of Table 3 illustrate the ideal efficiency score according to the values defined under each scenario.
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
As can be seen, DMUs #3, 5, 8, 9, 11, 13, 14, 16, 17 and 19 gained the efficiency score 1 for all scenarios in the leader division that is 50 % of total branches; in the follower division, DMUs #7 and 20 obtained the efficiency score 1 for all scenarios that is 0.1 % of total branches and finally, in the centralized model none of the DMUs are efficient in all scenarios. Next, we solved models (8), (9) and (10) to get the efficiency scores for different p-values and probabilities for each scenario that are reported in Tables 4 to 6. According to these results, models (8), (9) and (10) give infeasible results for some DMUs when p is small, e.g., p ≤0.58 here, thus we do not report the corresponding results here.
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
As mentioned before in Section 3.2.2, the proposed models give infeasible results in some scenarios when small values are considered for p. The p-value is different for each problem and is determined by the decision-maker. Here, by try and error, we conclude that the p-value must not be smaller than 0.55. In this study, on the one hand, when p ≤ 0.55 according to the results, our models gives infeasible results for most of the DMUs. As the p-value increases, the efficiency score is improved and the number of infeasible DMUs gradually decline and we observe feasible results. On the other hand, for p ≥ 0.74 the results do not change i.e., the efficiency scores remain fixed. So we do not continue and stop it for the other p-values. Therefore, here, we only consider p ≥ 0.55 and do not show the results of p < 0.55.
For instance, with increasing the p-value from 0.56 to 0.70, the efficiency score of DMU16 changes. This change also can be seen in other DMUs such as 18 and 19. Models (8), (9) and (10) maximize the expected efficiency scores of a DMU (here, a bank branch) based on each scenario while p-robust constraints control the relative difference between its efficiency score generated by the model and ideal efficiency in each scenario.
It should be noted that the overall efficiency for stochastic p-robust Stackelberg game models (8) and (9) can be determined as f0s* = f01s* ×f02s* . Table 6 shows the product of the efficiency results of first and second stages (i.e., leader and follower models) for three scenarios.
In order to compare models (8), (9) and (10), we consider p = 0.58 and the related results are reported in Tables 6 and 7. After that, we reported the efficiency scores in Table 8 and also illustrated in Figure 2.
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
As shown in the last two columns of Table 8, the efficiency scores of the stochastic p-robust centralized model (10) yields better results for the overall efficiency scores than the stochastic p-robust Stackelberg model. So it can be deduced that selection of the centralized/cooperative strategy is preferable over the non-centralized/non-cooperative (or, Stackelberg) strategy.
Also, Figure 2 represents efficiency scores of stochastic p-robust centralized model and Stackelberg model that is model (10) and the product of models (8) and (9) for each DMUs with p = 0.58 in three scenarios.
As can be seen, for all DMUs (branches) the stochastic p-robust centralized efficiency scores are better than the other one. Therefore, the stochastic p-robust centralized model as the preferred model is selected and to get deep insight from stochastic p-robust NDEA models, we compare model (10) with deterministic model. To this end, we propound two scales as EV=∑sϵSqsZs(X) and Reg=∑sϵSqs(Z∗s−Zs(X))/Z∗s that the first scale calculates the expected efficiency score of all DMUs by taking into account the occurrence probabilities of the each abovementioned scenario i.e., 0.25, 0.5 and 0.25, respectively and the second scale computes the expected relative regret for each DMU. Ultimately, the calculated efficiency scores by the robust model (10) are compared with these two scales for three scenarios. The results are reported in Table 9 and illustrated in Figure 2. In this experiment, we let p = 0.58.
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
As shown in this Table 9, the efficiency scores of the p-robust centralized model (10) for all DMUs are smaller than the efficiency score of the expected centralized model (5). On the other hand, we indicated that the expected relative regret in both models is not equal. Moreover, from Table 9 we find that, DMU5 and DMU15 have better performance compared with other units in both of them, whereas DMU17 has better performance compared with other units in the P-robust centralized model. Further, in expected model (5), some DMUs have earned a similar rank, in other words, there is no discrimination among some DMUs. For example, according to Table 9, the efficiency scores in DMUs #8, 13, 18 and 19 are equal, while this is not the case in model (10). Therefore, the performance of the model (10) is like a ranking model, and this affirms the superiority of it. Although, it seems that the efficiency scores in the expected model (5) are greater than model (10) but it does not provide a more distinguishing efficiency score among some DMUs. As can be seen, in model (10), none of the DMUs have equal efficiency scores.
Figure 2 shows the expected efficiency scores between the two models based on the EV scale in each scenario. We should note that, EV scale is only defined for the centralized model (5), and it is the efficiency scores in the model (10).
As seen from Figure 3. the EV scale values show that the efficiency scores of p-robust centralized model (10) is less than the other one. Also, the Reg scale values of model (10) is less than or equal the other one. As mentioned before, the relative regret amount shows the relative difference between the ideal efficiency obtained from each scenario and efficiency of each model that showed by Theorem 3.2.2 and Theorem 3.2.3.
In this section, we perform sensitivity analysis for the expected version of the centralized model (5) and model (10) to different probabilities. We ran these models considering a set of different probability vectors. The related results are summarized in Tables 10 and 11, where the first row shows the value of probabilities as qs=(q1,q2,q3) and columns 2–9 present the difference between the expected efficiency values of each model with the expected ideal efficiency score, in the other words, i.e. the α values. As a matter of fact, this difference, for both abovementioned models, shows the amount of error with pertinent probabilities in each scenario. It is clear that the smaller the difference value, the better the result. Since the expected efficiency value of that model is closer to the ideal expected efficiency value, thus it produces more precise results.
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |
As it can be seen from Tables 10 and 11, our proposed model (10) generates better results compared to the other one. Comparison of the above-mentioned models with varying probabilities corroborates that the stochastic p-robust NDEA model (i.e., model (10)) gives better results than the expected centralized model (5). This supports the advantage of our stochastic p-robust NDEA model (10) in contrast to other NDEA models.
Uncertainty is an inherent part of real performance evaluation problems and protecting versus the worst-case is impossible, intricate, and time-consuming. To tackle this issues, and in order to evaluate the efficiency of the two-stage process, a scenario-based robust optimization model according to the Snyder and Daskin's approach (2006) is designed to develop the two-stage NDEA models dealing with uncertainty. This model incorporates the benefits of original stochastic and robust optimization models, therefore, can dominate the difficulties of models in uncertain parameters and give more acceptable results compared the other existing models. The main contributions of this model are as follows. It is less conservative than the other existence worst-case models and enables decision makers to make a benchmark between the expected efficiency of DMUs in different scenarios, a benchmark between robustness of the solution and the robustness of the model. We presented the stochastic p-robust two-stage NDEA model for both cooperative and non-cooperative forms. Further, in Theorems 3.2.1, 3.2.2 and 3.2.3 in Subsection 3.2 it is proved that the choice of the cooperative model provides better efficiency in comparison with the non-cooperative form.
Moreover, the performance of our proposed cooperative model is like a ranking model, and it provides a more distinguishing efficiency score among DMUs. Also, p-robustness adds a feasibility theme that is not present in most other robustness measures. Sensitivity analysis on different probability vectors can derive a spectrum of solutions that may be helpful for managerial tradeoffs. Finally, the applicability of the proposed models, are discussed for a case study in the banking industry showing their advantages over the other models.
The concept of uncontrollable inputs and undesirable outputs has also widespread applications, thus, including them in the model would be an interesting future research direction. Moreover, the parameters of the proposed model may be changed during the planning. Therefore, we can expand the suggested model into the Malmquist model in dynamic condition. Since the return to scale model is linear, under the uncertainty situations, one can apply the proposed model to analyze the efficiency of DMUs. The combination of stochastic p-robust approach with other NDEA models such as additive and slack based NDEA measures with shared resources could also be considered for future research direction.
The authors are grateful to the anonymous referees for their useful comments and suggestions.
The authors declare no conflicts of interest in this paper.
[1] |
Rejeb A, Rejeb K, Treiblmaier H, et al. (2023) The Internet of Things (IoT) in healthcare: Taking stock and moving forward. Int Things 22: 100721. https://doi.org/10.1016/j.iot.2023.100721 doi: 10.1016/j.iot.2023.100721
![]() |
[2] |
Sarker IH, Khan AI, Abushark YB, et al. (2023) Internet of things (IoT) security intelligence: A comprehensive overview, machine learning solutions and research directions. Mobile Netw Appl 28: 296–312. https://doi.org/10.1007/s11036-022-01937-3 doi: 10.1007/s11036-022-01937-3
![]() |
[3] |
Davis D, Birnbaum L, Ben-Ishai P, et al. (2023) Wireless technologies, non-ionizing electromagnetic fields and children: Identifying and reducing health risks. Curr Probl Pediatr Adolesc Health Care 53: 101374. https://doi.org/10.1016/j.cppeds.2023.101374 doi: 10.1016/j.cppeds.2023.101374
![]() |
[4] |
Butt FA, Chattha JN, Ahmad J, et al. (2022) On the integration of enabling wireless technologies and sensor fusion for next-generation connected and autonomous vehicles. IEEE Access 10: 14643–14668. https://doi.org/10.1109/ACCESS.2022.3145972 doi: 10.1109/ACCESS.2022.3145972
![]() |
[5] |
Azarpour A, Mohammadzadeh O, Rezaei N, et al. (2022) Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges. Energy Convers Manage 269: 115945. https://doi.org/10.1016/j.enconman.2022.115945 doi: 10.1016/j.enconman.2022.115945
![]() |
[6] |
Hosseini SE (2020) An outlook on the global development of renewable and sustainable energy at the time of COVID-19. Energy Res Soc Sci 68: 101633. https://doi.org/10.1016/j.erss.2020.101633 doi: 10.1016/j.erss.2020.101633
![]() |
[7] |
Jaiswal KK, Chowdhury CR, Yadav D, et al. (2022) Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus 7: 100118. https://doi.org/10.1016/j.nexus.2022.100118 doi: 10.1016/j.nexus.2022.100118
![]() |
[8] |
Ngoc DD, Trung KD, Minh PV, et al. (2024) Assessing factors influencing green hydrogen conversion at Vietnam's gas turbine power plants using combined SWOT-AHP analysis method. AIMS Energy 12: 1054–1074. https://doi.org/10.3934/energy.2024050 doi: 10.3934/energy.2024050
![]() |
[9] |
Toka KA, Nougblexga Y, Amou KA (2024) Optimization of hybrid photovoltaic-thermal systems integrated into buildings: Impact of bi-fluid exchangers and filling gases on the thermal and electrical performances of solar cells. AIMS Energy 12: 1075–1095. https://doi.org/10.3934/energy.2024051 doi: 10.3934/energy.2024051
![]() |
[10] |
Larranaga A, Valor C (2022) Consumers' categorization of eco-friendly consumer goods: An integrative review and research agenda. Sustainable Prod Consum 34: 518–527. https://doi.org/10.1016/j.spc.2022.10.005 doi: 10.1016/j.spc.2022.10.005
![]() |
[11] |
Hossein M, Asha R, Bakari R, et al. (2023) Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. Chemosphere 316: 137715. https://doi.org/10.1016/j.chemosphere.2022.137715 doi: 10.1016/j.chemosphere.2022.137715
![]() |
[12] |
Bilgen SELÇ UK (2014) Structure and environmental impact of global energy consumption. Renewable Sustainable Energy Rev 38: 890–902. https://doi.org/10.1016/j.rser.2014.07.004 doi: 10.1016/j.rser.2014.07.004
![]() |
[13] |
Osman AI, Chen L, Yang M, et al. (2023) Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ Chem Lett 21: 741–764. https://doi.org/10.1007/s10311-022-01532-8 doi: 10.1007/s10311-022-01532-8
![]() |
[14] |
Wang Y, Guo T, Tian Z, et al. (2022) MXenes for energy harvesting. Adv Mater 34: 2108560. https://doi.org/10.1002/adma.202108560 doi: 10.1002/adma.202108560
![]() |
[15] |
Panda S, Hajra S, Mistewicz K, et al. (2022) Piezoelectric energy harvesting systems for biomedical applications. Nano Energy 100: 107514. https://doi.org/10.1016/j.nanoen.2022.107514 doi: 10.1016/j.nanoen.2022.107514
![]() |
[16] |
Sezer N, Koç M (2021) A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80: 105567. https://doi.org/10.1016/j.nanoen.2020.105567 doi: 10.1016/j.nanoen.2020.105567
![]() |
[17] |
Dai B, Guo J, Gao C, et al. (2023) Recent advances in efficient photocatalysis via modulation of electric and magnetic fields and reactive phase control. Adv Mater 35: 2210914. https://doi.org/10.1002/adma.202210914 doi: 10.1002/adma.202210914
![]() |
[18] |
Kamel NA (2022) Bio-piezoelectricity: fundamentals and applications in tissue engineering and regenerative medicine. Biophys Rev 14: 717–733. https://doi.org/10.1007/s12551-022- 00969-z doi: 10.1007/s12551-022-00969-z
![]() |
[19] |
Ghasemian MB, Daeneke T, Shahrbabaki Z, et al. (2020) Peculiar piezoelectricity of atomically thin planar structures. Nanoscale 12: 2875–2901. https://doi.org/10.1039/C9NR08063E doi: 10.1039/C9NR08063E
![]() |
[20] |
Gao A, Remsing RC (2022) Self-consistent determination of long-range electrostatics in neural network potentials. Nat Commun 13: 1572. https://doi.org/10.1038/s41467-022-29243-2 doi: 10.1038/s41467-022-29243-2
![]() |
[21] |
Alabugin IV, Kuhn L, Krivoshchapov NV, et al. (2021) Anomeric effect, hyperconjugation and electrostatics: Lessons from complexity in a classic stereoelectronic phenomenon. Chem Soc Rev 50: 10212–10252. https://doi.org/10.1039/D1CS00564B doi: 10.1039/D1CS00564B
![]() |
[22] |
Moya SM, Botella NB (2021) Review of techniques to reduce and prevent carbonate scale. Prospecting in water treatment by magnetism and electromagnetism. Water 13: 2365. https://doi.org/10.3390/w13172365 doi: 10.3390/w13172365
![]() |
[23] |
Córdova C, Ohmori K (2024) Quantum duality in electromagnetism and the fine structure constant. Phys Rev D 109: 105019. https://doi.org/10.1103/PhysRevD.109.105019 doi: 10.1103/PhysRevD.109.105019
![]() |
[24] |
Joo H, Lee KY, Lee JH (2022) Piezo/triboelectric effect driven self-powered gas sensor for environmental sensor networks. Energy Technol 10: 2200113. https://doi.org/10.1002/ente.202200113 doi: 10.1002/ente.202200113
![]() |
[25] |
Pan S, Zhang Z (2019) Fundamental theories and basic principles of triboelectric effect: A review. Friction 7: 2–17. https://doi.org/10.1007/s40544-018-0217-7 doi: 10.1007/s40544-018-0217-7
![]() |
[26] |
Dai B, Gao C, Guo J, et al. (2024) A robust pyro-phototronic route to markedly enhanced photocatalytic disinfection. Nano Lett 24: 4816–4825. https://doi.org/10.1021/acs.nanolett.3c05098 doi: 10.1021/acs.nanolett.3c05098
![]() |
[27] | Sa˘vescu C, Comeagă D, Morega AM, et al. (2022) Experimental tests with piezoelectric harvester for tuning resonant frequency to vibrating source. Rev Roum Sci Techn—Sexr Electrotech Energ 67: 457–460. https://orcid.org/0000-0001-9578-1222 |
[28] |
Zou Y, Gai Y, Tan P, et al. (2022) Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam Res 2: 619–628. https://doi.org/10.1016/j.fmre.2022.01.003 doi: 10.1016/j.fmre.2022.01.003
![]() |
[29] |
Shaukat H, Ali A, Bibi S, et al. (2023) A Review of the recent advances in piezoelectric materials, energy harvester structures, and their applications in analytical chemistry. Appl Sci 13: 1300. https://doi.org/10.3390/app13031300 doi: 10.3390/app13031300
![]() |
[30] | Goldsmid HJ (2018) Conversion efficiency and figure-of-merit. In: CRC Handbook of Thermoelectrics, CRC Press, 19–26. https://doi.org/10.1201/9781420049718 |
[31] |
Li C, Jiang G, Yu J, et al. (2023) Fluorination enhances NIR-Ⅱ emission and photothermal conversion efficiency of phototheranostic agents for imaging-guided cancer therapy. Adv Mater 35: 2208229. https://doi.org/10.1002/adma.202208229 doi: 10.1002/adma.202208229
![]() |
[32] |
Peng Y, Zhang L, Li Z, et al. (2023) Influences of wire diameters on output power in electromagnetic energy harvester. Int J Precis Eng Manuf Green Tech 10: 205–216. https://doi.org/10.1007/s40684-022-00446-8 doi: 10.1007/s40684-022-00446-8
![]() |
[33] |
Cai C, Saeedifard M, Wang J, et al. (2022) A cost-effective segmented dynamic wireless charging system with stable efficiency and output power. IEEE Trans Power Electron 37: 8682–8700. https://doi.org/10.1109/TPEL.2022.3143128 doi: 10.1109/TPEL.2022.3143128
![]() |
[34] |
Logeshwaran J, Ramkumar M, Kiruthiga T, et al. (2022) The role of integrated structured cabling system (ISCS) for reliable bandwidth optimization in high-speed communication network. ICTACT J Commun Technol 13: 2635–2639. https://doi.org/10.21917/ijct.2022.0389 doi: 10.21917/ijct.2022.0389
![]() |
[35] |
Ansari S, Zhang J, Singh RE, et al. (2022) A review of stabilization methods for DCMG with CPL, the role of bandwidth limits and droop control. Protect Control Mod Power Syst 7: 1–12. https://doi.org/10.1186/s41601-021-00222-x doi: 10.1186/s41601-021-00222-x
![]() |
[36] | Li H, Tian C, Deng ZD (2014) Energy harvesting from low frequency applications using piezoelectric materials. Appl Phys Rev 1: 041301. https://doi.org/10.1063/1.4900845 |
[37] |
Han HS, Duong TA, Ahn CW, et al. (2023) A brief review on piezoelectrics-based paint sensors. J Korean Inst Electr Electron Mater Eng 36: 433–441. https://doi.org/10.4313/JKEM.2023.36.5.2 doi: 10.4313/JKEM.2023.36.5.2
![]() |
[38] |
Maurya D, Kumar P, Khaleghian S, et al. (2018) Energy harvesting and strain sensing in smart tire for next generation autonomous vehicles. Appl Energy 232: 312–322. https://doi.org/10.1016/j.apenergy.2018.09.183 doi: 10.1016/j.apenergy.2018.09.183
![]() |
[39] |
Rupp CJ, Evgrafov A, Maute K, et al. (2009) Design of piezoelectric energy harvesting systems: A topology optimization approach based on multilayer plates and shells. J Intell Mater Syst Struct 20: 1923–1939. https://doi.org/10.1177/1045389X09341200 doi: 10.1177/1045389X09341200
![]() |
[40] |
Lefeuvre E, Badel A, Richard C, et al. (2006) A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens Actuators A Phys 126: 405–416. https://doi.org/10.1016/j.sna.2005.10.043 doi: 10.1016/j.sna.2005.10.043
![]() |
[41] |
Song J, Sun G, Zeng X, et al. (2022) Piezoelectric energy harvester with double cantilever beam undergoing coupled bending-torsion vibrations by width-splitting method. Sci Rep 12: 583. https://doi.org/10.1038/s41598-021-04476-1 doi: 10.1038/s41598-021-04476-1
![]() |
[42] |
Baek C, Wang JE, Ryu S, et al. (2017) Facile hydrothermal synthesis of BaZrxTi1−xO3 nanoparticles and their application to a lead-free nanocomposite generator. RSC Adv 7: 2851–2856. https://doi.org/10.1039/C6RA26285F doi: 10.1039/C6RA26285F
![]() |
[43] |
Han JH, Park KI, Jeong CK (2019) Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19: 1444. https://doi.org/10.3390/s19061444 doi: 10.3390/s19061444
![]() |
[44] |
Lee J, Kim S, Oh J, et al. (2012) A self-powering system based on tire deformation during driving. Int J Automot Technol 13: 963–969. https://doi.org/10.1007/s1223901200980 doi: 10.1007/s1223901200980
![]() |
[45] | Baker J, Roundy S, Wright P (2005) Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In: 3rd International Energy Conversion Engineering Conference, 5617. https://doi.org/10.2514/6.2005-5617 |
[46] | Sterken T, Baert K, Van Hoof C, et al. (2004) Comparative modelling for vibration scavengers[MEMS energy scavengers]. Sensors 2004 IEEE, Vienna, Austria, 1249–1252. https://doi.org/10.1109/ICSENS.2004.1426407 |
[47] |
Wang R, Tang E, Yang G, et al. (2020) Experimental research on dynamic response of PZT-5H under impact load. Ceram Int 46: 2868–2876. https://doi.org/10.1016/j.ceramint.2019.09.280 doi: 10.1016/j.ceramint.2019.09.280
![]() |
[48] | Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17: R175. https://doi.org/10.1088/0957-0233/17/12/R01 |
[49] |
Li P, Wen Y, Liu P, et al. (2010) A magnetoelectric energy harvester and management circuit for wireless sensor network. Sens Actuators A Phys 157: 100–106. https://doi.org/10.1016/j.sna.2009.11.007 doi: 10.1016/j.sna.2009.11.007
![]() |
[50] |
Sriphan S, Vittayakorn N (2022) Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J Sci Adv Mater Devices 7: 100461. https://doi.org/10.1016/j.jsamd.2022.100461 doi: 10.1016/j.jsamd.2022.100461
![]() |
[51] |
Liu Y, Tian G, Wang Y, et al. (2009) Active piezoelectric energy harvesting: General principle and experimental demonstration. J Intell Mater Syst Struct 20: 575–585. https://doi.org/10.1177/1045389X08098195 doi: 10.1177/1045389X08098195
![]() |
[52] |
Allamraju KV, Srikanth K (2016) Design and experimental study of novel piezoelectric vibration energy impact mass harvester. Proc Eng 144: 560–567. https://doi.org/10.1016/j.proeng.2016.05.042 doi: 10.1016/j.proeng.2016.05.042
![]() |
[53] | Fu H, Yeatman EM (2017) Broadband rotational energy harvesting using bistable mechanism and frequency up-conversion. In: 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 853–856. https://doi.org/10.1109/MEMSYS.2017.7863542 |
[54] |
Fairuz WNM, Nawi IM, Ahmad MR, et al. (2024) Design analysis and simulation of serpentine-shaped piezoelectric cantilever beam for pipeline vibration-based energy harvester. AIMS Energy 12: 561–599. https://doi.org/10.3934/energy.2024027 doi: 10.3934/energy.2024027
![]() |
[55] | Jiang Y, Shiono S, Hamada H, et al. (2010) Low-frequency energy harvesting using a laminated PVDF cantilever with a magnetic mass. Power MEMS 30: 375–378. |
[56] |
Xu Q, Gao A, Li Y, et al. (2022) Design and optimization of piezoelectric cantilever beam vibration energy harvester. Micromachines 13: 675. https://doi.org/10.3390/mi13050675 doi: 10.3390/mi13050675
![]() |
[57] | Kwon SD (2010) A T-shaped piezoelectric cantilever for fluid energy harvesting. Appl Phys Lett, 97. https://doi.org/10.1063/1.3503609 |
[58] |
Xiong C, Wu N, He Y, et al. (2023) Nonlinear energy harvesting by piezoelectric bionic 'M' shape generating beam featured in reducing stress concentration. Micromachines 14: 1007. https://doi.org/10.3390/mi14051007 doi: 10.3390/mi14051007
![]() |
[59] |
Derakhshani M, Momenzadeh N, Berfield TA (2021) Analytical and experimental study of a clamped-clamped, bistable buckled beam low-frequency PVDF vibration energy harvester. J Sound Vib 497: 115937. https://doi.org/10.1016/j.jsv.2021.115937 doi: 10.1016/j.jsv.2021.115937
![]() |
1. | Azmy S. Ackleh, Nicolas Saintier, Well-posedness of a system of transport and diffusion equations in space of measures, 2020, 492, 0022247X, 124397, 10.1016/j.jmaa.2020.124397 | |
2. | Azmy S. Ackleh, Robert L. Miller, Second-order finite difference approximation for a nonlinear size-structured population model with an indefinite growth rate coupled with the environment, 2021, 58, 0008-0624, 10.1007/s10092-021-00420-x | |
3. | Agnieszka Bartłomiejczyk, Henryk Leszczyński, Milena Matusik, Straightened characteristics of McKendrick-von Foerster equation, 2022, 340, 00220396, 592, 10.1016/j.jde.2022.09.018 | |
4. | Azmy S. Ackleh, Rainey Lyons, Nicolas Saintier, A structured coagulation-fragmentation equation in the space of radon measures: Unifying discrete and continuous models, 2021, 55, 0764-583X, 2473, 10.1051/m2an/2021061 | |
5. | Piotr Gwiazda, Błażej Miasojedow, Jakub Skrzeczkowski, Zuzanna Szymańska, Convergence of the EBT method for a non-local model of cell proliferation with discontinuous interaction kernel, 2023, 43, 0272-4979, 590, 10.1093/imanum/drab102 | |
6. | Azmy S Ackleh, Rainey Lyons, Nicolas Saintier, Finite difference schemes for a size structured coagulation-fragmentation model in the space of Radon measures, 2022, 0272-4979, 10.1093/imanum/drac071 | |
7. | Carlo Bianca, Nicolas Saintier, Thermostatted kinetic theory in measure spaces: Well-posedness, 2025, 251, 0362546X, 113666, 10.1016/j.na.2024.113666 |
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |
Inputs | Intermediates | Outputs | |||
x1 | Operational costs | z1 | Checking deposits | y1 | Return on assets |
x2 | Capital costs | z2 | Saving deposits | y2 | Earnings quality |
x3 | Financing costs | z3 | The number of customers | y3 | Interest income |
x1 | x2 | x3 | y1 | ||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | |||
1 | 0.47 | 0.84 | 0.66 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.22 | 0.24 | 0.23 | |||
2 | 0.74 | 0.53 | 0.64 | 0.67 | 0.67 | 0.78 | 0.90 | 0.75 | 0.71 | 0.13 | 0.41 | 0.27 | |||
3 | 0.58 | 0.69 | 0.63 | 1.00 | 0.73 | 0.78 | 0.82 | 0.50 | 0.75 | 0.77 | 0.07 | 0.42 | |||
4 | 0.70 | 0.57 | 0.63 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.89 | 0.06 | 0.47 | |||
5 | 0.77 | 0.52 | 0.64 | 1.00 | 1.00 | 0.80 | 0.60 | 0.50 | 0.75 | 0.58 | 0.09 | 0.34 | |||
6 | 0.60 | 0.66 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.69 | 0.08 | 0.38 | |||
7 | 0.40 | 1.00 | 0.70 | 0.50 | 0.75 | 0.78 | 0.80 | 1.00 | 0.75 | 0.13 | 0.39 | 0.26 | |||
8 | 0.59 | 0.68 | 0.63 | 0.67 | 0.69 | 0.78 | 0.87 | 0.75 | 0.71 | 0.38 | 0.14 | 0.26 | |||
9 | 0.60 | 0.67 | 0.63 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.11 | 0.45 | 0.28 | |||
10 | 0.44 | 0.91 | 0.67 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 0.06 | 0.90 | 0.48 | |||
11 | 0.57 | 0.69 | 0.63 | 0.67 | 0.82 | 0.78 | 0.73 | 0.75 | 0.71 | 0.15 | 0.35 | 0.25 | |||
12 | 1.00 | 0.40 | 0.70 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.86 | 0.06 | 0.46 | |||
13 | 0.62 | 0.64 | 0.63 | 0.67 | 0.78 | 0.78 | 0.77 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
14 | 0.65 | 0.61 | 0.63 | 0.83 | 0.60 | 0.80 | 1.00 | 0.60 | 0.72 | 0.10 | 0.54 | 0.32 | |||
15 | 0.72 | 0.55 | 0.64 | 0.83 | 0.77 | 0.78 | 0.78 | 0.60 | 0.72 | 0.71 | 0.07 | 0.39 | |||
16 | 0.78 | 0.51 | 0.65 | 0.83 | 0.69 | 0.78 | 0.87 | 0.60 | 0.72 | 0.05 | 1.00 | 0.53 | |||
17 | 0.81 | 0.49 | 0.65 | 0.67 | 0.75 | 0.78 | 0.80 | 0.75 | 0.71 | 1.00 | 0.05 | 0.53 | |||
18 | 0.64 | 0.62 | 0.63 | 0.67 | 0.86 | 0.78 | 0.70 | 0.75 | 0.71 | 0.35 | 0.15 | 0.25 | |||
19 | 0.47 | 0.84 | 0.66 | 0.83 | 0.72 | 0.78 | 0.83 | 0.60 | 0.72 | 0.10 | 0.49 | 0.30 | |||
20 | 0.76 | 0.52 | 0.64 | 0.83 | 0.75 | 0.78 | 0.80 | 0.60 | 0.72 | 0.31 | 0.17 | 0.24 |
y2 | y3 | z1 | z2 | z3 | |||||||||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||||
1 | 0.50 | 0.71 | 0.60 | 0.37 | 0.78 | 0.58 | 0.47 | 0.68 | 0.57 | 0.36 | 0.57 | 0.47 | 1.00 | 0.63 | 0.82 | ||||
2 | 0.73 | 0.48 | 0.61 | 0.33 | 0.88 | 0.61 | 0.34 | 0.92 | 0.63 | 0.33 | 0.63 | 0.48 | 0.90 | 0.71 | 0.80 | ||||
3 | 0.51 | 0.69 | 0.60 | 0.58 | 0.50 | 0.54 | 0.62 | 0.51 | 0.56 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
4 | 0.52 | 0.68 | 0.60 | 0.64 | 0.46 | 0.55 | 0.71 | 0.44 | 0.58 | 0.41 | 0.50 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
5 | 0.74 | 0.48 | 0.61 | 1.00 | 0.29 | 0.65 | 0.90 | 0.35 | 0.63 | 0.52 | 0.40 | 0.46 | 0.84 | 0.75 | 0.80 | ||||
6 | 0.61 | 0.58 | 0.59 | 0.68 | 0.43 | 0.55 | 0.58 | 0.54 | 0.56 | 0.21 | 1.00 | 0.60 | 0.87 | 0.73 | 0.80 | ||||
7 | 0.35 | 1.00 | 0.68 | 0.29 | 1.00 | 0.65 | 0.32 | 1.00 | 0.66 | 0.29 | 0.71 | 0.50 | 0.74 | 0.86 | 0.80 | ||||
8 | 0.62 | 0.57 | 0.59 | 0.87 | 0.34 | 0.60 | 0.83 | 0.38 | 0.60 | 0.27 | 0.76 | 0.51 | 0.63 | 1.00 | 0.82 | ||||
9 | 0.60 | 0.58 | 0.59 | 0.43 | 0.68 | 0.56 | 0.51 | 0.61 | 0.56 | 0.46 | 0.45 | 0.45 | 0.90 | 0.71 | 0.80 | ||||
10 | 0.55 | 0.64 | 0.59 | 0.43 | 0.67 | 0.55 | 0.48 | 0.66 | 0.57 | 0.38 | 0.55 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
11 | 0.59 | 0.60 | 0.59 | 0.55 | 0.54 | 0.54 | 0.55 | 0.57 | 0.56 | 0.34 | 0.61 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
12 | 1.00 | 0.35 | 0.68 | 0.68 | 0.43 | 0.56 | 0.76 | 0.41 | 0.59 | 0.77 | 0.27 | 0.52 | 0.95 | 0.67 | 0.81 | ||||
13 | 0.64 | 0.55 | 0.60 | 0.49 | 0.60 | 0.54 | 0.59 | 0.54 | 0.56 | 0.39 | 0.53 | 0.46 | 0.90 | 0.71 | 0.80 | ||||
14 | 0.86 | 0.41 | 0.63 | 0.62 | 0.47 | 0.55 | 0.75 | 0.42 | 0.58 | 0.30 | 0.69 | 0.49 | 0.84 | 0.75 | 0.80 | ||||
15 | 0.68 | 0.52 | 0.60 | 0.89 | 0.33 | 0.61 | 1.00 | 0.32 | 0.66 | 0.28 | 0.74 | 0.51 | 0.79 | 0.80 | 0.80 | ||||
16 | 0.79 | 0.45 | 0.62 | 0.42 | 0.70 | 0.56 | 0.59 | 0.53 | 0.56 | 0.30 | 0.70 | 0.50 | 1.00 | 0.63 | 0.82 | ||||
17 | 0.73 | 0.48 | 0.61 | 0.49 | 0.60 | 0.54 | 0.56 | 0.57 | 0.56 | 0.61 | 0.33 | 0.47 | 0.95 | 0.67 | 0.81 | ||||
18 | 0.65 | 0.54 | 0.60 | 0.64 | 0.46 | 0.55 | 0.60 | 0.52 | 0.56 | 0.49 | 0.42 | 0.45 | 0.76 | 0.83 | 0.80 | ||||
19 | 0.52 | 0.68 | 0.60 | 0.35 | 0.83 | 0.59 | 0.44 | 0.72 | 0.58 | 0.24 | 0.87 | 0.55 | 0.68 | 0.92 | 0.80 | ||||
20 | 0.79 | 0.45 | 0.62 | 0.56 | 0.53 | 0.54 | 0.64 | 0.49 | 0.57 | 1.00 | 0.21 | 0.60 | 0.74 | 0.86 | 0.80 |
Leader | Follower | Centralized | |||||||||
DMUs | s1 | s2 | s3 | s1 | s2 | s3 | s1 | s2 | s3 | ||
1 | 0.595 | 0.761 | 0.846 | 0.778 | 0.763 | 0.774 | 0.500 | 0.671 | 0.762 | ||
2 | 0.521 | 0.655 | 0.746 | 0.700 | 0.756 | 0.779 | 0.375 | 0.497 | 0.581 | ||
3 | 1.000 | 1.000 | 1.000 | 0.724 | 0.814 | 0.860 | 0.749 | 0.831 | 0.873 | ||
4 | 0.822 | 0.903 | 0.938 | 0.489 | 0.561 | 0.624 | 0.564 | 0.700 | 0.767 | ||
5 | 1.000 | 1.000 | 1.000 | 0.554 | 0.680 | 0.743 | 0.562 | 0.684 | 0.755 | ||
6 | 0.627 | 0.726 | 0.784 | 0.657 | 0.775 | 0.811 | 0.461 | 0.600 | 0.679 | ||
7 | 0.650 | 0.720 | 0.767 | 1.000 | 1.000 | 1.000 | 0.708 | 0.791 | 0.836 | ||
8 | 1.000 | 1.000 | 1.000 | 0.426 | 0.536 | 0.612 | 0.426 | 0.536 | 0.612 | ||
9 | 1.000 | 1.000 | 1.000 | 0.778 | 0.789 | 0.802 | 0.778 | 0.792 | 0.807 | ||
10 | 0.447 | 0.575 | 0.655 | 0.984 | 0.988 | 0.992 | 0.439 | 0.568 | 0.649 | ||
11 | 1.000 | 1.000 | 1.000 | 0.644 | 0.737 | 0.790 | 0.644 | 0.737 | 0.790 | ||
12 | 0.475 | 0.618 | 0.700 | 0.934 | 0.965 | 0.970 | 0.445 | 0.603 | 0.690 | ||
13 | 1.000 | 1.000 | 1.000 | 0.369 | 0.503 | 0.590 | 0.383 | 0.512 | 0.597 | ||
14 | 1.000 | 1.000 | 1.000 | 0.625 | 0.723 | 0.776 | 0.757 | 0.875 | 0.924 | ||
15 | 0.541 | 0.615 | 0.675 | 0.995 | 0.987 | 0.986 | 0.704 | 0.767 | 0.810 | ||
16 | 1.000 | 1.000 | 1.000 | 0.580 | 0.672 | 0.731 | 0.645 | 0.723 | 0.772 | ||
17 | 1.000 | 1.000 | 1.000 | 0.631 | 0.715 | 0.767 | 0.750 | 0.868 | 0.918 | ||
18 | 0.187 | 0.307 | 0.397 | 1.000 | 0.999 | 0.998 | 0.365 | 0.508 | 0.598 | ||
19 | 1.000 | 1.000 | 0.987 | 1.000 | 0.975 | 0.872 | 1.000 | 0.975 | 0.951 | ||
20 | 0.464 | 0.590 | 0.667 | 1.000 | 1.000 | 1.000 | 0.538 | 0.666 | 0.741 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.6 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.415 | 0.406 | 0.396 | 0.386 | 0.376 | 0.366 | 0.356 | 0.346 | 0.336 | 0.326 |
2 | 0.370 | 0.361 | 0.352 | 0.344 | 0.335 | 0.326 | 0.317 | 0.308 | 0.300 | 0.291 |
3 | 0.525 | 0.512 | 0.500 | 0.487 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.412 |
4 | 0.454 | 0.452 | 0.441 | 0.430 | 0.419 | 0.408 | 0.397 | 0.386 | 0.375 | 0.364 |
5 | 0.510 | 0.498 | 0.486 | 0.474 | 0.461 | 0.449 | 0.437 | 0.425 | 0.413 | 0.401 |
6 | 0.453 | 0.442 | 0.431 | 0.421 | 0.410 | 0.399 | 0.388 | 0.377 | 0.367 | 0.356 |
7 | 0.462 | 0.434 | 0.434 | 0.429 | 0.418 | 0.407 | 0.396 | 0.385 | 0.374 | 0.363 |
8 | 0.546 | 0.533 | 0.520 | 0.507 | 0.494 | 0.482 | 0.470 | 0.459 | 0.448 | 0.436 |
9 | 0.420 | 0.410 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
10 | 0.351 | 0.342 | 0.334 | 0.326 | 0.317 | 0.309 | 0.301 | 0.292 | 0.284 | 0.275 |
11 | 0.525 | 0.513 | 0.500 | 0.488 | 0.475 | 0.463 | 0.450 | 0.438 | 0.425 | 0.413 |
12 | 0.377 | 0.368 | 0.359 | 0.350 | 0.341 | 0.332 | 0.322 | 0.313 | 0.303 | 0.294 |
13 | 0.536 | 0.523 | 0.411 | 0.411 | 0.411 | 0.468 | 0.454 | 0.441 | 0.427 | 0.413 |
14 | 0.577 | 0.564 | 0.400 | 0.390 | 0.380 | 0.370 | 0.360 | 0.350 | 0.340 | 0.330 |
15 | 0.326 | 0.318 | 0.310 | 0.302 | 0.295 | 0.287 | 0.279 | 0.271 | 0.264 | 0.256 |
16 | INF | INF | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.438 | 0.425 | 0.412 |
17 | 0.525 | 0.512 | 0.500 | 0.488 | 0.475 | 0.462 | 0.450 | 0.437 | 0.425 | 0.413 |
18 | INF | 0.262 | 0.256 | 0.250 | 0.242 | 0.236 | 0.229 | 0.225 | 0.217 | 0.211 |
19 | INF | 0.353 | 0.353 | 0.376 | 0.353 | 0.353 | 0.349 | 0.336 | 0.356 | 0.356 |
20 | 0.350 | 0.342 | 0.333 | 0.320 | 0.315 | 0.306 | 0.296 | 0.313 | 0.472 | 0.472 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.317 | 0.307 | 0.297 | 0.287 | 0.277 | 0.271 | 0.257 | 0.257 | 0.257 | 0.257 |
2 | 0.282 | 0.273 | 0.264 | 0.255 | 0.247 | 0.238 | 0.228 | 0.228 | 0.229 | 0.229 |
3 | 0.400 | 0.387 | 0.375 | 0.362 | 0.350 | 0.337 | 0.325 | 0.325 | 0.324 | 0.324 |
4 | 0.353 | 0.342 | 0.331 | 0.320 | 0.309 | 0.298 | 0.286 | 0.286 | 0.286 | 0.286 |
5 | 0.389 | 0.376 | 0.364 | 0.352 | 0.340 | 0.328 | 0.317 | 0.316 | 0.316 | 0.316 |
6 | 0.345 | 0.334 | 0.324 | 0.313 | 0.302 | 0.291 | 0.281 | 0.281 | 0.280 | 0.280 |
7 | 0.352 | 0.341 | 0.330 | 0.319 | 0.308 | 0.297 | 0.286 | 0.286 | 0.286 | 0.286 |
8 | 0.425 | 0.414 | 0.402 | 0.391 | 0.380 | 0.368 | 0.363 | 0.359 | 0.357 | 0.357 |
9 | 0.320 | 0.310 | 0.300 | 0.290 | 0.280 | 0.270 | 0.262 | 0.261 | 0.260 | 0.260 |
10 | 0.267 | 0.259 | 0.250 | 0.242 | 0.234 | 0.225 | 0.217 | 0.217 | 0.217 | 0.217 |
11 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.326 | 0.326 | 0.325 | 0.325 |
12 | 0.285 | 0.275 | 0.266 | 0.257 | 0.247 | 0.238 | 0.234 | 0.228 | 0.228 | 0.228 |
13 | 0.400 | 0.386 | 0.372 | 0.359 | 0.345 | 0.331 | 0.318 | 0.318 | 0.318 | 0.318 |
14 | 0.440 | 0.426 | 0.412 | 0.399 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 | 0.306 |
15 | 0.404 | 0.391 | 0.378 | 0.366 | 0.353 | 0.340 | 0.329 | 0.328 | 0.328 | 0.328 |
16 | 0.400 | 0.388 | 0.375 | 0.363 | 0.350 | 0.338 | 0.325 | 0.325 | 0.325 | 0.325 |
17 | 0.400 | 0.388 | 0.375 | 0.363 | 0.417 | 0.338 | 0.337 | 0.328 | 0.325 | 0.325 |
18 | 0.205 | 0.199 | 0.193 | 0.187 | 0.180 | 0.174 | 0.167 | 0.167 | 0.167 | 0.167 |
19 | 0.305 | 0.294 | 0.285 | 0.277 | 0.268 | 0.401 | 0.389 | 0.389 | 0.389 | 0.389 |
20 | 0.294 | 0.287 | 0.280 | 0.265 | 0.267 | 0.255 | 0.246 | 0.244 | 0.243 | 0.243 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.229 | 0.222 | 0.216 | 0.209 | 0.202 | 0.196 | 0.190 | 0.185 | 0.180 | 0.174 |
2 | 0.232 | 0.227 | 0.221 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 | 0.182 |
3 | 0.227 | 0.222 | 0.216 | 0.211 | 0.206 | 0.200 | 0.195 | 0.189 | 0.183 | 0.178 |
4 | INF | INF | INF | 0.144 | 0.141 | 0.137 | 0.139 | 0.140 | 0.136 | 0.131 |
5 | 0.346 | 0.340 | 0.333 | 0.327 | 0.320 | 0.314 | 0.263 | 0.256 | 0.248 | 0.288 |
6 | 0.266 | 0.246 | 0.256 | 0.242 | 0.244 | 0.222 | 0.216 | 0.210 | 0.204 | 0.211 |
7 | 0.294 | 0.287 | 0.280 | 0.273 | 0.266 | 0.296 | 0.256 | 0.245 | 0.238 | 0.384 |
8 | 0.299 | 0.298 | 0.291 | 0.285 | 0.278 | 0.271 | 0.264 | 0.258 | 0.251 | 0.244 |
9 | 0.450 | 0.439 | 0.428 | 0.417 | 0.421 | 0.417 | 0.412 | 0.408 | 0.411 | 0.405 |
10 | 0.352 | 0.245 | 0.352 | 0.259 | 0.230 | 0.289 | 0.215 | 0.380 | 0.344 | 0.260 |
11 | 0.361 | 0.353 | 0.345 | 0.336 | 0.327 | 0.319 | 0.310 | 0.302 | 0.293 | 0.285 |
12 | 0.528 | 0.405 | 0.521 | 0.521 | 0.359 | 0.359 | 0.365 | 0.359 | 0.359 | 0.359 |
13 | INF | 0.197 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 | 0.164 | 0.159 |
14 | 0.387 | 0.378 | 0.369 | 0.427 | 0.355 | 0.358 | 0.350 | 0.341 | 0.332 | 0.312 |
15 | 0.454 | 0.444 | 0.433 | 0.513 | 0.412 | 0.405 | 0.393 | 0.382 | 0.372 | 0.361 |
16 | 0.303 | 0.296 | 0.289 | 0.282 | 0.275 | 0.267 | 0.260 | 0.253 | 0.246 | 0.277 |
17 | 0.405 | 0.387 | 0.378 | 0.377 | 0.358 | 0.365 | 0.339 | 0.329 | 0.319 | 0.310 |
18 | 0.466 | 0.430 | 0.427 | 0.542 | 0.432 | 0.564 | 0.380 | 0.385 | 0.352 | 0.346 |
19 | 0.471 | 0.467 | 0.467 | 0.499 | 0.462 | 0.450 | 0.438 | 0.458 | 0.414 | 0.401 |
20 | 0.270 | 0.406 | 0.406 | 0.399 | 0.481 | 0.332 | 0.332 | 0.486 | 0.350 | 0.358 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 | 0.169 |
2 | 0.177 | 0.213 | 0.208 | 0.160 | 0.185 | 0.194 | 0.189 | 0.189 | 0.189 | 0.189 |
3 | 0.172 | 0.166 | 0.161 | 0.155 | 0.150 | 0.149 | 0.147 | 0.143 | 0.143 | 0.143 |
4 | 0.126 | 0.121 | 0.117 | 0.112 | 0.108 | 0.103 | 0.099 | 0.099 | 0.099 | 0.099 |
5 | 0.234 | 0.226 | 0.259 | 0.253 | 0.204 | 0.197 | 0.190 | 0.190 | 0.190 | 0.190 |
6 | 0.192 | 0.186 | 0.196 | 0.174 | 0.168 | 0.162 | 0.157 | 0.157 | 0.157 | 0.157 |
7 | 0.256 | 0.256 | 0.382 | 0.260 | 0.257 | 0.254 | 0.249 | 0.249 | 0.249 | 0.249 |
8 | 0.237 | 0.231 | 0.224 | 0.217 | 0.210 | 0.202 | 0.197 | 0.195 | 0.195 | 0.195 |
9 | 0.405 | 0.382 | 0.380 | 0.417 | 0.329 | 0.358 | 0.359 | 0.358 | 0.357 | 0.357 |
10 | 0.260 | 0.421 | 0.258 | 0.427 | 0.260 | 0.268 | 0.364 | 0.363 | 0.363 | 0.363 |
11 | 0.276 | 0.267 | 0.259 | 0.250 | 0.241 | 0.232 | 0.223 | 0.224 | 0.223 | 0.223 |
12 | 0.359 | 0.359 | 0.362 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 | 0.359 |
13 | 0.154 | 0.153 | 0.144 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 | 0.152 |
14 | 0.315 | 0.293 | 0.285 | 0.284 | 0.276 | 0.268 | 0.263 | 0.260 | 0.257 | 0.256 |
15 | 0.349 | 0.341 | 0.332 | 0.330 | 0.322 | 0.314 | 0.306 | 0.306 | 0.305 | 0.305 |
16 | 0.231 | 0.260 | 0.267 | 0.258 | 0.249 | 0.226 | 0.219 | 0.219 | 0.218 | 0.218 |
17 | 0.304 | 0.307 | 0.293 | 0.284 | 0.275 | 0.274 | 0.269 | 0.264 | 0.261 | 0.260 |
18 | 0.351 | 0.379 | 0.355 | 0.347 | 0.355 | 0.310 | 0.304 | 0.305 | 0.304 | 0.304 |
19 | 0.389 | 0.377 | 0.415 | 0.358 | 0.377 | 0.365 | 0.356 | 0.356 | 0.356 | 0.356 |
20 | 0.350 | 0.350 | 0.626 | 0.558 | 0.553 | 0.543 | 0.540 | 0.537 | 0.534 | 0.534 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.095 | 0.090 | 0.086 | 0.081 | 0.076 | 0.072 | 0.068 | 0.064 | 0.060 | 0.057 |
2 | 0.086 | 0.082 | 0.078 | 0.074 | 0.070 | 0.067 | 0.063 | 0.059 | 0.056 | 0.053 |
3 | 0.119 | 0.114 | 0.108 | 0.103 | 0.098 | 0.092 | 0.088 | 0.083 | 0.078 | 0.073 |
4 | INF | INF | INF | 0.062 | 0.059 | 0.056 | 0.055 | 0.054 | 0.051 | 0.048 |
5 | 0.176 | 0.169 | 0.162 | 0.155 | 0.148 | 0.141 | 0.115 | 0.109 | 0.102 | 0.115 |
6 | 0.120 | 0.109 | 0.110 | 0.102 | 0.100 | 0.089 | 0.084 | 0.079 | 0.075 | 0.075 |
7 | 0.136 | 0.125 | 0.122 | 0.117 | 0.111 | 0.120 | 0.101 | 0.094 | 0.089 | 0.139 |
8 | 0.163 | 0.159 | 0.151 | 0.144 | 0.137 | 0.131 | 0.124 | 0.118 | 0.112 | 0.106 |
9 | 0.189 | 0.180 | 0.171 | 0.163 | 0.160 | 0.154 | 0.148 | 0.143 | 0.140 | 0.134 |
10 | 0.124 | 0.084 | 0.118 | 0.084 | 0.073 | 0.089 | 0.065 | 0.111 | 0.098 | 0.072 |
11 | 0.190 | 0.181 | 0.173 | 0.164 | 0.155 | 0.148 | 0.140 | 0.132 | 0.125 | 0.118 |
12 | 0.199 | 0.149 | 0.187 | 0.182 | 0.122 | 0.119 | 0.118 | 0.112 | 0.109 | 0.106 |
13 | INF | 0.103 | 0.079 | 0.077 | 0.075 | 0.083 | 0.079 | 0.074 | 0.070 | 0.066 |
14 | 0.223 | 0.213 | 0.148 | 0.167 | 0.135 | 0.132 | 0.126 | 0.119 | 0.113 | 0.103 |
15 | 0.148 | 0.141 | 0.134 | 0.155 | 0.122 | 0.116 | 0.110 | 0.104 | 0.098 | 0.092 |
16 | INF | INF | 0.145 | 0.138 | 0.131 | 0.123 | 0.117 | 0.111 | 0.105 | 0.114 |
17 | 0.213 | 0.198 | 0.189 | 0.184 | 0.170 | 0.169 | 0.153 | 0.144 | 0.136 | 0.128 |
18 | INF | 0.113 | 0.109 | 0.136 | 0.105 | 0.133 | 0.087 | 0.087 | 0.076 | 0.073 |
19 | INF | 0.165 | 0.165 | 0.188 | 0.163 | 0.159 | 0.153 | 0.154 | 0.147 | 0.143 |
20 | 0.095 | 0.139 | 0.135 | 0.128 | 0.152 | 0.102 | 0.098 | 0.152 | 0.165 | 0.169 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.054 | 0.052 | 0.050 | 0.049 | 0.047 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
2 | 0.050 | 0.058 | 0.055 | 0.041 | 0.046 | 0.046 | 0.043 | 0.043 | 0.043 | 0.043 |
3 | 0.069 | 0.064 | 0.060 | 0.056 | 0.053 | 0.050 | 0.048 | 0.046 | 0.046 | 0.046 |
4 | 0.044 | 0.041 | 0.039 | 0.036 | 0.033 | 0.031 | 0.028 | 0.028 | 0.028 | 0.028 |
5 | 0.091 | 0.085 | 0.094 | 0.089 | 0.069 | 0.065 | 0.060 | 0.060 | 0.060 | 0.060 |
6 | 0.066 | 0.062 | 0.064 | 0.054 | 0.051 | 0.047 | 0.044 | 0.044 | 0.044 | 0.044 |
7 | 0.090 | 0.087 | 0.126 | 0.083 | 0.079 | 0.075 | 0.071 | 0.071 | 0.071 | 0.071 |
8 | 0.101 | 0.096 | 0.090 | 0.085 | 0.080 | 0.074 | 0.072 | 0.070 | 0.070 | 0.070 |
9 | 0.130 | 0.118 | 0.114 | 0.121 | 0.092 | 0.097 | 0.094 | 0.093 | 0.093 | 0.093 |
10 | 0.069 | 0.109 | 0.065 | 0.103 | 0.061 | 0.060 | 0.079 | 0.079 | 0.079 | 0.079 |
11 | 0.110 | 0.104 | 0.097 | 0.091 | 0.084 | 0.078 | 0.073 | 0.073 | 0.072 | 0.072 |
12 | 0.102 | 0.099 | 0.096 | 0.092 | 0.089 | 0.085 | 0.084 | 0.082 | 0.082 | 0.082 |
13 | 0.062 | 0.059 | 0.054 | 0.055 | 0.052 | 0.050 | 0.048 | 0.048 | 0.048 | 0.048 |
14 | 0.139 | 0.125 | 0.117 | 0.113 | 0.084 | 0.082 | 0.080 | 0.080 | 0.079 | 0.078 |
15 | 0.141 | 0.133 | 0.125 | 0.121 | 0.114 | 0.107 | 0.101 | 0.100 | 0.100 | 0.100 |
16 | 0.092 | 0.101 | 0.100 | 0.094 | 0.087 | 0.076 | 0.071 | 0.071 | 0.071 | 0.071 |
17 | 0.122 | 0.119 | 0.110 | 0.103 | 0.115 | 0.093 | 0.091 | 0.087 | 0.085 | 0.085 |
18 | 0.072 | 0.075 | 0.069 | 0.065 | 0.064 | 0.054 | 0.051 | 0.051 | 0.051 | 0.051 |
19 | 0.119 | 0.111 | 0.118 | 0.099 | 0.101 | 0.146 | 0.138 | 0.138 | 0.138 | 0.138 |
20 | 0.103 | 0.100 | 0.175 | 0.148 | 0.161 | 0.138 | 0.133 | 0.131 | 0.130 | 0.130 |
P-value | 0.55 | 0.56 | 0.57 | 0.58 | 0.59 | 0.60 | 0.61 | 0.62 | 0.63 | 0.64 |
DMUs | ||||||||||
1 | 0.282 | 0.275 | 0.269 | 0.262 | 0.255 | 0.248 | 0.242 | 0.235 | 0.228 | 0.222 |
2 | INF | 0.205 | 0.199 | 0.194 | 0.189 | 0.184 | 0.179 | 0.174 | 0.170 | 0.165 |
3 | 0.383 | 0.374 | 0.365 | 0.355 | 0.346 | 0.337 | 0.327 | 0.318 | 0.309 | 0.300 |
4 | 0.308 | 0.301 | 0.294 | 0.286 | 0.279 | 0.272 | 0.264 | 0.257 | 0.239 | 0.242 |
5 | 0.307 | 0.307 | 0.320 | 0.304 | 0.296 | 0.287 | 0.278 | 0.270 | 0.261 | 0.252 |
6 | 0.253 | 0.247 | 0.241 | 0.235 | 0.231 | 0.225 | 0.218 | 0.212 | 0.205 | 0.199 |
7 | 0.376 | 0.367 | 0.358 | 0.349 | 0.340 | 0.331 | 0.322 | 0.313 | 0.304 | 0.295 |
8 | 0.225 | 0.180 | 0.176 | 0.172 | 0.167 | 0.198 | 0.161 | 0.161 | 0.161 | 0.177 |
9 | 0.260 | 0.254 | 0.248 | 0.242 | 0.236 | 0.230 | 0.223 | 0.217 | 0.211 | 0.205 |
10 | 0.239 | 0.233 | 0.227 | 0.222 | 0.216 | 0.210 | 0.205 | 0.199 | 0.193 | 0.188 |
11 | 0.309 | 0.349 | 0.340 | 0.332 | 0.323 | 0.314 | 0.306 | 0.297 | 0.288 | 0.280 |
12 | 0.253 | 0.247 | 0.241 | 0.235 | 0.229 | 0.223 | 0.217 | 0.211 | 0.205 | 0.199 |
13 | 0.215 | 0.210 | 0.205 | 0.200 | 0.195 | 0.190 | 0.184 | 0.179 | 0.174 | 0.169 |
14 | 0.285 | 0.285 | 0.285 | 0.301 | 0.292 | 0.284 | 0.284 | 0.284 | 0.284 | 0.284 |
15 | 0.322 | 0.314 | 0.307 | 0.299 | 0.291 | 0.284 | 0.276 | 0.268 | 0.261 | 0.253 |
16 | 0.373 | 0.364 | 0.355 | 0.346 | 0.275 | 0.328 | 0.320 | 0.311 | 0.302 | 0.293 |
17 | 0.439 | 0.431 | 0.416 | 0.407 | 0.382 | 0.374 | 0.366 | 0.358 | 0.350 | 0.342 |
18 | 0.213 | 0.208 | 0.203 | 0.198 | 0.193 | 0.188 | 0.183 | 0.178 | 0.173 | 0.168 |
19 | 0.312 | 0.304 | 0.297 | 0.290 | 0.286 | 0.284 | 0.281 | 0.278 | 0.278 | 0.278 |
20 | 0.324 | 0.317 | 0.319 | 0.270 | 0.255 | 0.314 | 0.290 | 0.240 | 0.232 | 0.225 |
P-value | 0.65 | 0.66 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.72 | 0.73 | 0.74 |
DMUs | ||||||||||
1 | 0.215 | 0.208 | 0.201 | 0.195 | 0.188 | 0.181 | 0.175 | 0.175 | 0.175 | 0.175 |
2 | 0.160 | 0.154 | 0.149 | 0.144 | 0.140 | 0.135 | 0.132 | 0.130 | 0.130 | 0.130 |
3 | 0.291 | 0.282 | 0.273 | 0.264 | 0.255 | 0.246 | 0.239 | 0.236 | 0.236 | 0.236 |
4 | 0.235 | 0.228 | 0.220 | 0.213 | 0.206 | 0.198 | 0.193 | 0.192 | 0.191 | 0.191 |
5 | 0.244 | 0.235 | 0.227 | 0.219 | 0.211 | 0.204 | 0.196 | 0.196 | 0.196 | 0.196 |
6 | 0.192 | 0.186 | 0.180 | 0.174 | 0.168 | 0.162 | 0.156 | 0.156 | 0.156 | 0.156 |
7 | 0.286 | 0.278 | 0.269 | 0.260 | 0.251 | 0.242 | 0.234 | 0.234 | 0.233 | 0.233 |
8 | 0.161 | 0.161 | 0.197 | 0.156 | 0.150 | 0.148 | 0.148 | 0.148 | 0.148 | 0.148 |
9 | 0.199 | 0.193 | 0.238 | 0.180 | 0.174 | 0.214 | 0.206 | 0.206 | 0.206 | 0.206 |
10 | 0.182 | 0.176 | 0.170 | 0.165 | 0.159 | 0.153 | 0.148 | 0.148 | 0.148 | 0.148 |
11 | 0.271 | 0.263 | 0.254 | 0.246 | 0.237 | 0.229 | 0.220 | 0.220 | 0.220 | 0.220 |
12 | 0.193 | 0.187 | 0.181 | 0.175 | 0.169 | 0.163 | 0.159 | 0.157 | 0.157 | 0.157 |
13 | 0.165 | 0.165 | 0.166 | 0.163 | 0.153 | 0.148 | 0.142 | 0.142 | 0.142 | 0.142 |
14 | 0.284 | 0.284 | 0.283 | 0.274 | 0.264 | 0.254 | 0.245 | 0.245 | 0.245 | 0.245 |
15 | 0.245 | 0.243 | 0.230 | 0.222 | 0.215 | 0.207 | 0.254 | 0.252 | 0.252 | 0.252 |
16 | 0.284 | 0.275 | 0.269 | 0.257 | 0.249 | 0.195 | 0.207 | 0.207 | 0.207 | 0.207 |
17 | 0.334 | 0.305 | 0.286 | 0.305 | 0.276 | 0.272 | 0.251 | 0.249 | 0.249 | 0.249 |
18 | 0.162 | 0.157 | 0.152 | 0.150 | 0.149 | 0.142 | 0.137 | 0.137 | 0.137 | 0.137 |
19 | 0.278 | 0.302 | 0.293 | 0.283 | 0.273 | 0.263 | 0.256 | 0.255 | 0.254 | 0.254 |
20 | 0.219 | 0.239 | 0.207 | 0.209 | 0.202 | 0.186 | 0.185 | 0.184 | 0.184 | 0.184 |
P= 0.58 | f01s | f02s | f0s=f01s*f02s | foc-S |
DMUs | Leader | Follower | leader * follower | Centralized |
1 | 0.386 | 0.209 | 0.081 | 0.262 |
2 | 0.344 | 0.216 | 0.074 | 0.194 |
3 | 0.487 | 0.211 | 0.103 | 0.355 |
4 | 0.430 | 0.144 | 0.062 | 0.286 |
5 | 0.474 | 0.327 | 0.155 | 0.304 |
6 | 0.421 | 0.242 | 0.102 | 0.235 |
7 | 0.429 | 0.273 | 0.117 | 0.349 |
8 | 0.507 | 0.285 | 0.144 | 0.172 |
9 | 0.390 | 0.417 | 0.163 | 0.242 |
10 | 0.326 | 0.259 | 0.084 | 0.222 |
11 | 0.488 | 0.336 | 0.164 | 0.332 |
12 | 0.350 | 0.521 | 0.182 | 0.235 |
13 | 0.411 | 0.188 | 0.077 | 0.200 |
14 | 0.390 | 0.427 | 0.167 | 0.301 |
15 | 0.302 | 0.513 | 0.155 | 0.299 |
16 | 0.488 | 0.282 | 0.138 | 0.346 |
17 | 0.488 | 0.377 | 0.184 | 0.407 |
18 | 0.250 | 0.542 | 0.136 | 0.198 |
19 | 0.376 | 0.499 | 0.188 | 0.290 |
20 | 0.320 | 0.399 | 0.128 | 0.270 |
P= 0.58 | Expected | scores | p-robust | centralized |
DMUs | EV | Reg | EV | Reg |
1 | 0.562 | 0.1880 | 0.262 | 0.0809 |
2 | 0.353 | 0.1345 | 0.194 | 0.1295 |
3 | 0.462 | 0.3590 | 0.355 | 0.3430 |
4 | 0.353 | 0.3298 | 0.286 | 0.2968 |
5 | 0.667 | 0.0158 | 0.304 | 0.0043 |
6 | 0.562 | 0.1090 | 0.235 | 0.0230 |
7 | 0.500 | 0.2815 | 0.349 | 0.2505 |
8 | 0.400 | 0.1275 | 0.172 | 0.0845 |
9 | 0.353 | 0.4393 | 0.242 | 0.1413 |
10 | 0.450 | 0.1060 | 0.222 | 0.0950 |
11 | 0.462 | 0.2650 | 0.332 | 0.2450 |
12 | 0.450 | 0.1353 | 0.235 | 0.1253 |
13 | 0.400 | 0.1010 | 0.200 | 0.1010 |
14 | 0.353 | 0.5048 | 0.301 | 0.4868 |
15 | 0.667 | 0.2170 | 0.299 | 0.0100 |
16 | 0.462 | 0.2538 | 0.346 | 0.2268 |
17 | 0.545 | 0.1841 | 0.407 | 0.1840 |
18 | 0.400 | 0.0948 | 0.137 | 0.0948 |
19 | 0.400 | 0.5753 | 0.254 | 0.0893 |
20 | 0.562 | 0.2473 | 0.184 | 0.0908 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.2108 | 0.1920 | 0.1960 | 0.2182 | 0.2273 | 0.2000 | 0.2017 | 0. 1624 |
2 | 0.1555 | 0.1364 | 0.1383 | 0.1570 | 0.1654 | 0.1402 | 0.1471 | 0.1162 |
3 | 0.3695 | 0.3610 | 0.3630 | 0.3734 | 0.3776 | 0.3650 | 0.3653 | 0.3467 |
4 | 0.3465 | 0.3332 | 0.3367 | 0.3535 | 0.3602 | 0.3401 | 0.3398 | 0.3094 |
5 | 0.0220 | 0.0068 | 0.0094 | 0.0261 | 0.0332 | 0.0119 | 0.0149 | 0.0181 |
6 | 0.1288 | 0.1120 | 0.1150 | 0.1338 | 0.1417 | 0.1180 | 0.1209 | 0. 0882 |
7 | 0.2928 | 0.2834 | 0.2853 | 0.2962 | 0.3007 | 0.2872 | 0.2883 | 0.2691 |
8 | 0.1465 | 0.1292 | 0.1309 | 0.1478 | 0.1554 | 0.1326 | 0.1389 | 0.1110 |
9 | 0.4430 | 0.4392 | 0.4392 | 0.4421 | 0.4436 | 0.4391 | 0.4415 | 0.4372 |
10 | 0.1263 | 0.1084 | 0.1108 | 0.1294 | 0.1375 | 0.1132 | 0.1182 | 0.0867 |
11 | 0.2783 | 0.2670 | 0.2690 | 0.2816 | 0.2869 | 0.2710 | 0.2730 | 0.2511 |
12 | 0.1570 | 0.1388 | 0.1424 | 0.1633 | 0.1720 | 0.1459 | 0.1483 | 0.1116 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.5170 | 0.5082 | 0.5117 | 0.5249 | 0.5298 | 0.5151 | 0.5121 | 0.4871 |
15 | 0.2278 | 0.2180 | 0.2190 | 0.2286 | 0.2329 | 0.2200 | 0.2235 | 0.2076 |
16 | 0.2660 | 0.2552 | 0.2567 | 0.2679 | 0.2728 | 0.2581 | 0.2611 | 0.2421 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.5693 | 0.5752 | 0.5752 | 0.5703 | 0.5679 | 0.5751 | 0.5717 | 0.5790 |
20 | 0.1095 | 0.0934 | 0.0961 | 0.1137 | 0.1212 | 0.0987 | 0.1020 | 0.0716 |
qs | (0.3, 0.6, 0.1) | (0.15, 0.15, 0.7) | (0.15, 0.7, 0.15) | (0.1, 0.6, 0.3) | (0.1, 0.5, 0.4) | (0.5, 0.4, 0.1) | (0.25, 0.35, 0.4) | (0.4, 0.35, 0.25) |
DMUs | ||||||||
1 | 0.1118 | 0.0930 | 0.0970 | 0.1192 | 0.1283 | 0.1010 | 0.1027 | 0.0634 |
2 | 0.1505 | 0.1314 | 0.1333 | 0.1520 | 0.1604 | 0.1352 | 0.1421 | 0.1112 |
3 | 0.3535 | 0.3450 | 0.3470 | 0.3574 | 0.3616 | 0.3490 | 0.3493 | 0.3307 |
4 | 0.3135 | 0.3002 | 0.3037 | 0.3205 | 0.3272 | 0.3071 | 0.3068 | 0.2764 |
5 | 0.0180 | 0.0028 | 0.0054 | 0.0221 | 0.0292 | 0.0079 | 0.0109 | 0.0141 |
6 | 0.0428 | 0.0260 | 0.0290 | 0.0478 | 0.0557 | 0.0320 | 0.0349 | 0.0021 |
7 | 0.2618 | 0.2524 | 0.2543 | 0.2652 | 0.2697 | 0.2562 | 0.2573 | 0.2381 |
8 | 0.1035 | 0.0862 | 0.0879 | 0.1048 | 0.1124 | 0.0896 | 0.0959 | 0.0680 |
9 | 0.1450 | 0.1412 | 0.1412 | 0.1441 | 0.1456 | 0.1411 | 0.1435 | 0.1392 |
10 | 0.1153 | 0.0974 | 0.0998 | 0.1184 | 0.1265 | 0.1022 | 0.1072 | 0.0757 |
11 | 0.2583 | 0.2470 | 0.2490 | 0.2616 | 0.2669 | 0.2510 | 0.2530 | 0.2311 |
12 | 0.1470 | 0.1288 | 0.1324 | 0.1533 | 0.1620 | 0.1359 | 0.1383 | 0.1016 |
13 | 0.1223 | 0.1032 | 0.1054 | 0.1246 | 0.1331 | 0.1076 | 0.1138 | 0.0817 |
14 | 0.4990 | 0.4902 | 0.4937 | 0.5069 | 0.5118 | 0.4971 | 0.4941 | 0.4691 |
15 | 0.0208 | 0.0110 | 0.0120 | 0.0216 | 0.0259 | 0.0130 | 0.0165 | 0.0005 |
16 | 0.2390 | 0.2282 | 0.2297 | 0.2409 | 0.2458 | 0.2311 | 0.2341 | 0.2151 |
17 | 0.1965 | 0.1874 | 0.1908 | 0.2042 | 0.2092 | 0.1942 | 0.1915 | 0.1663 |
18 | 0.1173 | 0.0974 | 0.1001 | 0.1207 | 0.1297 | 0.1027 | 0.1083 | 0.0733 |
19 | 0.0833 | 0.0892 | 0.0892 | 0.0843 | 0.0819 | 0.0891 | 0.0857 | 0.0930 |
20 | 0.0185 | 0.0024 | 0.0051 | 0.0227 | 0.0302 | 0.0077 | 0.0110 | 0.0195 |