The proposed reconfigurable BPF satisfies the International Telecommunication Unionos (ITU) region 3 spectrum requirement. In transmit mode, the frequency range 11.41-12.92 GHz is used by the direct broadcast service (DBS) and the fixed satellite service (FSS). Direct broadcast service (DBS) in reception mode employs 11.7-12.2 GHz and 17.3-17.8 GHz frequency ranges. Frequency reconfigurable filters are popular because they can cover wide range of frequencies, reducing system cost and space. Another emerging trend is electronic component flexibility or conformability, which allows them to be mounted on non-planar objects and are used in wearable applications. This project contains a frequency-reconfigurable BPF that has been entirely printed on a flexible polimide substrate. Frequency reconfigurability is obtained by using a pin diode HSCH 5318 and it is used to switch between 12 GHz and 18 GHz. The prototype reconfigurable BPF is highly compact and low-cost due to the flexible polimide substrate and the measured results are promising and match the simulated results well.
Citation: Ambati. Navya, Govardhani. Immadi, Madhavareddy. Venkata Narayana. Flexible ku/k band frequency reconfigurable bandpass filter[J]. AIMS Electronics and Electrical Engineering, 2022, 6(1): 16-28. doi: 10.3934/electreng.2022002
[1] | Sherven Sharma, Pournima Kadam, Ram P Singh, Michael Davoodi, Maie St John, Jay M Lee . CCL21-DC tumor antigen vaccine augments anti-PD-1 therapy in lung cancer. AIMS Medical Science, 2021, 8(4): 269-275. doi: 10.3934/medsci.2021022 |
[2] | Payal A. Shah, John Goldberg . Novel Approaches to Pediatric Cancer: Immunotherapy. AIMS Medical Science, 2015, 2(2): 104-117. doi: 10.3934/medsci.2015.2.104 |
[3] | Anuj A. Shukla, Shreya Podder, Sana R. Chaudry, Bryan S. Benn, Jonathan S. Kurman . Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. AIMS Medical Science, 2022, 9(2): 348-361. doi: 10.3934/medsci.2022016 |
[4] | Elif Basaran, Gulali Aktas . The relationship of vitamin D levels with hemogram indices and metabolic parameters in patients with type 2 diabetes mellitus. AIMS Medical Science, 2024, 11(1): 47-57. doi: 10.3934/medsci.2024004 |
[5] | Kwon Yong, Martin Brechbiel . Application of 212Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Medical Science, 2015, 2(3): 228-245. doi: 10.3934/medsci.2015.3.228 |
[6] | Anne A. Adeyanju, Wonderful B. Adebagbo, Olorunfemi R. Molehin, Omolola R. Oyenihi . Exploring the multi-drug resistance (MDR) inhibition property of Sildenafil: phosphodiesterase 5 as a therapeutic target and a potential player in reversing MDR for a successful breast cancer treatment. AIMS Medical Science, 2025, 12(2): 145-170. doi: 10.3934/medsci.2025010 |
[7] | Snigdha Misra, Yang Wai Yew, Tan Seok Shin . Maternal dietary patterns, diet quality and micronutrient status in gestational diabetes mellitus across different economies: A review. AIMS Medical Science, 2019, 6(1): 76-114. doi: 10.3934/medsci.2019.1.76 |
[8] | Marcus Martin, Reinand Thompson, Nikhil Tirupathi . Does vitamin D level have effect on COVID-19 outcomes?. AIMS Medical Science, 2023, 10(2): 141-150. doi: 10.3934/medsci.2023012 |
[9] | Ray Marks . Narrative Review of Vitamin D and Its Specific Impact on Balance Capacity in Older Adults. AIMS Medical Science, 2016, 3(4): 345-358. doi: 10.3934/medsci.2016.4.345 |
[10] | Ahlam Al-Zahrani, Shorooq Al-Marwani . The effectiveness of an educational session about folic acid on pregnant women's knowledge in Yanbu City, Kingdom of Saudi Arabia. AIMS Medical Science, 2022, 9(3): 394-413. doi: 10.3934/medsci.2022019 |
The proposed reconfigurable BPF satisfies the International Telecommunication Unionos (ITU) region 3 spectrum requirement. In transmit mode, the frequency range 11.41-12.92 GHz is used by the direct broadcast service (DBS) and the fixed satellite service (FSS). Direct broadcast service (DBS) in reception mode employs 11.7-12.2 GHz and 17.3-17.8 GHz frequency ranges. Frequency reconfigurable filters are popular because they can cover wide range of frequencies, reducing system cost and space. Another emerging trend is electronic component flexibility or conformability, which allows them to be mounted on non-planar objects and are used in wearable applications. This project contains a frequency-reconfigurable BPF that has been entirely printed on a flexible polimide substrate. Frequency reconfigurability is obtained by using a pin diode HSCH 5318 and it is used to switch between 12 GHz and 18 GHz. The prototype reconfigurable BPF is highly compact and low-cost due to the flexible polimide substrate and the measured results are promising and match the simulated results well.
[1] |
Arain S, Vryonides P, Abbasi M, et al. (2018) Reconfigurable bandwidth bandpass filter with enhanced out-of-band rejection using π-section loaded ring resonator. IEEE Microw Wirel Co 28: 28-30. https://doi.org/10.1109/LMWC.2017.2776212 doi: 10.1109/LMWC.2017.2776212
![]() |
[2] |
Cheng T, Tam K (2017) A wideband bandpass filter with reconfigurable bandwidth based on cross-shaped resonator. IEEE Microw Wirel Co 27: 909-91. https://doi.org/10.1109/LMWC.2017.2746679 doi: 10.1109/LMWC.2017.2746679
![]() |
[3] |
Zhang X, Wong S, Guo S, et al. (2020) Design of notched-wideband bandpass filters with reconfigurable bandwidth based on terminated cross-shaped resonators. IEEE Access 8: 37416-37427. https://doi.org/10.1109/ACCESS.2020.2975379 doi: 10.1109/ACCESS.2020.2975379
![]() |
[4] |
Sanchez-Soriano MA, Gomez-Garcia R, Torregrosa-Penalva G, et al. (2013) Reconfigurable-bandwidth bandpass filter within 10-50%. IET Microw Antenna P 7: 502-509. https://doi.org/10.1049/iet-map.2012.0274 doi: 10.1049/iet-map.2012.0274
![]() |
[5] |
Borja AL, Carbonell J, Martinez JL, et al. (2011) A controllable bandwidth filter using varactor-loaded metamaterial-inspired transmission lines. IEEE Antenn Wirel Pr 10: 1575-1578. https://doi.org/10.1109/LAWP.2012.2183111 doi: 10.1109/LAWP.2012.2183111
![]() |
[6] |
Chen N, Jeng SK (2012) Reconfigurable bandpass filter with separately relocatable passband edge. IEEE Microw Wirel Co 22: 559-561. https://doi.org/10.1109/LMWC.2012.2225606 doi: 10.1109/LMWC.2012.2225606
![]() |
[7] |
Wang XM, Bi XK, Guo SH, et al. (2020) Synthesis design of equal-ripple and quasi-elliptic wideband BPFs with independently reconfigurable lower passband edge. IEEE Access 8: 76856-76866. https://doi.org/10.1109/ACCESS.2020.2989449 doi: 10.1109/ACCESS.2020.2989449
![]() |
[8] |
Gomez-Garcia R, Guyette AC, Psychogiou D, et al. (2019) Quasi-elliptic multi-band filters with center-frequency and bandwidth tenability. IEEE Microw Wirel Co 26: 192-194. https://doi.org/10.1109/LMWC.2016.2526026 doi: 10.1109/LMWC.2016.2526026
![]() |
[9] |
Huang BC, Chen NW, Jeng SK (2014) A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator. IEEE Microw Wirel Co 24: 297-299. https://doi.org/10.1109/LMWC.2014.2306893 doi: 10.1109/LMWC.2014.2306893
![]() |
[10] |
Sanchez-Renedo M, Gomez-Garcia R, Alonso JI, et al. (2005) Tunable combline filter with continuous control of center frequency and bandwidth. IEEE T Microw Theory 53: 191-199. https://doi.org/10.1109/TMTT.2004.839309 doi: 10.1109/TMTT.2004.839309
![]() |
[11] |
Wong PW, Hunter IC (2009) Electronically reconfigurable microwave bandpass filter. IEEE T Microw Theory 57: 3070-3079. https://doi.org/10.1109/TMTT.2009.2033883 doi: 10.1109/TMTT.2009.2033883
![]() |
[12] |
Tsai H, Chen N, Jeng S (2013) Center frequency and bandwidth controllable microstrip bandpass filter design using loop-shaped dual-mode resonator. IEEE T Microw Theory 61: 3590-3600. https://doi.org/10.1109/TMTT.2013.2280129 doi: 10.1109/TMTT.2013.2280129
![]() |
[13] |
Guo H, Hong J (2018) Varactor-tuned dual-mode bandpass filter with nonuniform Q distribution. IEEE Microw Wirel Co 28: 1002-1004. https://doi.org/10.1109/LMWC.2018.2870934 doi: 10.1109/LMWC.2018.2870934
![]() |
[14] |
Schuster C, Wiens A, Schmidt F, et al. (2017) Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth. IEEE T Microw Theory 65: 4572-4583. https://doi.org/10.1109/TMTT.2017.2742479 doi: 10.1109/TMTT.2017.2742479
![]() |
[15] |
Kingsly S, Kanagasabai M, Alsath MG, et al. (2018) Compact frequency and bandwidth tunable bandpass-band stop microstrip filter. IEEE Microw Wirel Co 28: 786-788. https://doi.org/10.1109/LMWC.2018.2858005 doi: 10.1109/LMWC.2018.2858005
![]() |
[16] |
Ghaderi A, Golestanifar A, Shama F (2017) Design of a compact microstrip tunable dual-band bandpass filter. AEU-Int J Electron C 82: 391-396. https://doi.org/10.1016/j.aeue.2017.10.002 doi: 10.1016/j.aeue.2017.10.002
![]() |
[17] |
Qin W, Cai J, Li YL, et al. (2017) Wideband tunable bandpass filter using optimized varactor-loaded SIRs. IEEE Microw Wirel Co 27: 812-814. https://doi.org/10.1109/LMWC.2017.2734848 doi: 10.1109/LMWC.2017.2734848
![]() |
[18] | Karim MF, Guo YX, Chen ZN, et al. (2009) Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes. In IEEE Microwave Symposium Digest. MTT-S International, 509-512. https://doi.org/10.1109/MWSYM.2009.5165745 |
[19] | Elelimy AM, El-Tager AM, Sobih AG (2013) A compact size switched reconfigurable tri-band BPF for modern wireless applications. In 56th International Midwest Symposium on Circuits and Systems (MWSCAS), 772-775. https://doi.org/10.1109/MWSCAS.2013.6674763 |
[20] |
Boutejdar A (2016) Design of 5 GHz-compact reconfigurable DGS-bandpass filter using varactor-diode device and coupling matrix technique. Microw Opt Techn Let 58: 304-309. https://doi.org/10.1002/mop.29561 doi: 10.1002/mop.29561
![]() |
[21] | Zhang ZC, Liu H (2018) A ultra-compact wideband bandpass filter using a quad mode stub-loaded resonator. Prog Electrom Res Le 77: 35-40. |
[22] |
Navya A, Immadi G, Narayana MV (2021) A Low-Profile Wideband BPF for Ku Band Applications, Prog Electrom Res Le 100: 127-135. https://doi.org/10.2528/PIERL21082101 doi: 10.2528/PIERL21082101
![]() |
[23] |
Ambati N, Immadi G, Narayana MV, et al. (2021), Parametric Analysis of the Defected Ground Structure-Based Hairpin Band Pass Filter for VSAT System on Chip Applications. Eng Technol Appl Sci 11: 7892-7896. https://doi.org/10.48084/etasr.4495 doi: 10.48084/etasr.4495
![]() |
1. | Giacomo Albi, Young-Pil Choi, Massimo Fornasier, Dante Kalise, Mean Field Control Hierarchy, 2017, 76, 0095-4616, 93, 10.1007/s00245-017-9429-x | |
2. | Ertug Olcay, Boris Lohmann, 2019, Extension of the Cucker-Dong Flocking with a Virtual Leader and a Reactive Control Law, 978-3-907144-00-8, 101, 10.23919/ECC.2019.8796225 | |
3. | Giacomo Albi, Mattia Bongini, Emiliano Cristiani, Dante Kalise, Invisible Control of Self-Organizing Agents Leaving Unknown Environments, 2016, 76, 0036-1399, 1683, 10.1137/15M1017016 | |
4. | Mattia Bongini, Giuseppe Buttazzo, Optimal control problems in transport dynamics, 2017, 27, 0218-2025, 427, 10.1142/S0218202517500063 | |
5. | Massimo Fornasier, Benedetto Piccoli, Nastassia Pouradier Duteil, Francesco Rossi, 2014, Mean-field optimal control by leaders, 978-1-4673-6090-6, 6957, 10.1109/CDC.2014.7040482 | |
6. | Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat, Sparse stabilization and control of alignment models, 2015, 25, 0218-2025, 521, 10.1142/S0218202515400059 | |
7. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat, Sparse Jurdjevic–Quinn stabilization of dissipative systems, 2017, 86, 00051098, 110, 10.1016/j.automatica.2017.08.012 | |
8. | Mattia Bongini, Massimo Fornasier, Francesco Rossi, Francesco Solombrino, Mean-Field Pontryagin Maximum Principle, 2017, 175, 0022-3239, 1, 10.1007/s10957-017-1149-5 | |
9. | M. FORNASIER, S. LISINI, C. ORRIERI, G. SAVARÉ, Mean-field optimal control as Gamma-limit of finite agent controls, 2019, 30, 0956-7925, 1153, 10.1017/S0956792519000044 | |
10. | Jong-Ho Kim, Jea-Hyun Park, Fully nonlinear Cucker–Smale model for pattern formation and damped oscillation control, 2023, 120, 10075704, 107159, 10.1016/j.cnsns.2023.107159 | |
11. | Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trelat, 2016, Sparse feedback stabilization of multi-agent dynamics, 978-1-5090-1837-6, 4278, 10.1109/CDC.2016.7798917 | |
12. | Rafael Bailo, Mattia Bongini, José A. Carrillo, Dante Kalise, Optimal consensus control of the Cucker-Smale model, 2018, 51, 24058963, 1, 10.1016/j.ifacol.2018.07.245 | |
13. | Massimo Fornasier, Benedetto Piccoli, Francesco Rossi, Mean-field sparse optimal control, 2014, 372, 1364-503X, 20130400, 10.1098/rsta.2013.0400 | |
14. | Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf, Sparse control of alignment models in high dimension, 2015, 10, 1556-181X, 647, 10.3934/nhm.2015.10.647 | |
15. | Mattia Bongini, Massimo Fornasier, 2017, Chapter 5, 978-3-319-49994-9, 173, 10.1007/978-3-319-49996-3_5 | |
16. | Giacomo Albi, Lorenzo Pareschi, Selective model-predictive control for flocking systems, 2018, 9, 2038-0909, 4, 10.2478/caim-2018-0009 | |
17. | Young-Pil Choi, Dante Kalise, Jan Peszek, Andrés A. Peters, A Collisionless Singular Cucker--Smale Model with Decentralized Formation Control, 2019, 18, 1536-0040, 1954, 10.1137/19M1241799 | |
18. | Giacomo Albi, Lorenzo Pareschi, Mattia Zanella, 2016, Chapter 4, 978-3-319-55794-6, 58, 10.1007/978-3-319-55795-3_4 | |
19. | Mattia Bongini, Francesco Salvarani, Mean field games of controls with Dirichlet boundary conditions, 2024, 30, 1292-8119, 32, 10.1051/cocv/2024020 | |
20. | Emiliano Cristiani, Nadia Loy, Marta Menci, Andrea Tosin, Kinetic description and macroscopic limit of swarming dynamics with continuous leader–follower transitions, 2025, 228, 03784754, 362, 10.1016/j.matcom.2024.09.006 |