Research article Special Issues

The constant in the Sobolev inequality and the boundedness of subelliptic operators on compact Lie groups

  • Published: 15 October 2025
  • 26D10, 43A80, 46E35

  • Given a compact connected Lie group $ G $, we estimated the constant for the Sobolev inequality for an arbitrary Hörmander sub-Laplacian on $ G $. The constant was estimated in terms of quantities depending on the intrinsic geometry of the group and on the Lebesgue parameters. We also provided applications of this result to the estimation of the operator norm for $ L^p $-$ L^q $-bounded subelliptic pseudo-differential operators in subelliptic Hörmander classes.

    Citation: Andrea V. Hurtado-Quiceno, Duván Cardona Sánchez. The constant in the Sobolev inequality and the boundedness of subelliptic operators on compact Lie groups[J]. Communications in Analysis and Mechanics, 2025, 17(4): 878-897. doi: 10.3934/cam.2025035

    Related Papers:

  • Given a compact connected Lie group $ G $, we estimated the constant for the Sobolev inequality for an arbitrary Hörmander sub-Laplacian on $ G $. The constant was estimated in terms of quantities depending on the intrinsic geometry of the group and on the Lebesgue parameters. We also provided applications of this result to the estimation of the operator norm for $ L^p $-$ L^q $-bounded subelliptic pseudo-differential operators in subelliptic Hörmander classes.



    加载中


    [1] N. Th. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1993. https://doi.org/10.1017/CBO9780511662485
    [2] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013
    [3] Th. Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Diff. Geom., 11 (1976), 573–598. https://doi.org/10.4310/jdg/1214433725 doi: 10.4310/jdg/1214433725
    [4] N. Garofalo, D. Vassilev, Regularity near the characteristic set in the non-linear Dirichlet problem and conformal geometry of sub-Laplacians on Carnot groups, Math. Ann., 318 (2000), 453–516. https://doi.org/10.1007/s002080000127 doi: 10.1007/s002080000127
    [5] R. Akylzhanov, M. Ruzhansky, $L^p$-$L^q$ multipliers on locally compact groups, J. Funct. Anal., 278 (2020), 108324. https://doi.org/10.1016/j.jfa.2019.108324 doi: 10.1016/j.jfa.2019.108324
    [6] T. Bruno, M. Peloso, A. Tabacco, M. Vallarino, Sobolev spaces on Lie groups: embedding theorems and algebra properties, J. Funct. Anal., 276 (2019), 3014–3050. https://doi.org/10.1016/j.jfa.2018.11.014 doi: 10.1016/j.jfa.2018.11.014
    [7] T. Bruno, M. Peloso, M. Vallarino, The Sobolev embedding constant on Lie groups, Nonlinear Anal, 216 (2022), 112707. https://doi.org/10.1016/j.na.2021.112707 doi: 10.1016/j.na.2021.112707
    [8] V. Fischer, M. Ruzhansky, Sobolev spaces on graded Lie groups, Ann. Inst. Fourier (Grenoble), 67 (2017), 1671–1723. https://doi.org/10.5802/aif.3119 doi: 10.5802/aif.3119
    [9] M. Ruzhansky, N. Yessirkegenov, Hardy, Hardy-Sobolev, Hardy-Littlewood-Sobolev and Caffarelli-Kohn-Nirenberg inequalities on general Lie groups, 2018, arXiv: 1810.08845. https://doi.org/10.48550/arXiv.1810.08845
    [10] M. Ruzhansky, N. Tokmagambetov, N. Yessirkegenov, Best constants in Sobolev and Gagliardo-Nirenberg inequalities on graded groups and ground states for higher-order nonlinear subelliptic equations, Calc. Var. Partial Differential Equations, 59 (2020), 175. https://doi.org/10.1007/s00526-020-01835-0 doi: 10.1007/s00526-020-01835-0
    [11] D. Cardona, M. Ruzhansky, Subelliptic pseudo-differential operators and Fourier integral operators on compact Lie groups, 2020, arXiv: 2008.09651v3. https://doi.org/10.48550/arXiv.2008.09651
    [12] D. Cardona, J. Delgado, V. Kumar, M. Ruzhansky, $L^p$-$L^q$ estimates for subelliptic pseudo-differential operators on compact Lie groups, 2023, arXiv: 2310.16247. https://doi.org/10.48550/arXiv.2310.16247
    [13] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081
    [14] H. Komatsu, Fractional powers of operators, Pacific J. Math., 19 (1966), 285–346. https://doi.org/10.2140/pjm.1966.19.285 doi: 10.2140/pjm.1966.19.285
    [15] Z. Avetisyan, M. Ruzhansky, A note on the polar decomposition in metric spaces, J. Math. Sci., 280 (2024), 73–82. https://doi.org/10.1007/s10958-023-06674-w doi: 10.1007/s10958-023-06674-w
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(525) PDF downloads(37) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog