This paper studies the stability of a weak mild solution of the Navier–Stokes–Oseen equations in the solenoidal Lorentz space $ L^{3}_{\sigma, {{{\rm{w}}}}} $. Our approach relies on dual space pair and suitable estimates in our setting for the Oseen semigroup. Therefore, we get a new result for the stability of a weak mild solution following the initial datum and external force.
Citation: Duoc Viet Trinh. Stability of Navier-Stokes-Oseen flows[J]. Communications in Analysis and Mechanics, 2025, 17(4): 898-909. doi: 10.3934/cam.2025036
This paper studies the stability of a weak mild solution of the Navier–Stokes–Oseen equations in the solenoidal Lorentz space $ L^{3}_{\sigma, {{{\rm{w}}}}} $. Our approach relies on dual space pair and suitable estimates in our setting for the Oseen semigroup. Therefore, we get a new result for the stability of a weak mild solution following the initial datum and external force.
| [1] |
H. Kozono, S. Shimizu, Navier-Stokes equations with external forces in Lorentz spaces and its application to the self-similar solutions, J. Math. Anal. Appl., 458 (2018), 1693–1708. https://doi.org/10.1016/j.jmaa.2017.10.048 doi: 10.1016/j.jmaa.2017.10.048
|
| [2] |
M. Yamazaki, The Navier-Stokes equations in the weak-$L^n$ space with time-dependent external force, Math. Ann., 317 (2000), 635–675. https://doi.org/10.1007/PL00004418 doi: 10.1007/PL00004418
|
| [3] |
M. Geissert, H. Heck, M. Hieber, $L_p$-Theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew Math., 596 (2006), 45–62. https://doi.org/10.1515/CRELLE.2006.051 doi: 10.1515/CRELLE.2006.051
|
| [4] |
T. V. Duoc, Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle, Discrete Contin. Dyn. Syst. A, 38 (2018), 3387–3405. https://doi.org/10.3934/dcds.2018145 doi: 10.3934/dcds.2018145
|
| [5] |
T. V. Duoc, Time global mild solutions of Navier-Stokes-Oseen equations, Acta Math. Sci., 41 (2021), 450–460. https://doi.org/10.1007/s10473-021-0209-y doi: 10.1007/s10473-021-0209-y
|
| [6] | H. Komatsu, A general interpolation theorem of Marcinkiewics type, Tôhoku Math. J., 33 (1981), 383–393. https://doi.org/10.2748/tmj/1178229401 |
| [7] | R. E. Castillo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, 2015. https://doi.org/10.1007/978-3-319-30034-4 |
| [8] | A. Lunardi, Interpolation Theory, Birkhäuser, 2009. |
| [9] | H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland: Amsterdam, New York, Oxford, 1978. |
| [10] |
W. Borchers, T. Miyakawa, On stability of exterior stationary Navier-Stokes flows, Acta. Math., 174 (1995), 311–382. https://doi.org/10.1007/BF02392469 doi: 10.1007/BF02392469
|
| [11] | Y. Shibata, On a $C^0$ semigroup associated with a modified Oseen equation with rotating effect, In: R. Rannacher, A. Sequeira (eds), Advances in Mathematical Fluid Mechanics, 513–551, 2010. https://doi.org/10.1007/978-3-642-04068-9_29 |
| [12] | Y. Shibata, On the Oseen semigroup with rotating effect, In: H. Amann, W. Arendt, M. Hieber, F. M. Neubrander, S. Nicaise, J. von Below (eds), Functional Analysis and Evolution Equations, 595–611, 2008. https://doi.org/10.1007/978-3-7643-7794-6_36 |