
AllVlS 
Communications in 
Analysis and Mechanics 

https://www.aimspress.com/journal/cam

Communications in Analysis and Mechanics, 17(4): 898–909.
DOI: 10.3934/cam.2025036
Received: 30 October 2024
Revised: 10 February 2025
Accepted: 29 August 2025
Published: 29 October 2025

Research article

Stability of Navier-Stokes-Oseen flows

Duoc Viet Trinh 1,2,*

1 Faculty of Mathematics, Mechanics, and Informatics, University of Science, Vietnam National
University, 334 Nguyen Trai, Hanoi, Vietnam

2 Thang Long Institute of Mathematics and Applied Sciences, Thang Long University, Nghiem Xuan
Yem, Hanoi, Vietnam

* Correspondence: Email: tvduoc@gmail.com; duoctv@vnu.edu.vn.

Abstract: This paper studies the stability of a weak mild solution of the Navier–Stokes–Oseen
equations in the solenoidal Lorentz space L3

σ,w. Our approach relies on dual space pair and suitable
estimates in our setting for the Oseen semigroup. Therefore, we get a new result for the stability of a
weak mild solution following the initial datum and external force.

Keywords: stability; Navier–Stokes–Oseen equations; Oseen operator; rotating and translating
obstacle; solenoidal Lorentz spaces
Mathematics Subject Classification: 35B35, 35Q30, 35Q35, 76D07

1. Introduction

Let Ω be an exterior domain with a smooth boundary complemented by an obstacle in R3. We are
concerned with the Navier–Stokes–Oseen equations

Dtu + (u · ∇)u − ∆u + kD3u
−((ω × x) · ∇)u + ω × u + ∇p = divF in Ω × (0,∞),

div u = 0 in Ω × (0,∞),
u(x, t) = ω × x − u∞ on ∂Ω × (0,∞),
u(x, 0) = u0(x) in Ω,

lim
|x|→∞

u(x, t) = 0 for all t ∈ (0,∞).

(1.1)

This system describes the dynamics of incompressible viscous fluid flows passing a translating and
rotating obstacle, in which ω = ae3, e3 = (0, 0, 1)T and u∞ = ke3 are, respectively, the angular velocity
and the translational velocity of an obstacle; u = u(x, t) = (u1, u2, u3) is the velocity field of the fluid;
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p = p(x, t) is the pressure of the fluid; and F = F(x, t) = (F js) j,s=1,2,3 is the external force. Here
Dt = ∂/∂t and ∇ = (D1,D2,D3)T with Di = ∂/∂xi , i = 1, 2, 3. Note that divF = (

∑3
s=1 DsF js) j=1,2,3.

Considering the case of fixed obstacles, i.e., a = k = 0, then this system becomes the Navier–Stokes
equations.

To study the system (1.1), a common approach is to use the Helmholtz projection to eliminate the
pressure function. Applying the Helmholtz projection P into the system (1.1), we have

Dtu + P((u · ∇)u) +La,ku = PdivF in Ω × (0,∞),
div u = 0 in Ω × (0,∞),

u(x, t) = ω × x − u∞ on ∂Ω × (0,∞),
u(x, 0) = Pu0(x) x ∈ Ω,

(1.2)

where La,ku = P [−∆u + kD3u − ((ω × x) · ∇)u + ω × u]. We call the operator La,k the Oseen operator.
See Section 2 for the Helmholtz projection and the Oseen operators. By div u = 0, the system (1.2) is
rewritten as follows: 

Dtu +La,ku = Pdiv(F − u ⊗ u) in Ω × (0,∞),
u(x, t) = ω × x − u∞ on ∂Ω × (0,∞),
u(x, 0) = Pu0(x) x ∈ Ω.

(1.3)

Many authors have studied the Navier–Stokes–Oseen equations, so hard to give a complete list of
research results on this topic. Therefore, we review only some previous works related to our purposes.
In the case a = k = 0, Kozono and Shimizu [1] have proved the unique existence of global mild
solutions with small initial data in the solenoidal Lorentz spaces Lp

σ,w(Rn), and the unique existence of
time-global weak mild solutions with small initial data in the solenoidal Lorentz spaces Ln

σ,w(Ω), n ≥ 3
was shown by Yamazaki [2]. In the case k = 0, the unique existence of time-local mild solutions in
the spaces Lp

σ(Ω) have been proved by Geissert, Heck and Hieber [3]. Duoc [4] showed the unique
existence of time-local mild solutions to the system in (1.3) in the solenoidal Lorentz spaces
L3,q
σ (Ω), q < ∞ and the unique existence of time-global weak mild solutions to the system (1.3) in the

solenoidal Lorentz space L3
σ,w(Ω). In addition, the unique existence of time-global mild solutions of

(1.3) in the solenoidal Lorentz spaces L3
σ,w(Ω) was proved by [5].

Let ũ ∈ Cb((0,∞), L3
σ,w(Ω)) be the weak mild solution of the system (1.3) corresponding to the

external force F̃, where Cb((0,∞), L3
σ,w(Ω)) = {u : (0,∞) → L3

σ,w(Ω) is a continuous function such
that sup

t>0
∥u(t)∥3,w < ∞}. We note that the unique existence of the solution ũ ∈ Cb((0,∞), L3

σ,w(Ω)) is

guaranteed by [4]. Our goal in this paper is to show the stability of the solution ũ in the solenoidal
Lorentz space L3

σ,w(Ω) following initial datum and external force. To study the stability of the solution
ũ in the solenoidal Lorentz space L3

σ,w(Ω), we set z(x, t) = u(x, t) − ũ(x, t) and G = F − F̃. It is easy to
check that z satisfies the following system:

Dtz +La,kz = Pdiv(G − z ⊗ z − ũ ⊗ z − z ⊗ ũ) in Ω × (0,∞),
z(x, t) = 0 on ∂Ω × (0,∞),
z(x, 0) = z0(x) x ∈ Ω, z0 ∈ L3

σ,w(Ω).
(1.4)

We now study the system in (1.4). Using the dual space pairs and observing the estimates of the
Oseen semigroup, we establish the unique existence and properties of the solution z. From that, we
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get the results for the stability of ũ. Thus, this paper is organized as follows. Section 2 is designed to
provide some preliminaries about the Oseen operators and solenoidal Lorentz spaces. In Section 3, we
recall the definition of a weak mild solution of the system (1.4) and then prove our main results in this
paper.

2. Preliminaries

In this section, we recall the definition of solenoidal Lorentz spaces and provide some properties of
strongly continuous semigroups generated by Oseen operators.

2.1. Solenoidal Lorentz spaces and Helmholtz projection

For 1 ≤ r ≤ ∞ and 1 ≤ q ≤ ∞, let Lr,q(Ω) denote the Lorentz space on Ω defined by

Lr,q(Ω) = { f ∈ L1(Ω) + L∞(Ω) : ∥ f ∥r,q < ∞},

with the norm

∥ f ∥r,q =


( ∫ ∞

0
(t

1
r f ∗∗(t))q dt

t

) 1
q if 1 ≤ q < ∞,

sup
t>0

t
1
r f ∗∗(t) if q = ∞.

Here f ∗∗(t) = 1
t

∫ t

0
f ∗(s)ds, f ∗(t) = inf{s > 0 : m({x ∈ Ω : | f (x)| > s}) ≤ t}, for t ≥ 0, and m denotes the

3-dimensional Lebesgue measure.
Note that Lr,r(Ω) = Lr(Ω) for r ∈ (1,∞] and L1,∞(Ω) = L1(Ω). Moreover, Lr,∞(Ω), r ∈ (1,∞), is

called the weak-Lr space and is denoted by Lr
w(Ω) := Lr,∞(Ω), ∥ · ∥r,w := ∥ · ∥r,∞. In addition, the Lorentz

space is also defined for r ∈ (0, 1), q ∈ (0,∞] and r ∈ [1,∞], q ∈ (0, 1) (see Komatsu [6]).
On the other hand, for 1 ≤ q ≤ ∞, the Lorentz spaces can be described by using interpolation pairs

as follows:

Lr,q(Ω) = (Lp0(Ω), Lp1(Ω))θ,q for
1
r
=

1 − θ
p0
+
θ

p1
with 1 < r < ∞ and 0 < θ < 1.

Readers can refer to [6–9] for the definition of Lorentz spaces and the properties of these spaces.
From [4, Lemma 1.1], we obtain

Lemma 2.1. Let 1 ≤ p, p1, p2 ≤ ∞, and 1 ≤ q, q1, q2 ≤ ∞ satisfy 1
p1
+ 1

p2
= 1

p ,
1
q1
+ 1

q2
= 1

q . If
f ∈ Lp1,q1(Ω), g ∈ Lp2,q2(Ω) then f g ∈ Lp,q(Ω) and

∥ f g∥p,q ≤ 2
1
p ∥ f ∥p1,q1∥g∥p2,q2 .

Let us assume

C∞0,σ(Ω) := {v ∈ C∞0 : div v = 0 in Ω},

Lr
σ(Ω) := C∞0,σ(Ω)

∥·∥Lr
, r ∈ (1,∞).

Let P = Pr be the Helmholtz projection on Lr(Ω), which means the projection onto Lr
σ(Ω)

corresponding to the following Helmholtz decomposition of Lr-vector fields (see [3, 10]):

Lr(Ω) = Lr
σ(Ω) ⊕ {∇p ∈ Lr(Ω) : p ∈ Lr

loc(Ω)}.
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We now give notation of the solenoidal Lorentz spaces which are defined by

Lr,q
σ (Ω) := (Lr0

σ (Ω), Lr1
σ (Ω))θ,q

with 1 < r0 < r < r1 < ∞, 1 ≤ q ≤ ∞ and 1
r =

1−θ
r0
+ θ

r1
. If q = ∞, then Lr

σ,w(Ω) := Lr,∞
σ (Ω). By

interpolation theory, the Helmholtz projection above defines a bounded projection P = Pr,q on Lorentz
space Lr,q(Ω) and

Lr,q
σ (Ω) = ImPr,q.

We also have (see [10, Theorem 5.2])

Lr,q(Ω) = Lr,q
σ (Ω) ⊕ {∇p ∈ Lr,q(Ω) : p ∈ Lr,q

loc(Ω)}.

Furthermore, if 1 ≤ q < ∞ then

(Lr,q
σ (Ω))′ = Lr′,q′

σ (Ω) here r′ =
r

r − 1
, q′ =

q
q − 1

and q′ = ∞ if q = 1.

2.2. Oseen operators

Let us now recall the Oseen operator in the space Lr
σ(Ω) with 1 < r < ∞. We define the linear

operators La,k and L
′

a,k in Lr
σ(Ω) by

D(La,k) :=
{
u ∈ Lr

σ(Ω) ∩W2,r(Ω) : u|∂Ω = 0 and ((ω × x) · ∇)u ∈ Lr(Ω)
}
,

La,ku := P [−∆u + kD3u − ((ω × x) · ∇)u + ω × u] for u ∈ D(La,k),

and
L
′

a,ku = P [−∆u − kD3u + ((ω × x) · ∇)u + ω × u] for D(L
′

a,k) = D(La,k).

We call La,k the Oseen operator in Lr
σ(Ω). Moreover, the Oseen operator −La,k is a generator of the

bounded C0-semigroup (e−tLa,k)t≥0 on Lr
σ(Ω), and if L∗a,k is an adjoint operator of La,k then L∗a,k = L

′

a,k,
see [11, 12].

By interpolation theory, (e−tLa,k)t≥0 is also the bounded C0-semigroup in the solenoidal Lorentz space
Lr,q
σ (Ω) with 1 ≤ q < ∞ and is strongly continuous on (0,∞) in Lr

σ,w(Ω). Moreover, we can transfer the
Lp−Lq decay estimates obtained by Shibata in [12, Theorem 3] for (e−tLa,k)t≥0 on Lr

σ(Ω) to the Lr,q−Lp,q

decay estimates for that semigroup on the space Lr,q
σ (Ω). We now list some important properties of the

semigroup (e−tLa,k)t≥0 on the solenoidal Lorentz spaces in the paper [5, Proposition 2.2].

Lemma 2.2. Let 1 < r < ∞, 1 ≤ q ≤ ∞ and denote by ∥ f ∥r,q the norm in the space Lr,q
σ (Ω). Then, the

following inequalities hold.

(i) For 1 < p ≤ r < ∞
∥e−tLa,k f ∥r,q, ∥e−tL

′

a,k f ∥r,q ≤ Mt−
3
2

(
1
p−

1
r

)
∥ f ∥p,q. (2.1)

(ii) Furthermore, when 1 < p ≤ r ≤ 3 and 1 ≤ q < ∞, we have

∥∇e−tLa,k f ∥r,q, ∥∇e−tL
′

a,k f ∥r,q ≤ Mt−
1
2−

3
2

(
1
p−

1
r

)
∥ f ∥p,q. (2.2)
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(iii) For 1 < p < r < ∞, 1 ≤ q < ∞ then

∥e−tLa,k f ∥r,q, ∥e−tL
′

a,k f ∥r,q ≤ Mt−
3
2

(
1
p−

1
r

)
∥ f ∥p, q

q−1
. (2.3)

(iv) Moreover, when 1 < p < r ≤ 3 and 1 ≤ q < ∞, we have

∥∇e−tLa,k f ∥r,q, ∥∇e−tL
′

a,k f ∥r,q ≤ Mt−
1
2−

3
2

(
1
p−

1
r

)
∥ f ∥p, q

q−1
. (2.4)

(v) For r ≥ 3 and f ∈ L
r−1

r ,1
σ (Ω), we have∫ ∞

0
∥∇e−tL

′

a,k f ∥ 3r
2r−3 ,1

dt ≤ M∥ f ∥ r
r−1 ,1. (2.5)

3. Stability of weak mild solutions

To prove the stability of the weak mild solution ũ in L3
σ,w(Ω), we will rewrite the system (1.4) in an

abstract form and then study the unique existence and properties of the solution z.Dtz +La,kz = P div (G − z ⊗ z − ũ ⊗ z − z ⊗ ũ), t > 0,
z|t=0 = z0 ∈ L3

σ,w(Ω).
(3.1)

Now, we restate the concept of weak mild solutions.

Definition 3.1. A continuous function z : (0,∞)→ L3
σ,w(Ω) is a weak mild solution of the system (3.1)

if it is a solution of the equation

⟨ z(t), φ ⟩ = ⟨ e−tLa,kz0, φ ⟩ −

∫ t

0
⟨ (G − z ⊗ z − ũ ⊗ z − z ⊗ ũ)(τ),∇e−(t−τ)L

′

a,k φ ⟩ dτ

for all φ ∈ L
3
2 ,1
σ (Ω) and t > 0.

For u ∈ Cb((0,∞), Lr
σ,w(Ω)), denote the norm ∥u∥∞,r,w = sup

t>0
∥u(t)∥r,w. The results on the stability of

ũ are as follows.

Theorem 3.2. Assume that ũ ∈ Cb((0,∞), L3
σ,w(Ω)) and G ∈ Cb((0,∞), L

3
2
σ,w(Ω)3×3). Let r ∈ (3,∞).

Then the constants δ > 0 and K > 0 exist such that if

∥z0∥3,w + ∥G∥∞, 32 ,w + ∥ũ∥∞,3,w < δ,

then the following assertions hold true.

(i) The system (3.1) has a unique weak mild solution z in Cb((0,∞), L3
σ,w(Ω)) satisfying

∥z∥∞,3,w ≤ K(∥z0∥3,w + ∥G∥∞, 32 ,w).
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(ii) If G satisfies sup
t>0

t
1
2−

3
2r ∥G(t)∥ 3r

r+3 ,w
< ∞, then there are constants δ1 ∈ (0, δ) and K1 > 0 such that if

∥z0∥3,w +max{∥G∥∞, 32 ,w, sup
t>0

t
1
2−

3
2r ∥G(t)∥ 3r

r+3 ,w
} + ∥ũ∥∞,3,w < δ1, (3.2)

then the solution z satisfies

∥z(t)∥r,w ≤ K1(∥z0∥3,w +max{∥G∥∞, 32 ,w, sup
t>0

t
1
2−

3
2r ∥G(t)∥ 3r

r+3 ,w
})t−

1
2+

3
2r for all t > 0.

(iii) Let p ∈
( 3r

r+3 , 3
)

and assume that the condition (3.2) holds. If sup
t>0

t
3

2p−
3
2r ∥G(t)∥ 3r

r+3 ,w
< ∞ and

z0 ∈ Lp
σ,w(Ω), then

sup
t>0

t−
1
2+

3
2p ∥z(t)∥3,w + sup

t>0
∥z(t)∥p,w < ∞.

Remark 3.3. By (i), the solution ũ is stable in L3
σ,w(Ω) following initial datum and external force.

Furthermore, from (iii), if G = 0, this solution is L3,∞-asymptotically stable, as the initial datum is
better.

Proof. For z ∈ Cb((0,∞), L3
σ,w(Ω)), we define the map T by z 7→ Tz such that for each t > 0, one has

⟨ (Tz)(t), φ ⟩ = ⟨ e−tLa,kz0, φ ⟩ −

∫ t

0
⟨ H(z)(τ),∇e−(t−τ)L

′

a,k φ ⟩ dτ

for all φ ∈ L
3
2 ,1
σ (Ω), where H(z) = G − z ⊗ z − ũ ⊗ z − z ⊗ ũ.

Fixed t > 0, by (2.1) and dual inequality, we have

| ⟨ (Tz)(t), φ ⟩ | ≤ | ⟨ e−tLa,kz0, φ ⟩ | +

∫ t

0

∣∣∣∣⟨ − H(z)(τ),∇e−(t−τ)L
′

a,k φ ⟩
∣∣∣∣ dτ

≤ M∥z0∥3,w∥φ∥ 3
2 ,1
+

∫ t

0
∥H(z)(τ)∥ 3

2 ,w
∥∇e−(t−τ)L

′

a,k φ∥3,1 dτ.

By Lemma 2.1, we have

z(t) ⊗ z(t) + ũ(t) ⊗ z(t) + z(t) ⊗ ũ(t) ∈ L
3
2
σ,w(Ω)3×3

and
∥z(t) ⊗ z(t) + ũ(t) ⊗ z(t) + z(t) ⊗ ũ(t)∥ 3

2 ,w
≤ 2

2
3 (∥z(t)∥23,w + 2∥z(t)∥3,w∥ũ(t)∥3,w).

Therefore,

∥H(z)∥∞, 32 ,w ≤ ∥G∥∞, 32 ,w + 2
2
3 (∥z∥2∞,3,w + 2∥z∥∞,3,w∥ũ∥∞,3,w). (3.3)

Thus,

| ⟨ (Tz)(t), φ ⟩ | ≤ M∥z0∥3,w∥φ∥ 3
2 ,1
+ ∥H(z)∥∞, 32 ,w

∫ t

0
∥∇e−(t−τ)L

′

a,k φ∥3,1 dτ
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≤ M∥z0∥3,w∥φ∥ 3
2 ,1
+ ∥H(z)∥∞, 32 ,w

∫ ∞

0
∥∇e−τL

′

a,k φ∥3,1 dτ.

By (2.5)
| ⟨ (Tz)(t), φ ⟩ | ≤ M∥z0∥3,w∥φ∥ 3

2 ,1
+ M∥H(z)∥∞, 32 ,w∥φ∥ 3

2 ,1
.

Hence, (Tz)(t) ∈ L3
σ,w(Ω) and by (3.3)

∥(Tz)(t)∥3,w ≤ M∥z0∥3,w + M∥H(z)∥∞, 32 ,w

≤ M
[
∥z0∥3,w + ∥G∥∞, 32 ,w + 2

2
3 (∥z∥2∞,3,w + 2∥z∥∞,3,w∥ũ∥∞,3,w)

]
(3.4)

for all t > 0.
For t2 > t1 > 0, we have

⟨ (Tz)(t2) − (Tz)(t1), φ ⟩ = ⟨ e−t2La,kz0 − e−t1La,kz0, φ ⟩

−

∫ t1

0
⟨ H(z)(t2 − τ) − H(z)(t1 − τ),∇e−τL

′

a,k φ ⟩ dτ

−

∫ t2

t1
⟨ H(z)(t2 − τ),∇e−τL

′

a,k φ ⟩ dτ.

Similar to the above, we obtain

∥(Tz)(t2) − (Tz)(t1)∥3,w ≤ ∥e−t2La,kz0 − e−t1La,kz0∥3,w

+ t1M sup
τ∈(0,t1]

∥H(z)(t2 − τ) − H(z)(t1 − τ)∥ 3
2 ,w

+ M∥H(z)∥∞, 32 ,w |t2 − t1|.

Since the functions e−tLa,kz0 and H(z) are continuous on (0,∞), it follows that the function Tz is also
continuous. Thus, Tz ∈ Cb((0,∞), L3

σ,w(Ω)).
Let Bρ be a closed ball in Cb((0,∞), L3

σ,w(Ω)) centered at 0 with a radius ρ. We will choose ρ such
that T : Bρ → Bρ and is a contractive mapping. The discussion is similar to the estimate of ∥(Tz)(t)∥3,w,
and we have

∥(Tz1)(t) − (Tz2)(t)∥3,w ≤ 2
2
3 (∥z1∥∞,3,w + ∥z2∥∞,3,w + 2∥ũ∥∞,3,w)∥z1 − z2∥∞,3,w

for all z1, z2 ∈ Cb((0,∞), L3
σ,w(Ω)) and t > 0. Therefore, for z, z1, z2 ∈ Bρ, we get a system of inequalitiesM
[
∥z0∥3,w + ∥G∥∞, 32 ,w + 2

2
3 (ρ2 + 2ρ∥ũ∥∞,3,w)

]
≤ ρ,

2
2
3 (2ρ + 2∥ũ∥∞,3,w) ≤ 1

2 .

Therefore, δ > 0 exists such that if

∥z0∥3,w + ∥G∥∞, 32 ,w + ∥ũ∥∞,3,w < δ,

then the system above has solution ρ > 0. So, T : Bρ → Bρ is a contractive mapping. This leads to the
system (3.1) having a unique solution in Cb((0,∞), L3

σ,w(Ω)). By (3.4), a constant K > 0 exists such
that

∥z∥∞,3,w ≤ K(∥z0∥3,w + ∥G∥∞, 32 ,w).
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To prove (ii), we set Banach space

M =
{
v ∈ Cb((0,∞), L3

σ,w(Ω)) : sup
t>0

t
1
2−

3
2r ∥v(t)∥r,w < ∞

}
endowed with the norm ∥v∥M := max{∥v∥∞,3,w, sup

t>0
t

1
2−

3
2r ∥v(t)∥r,w}. Put

∥G∥M = max{∥G∥∞, 32 ,w, sup
t>0

t
1
2−

3
2r ∥G(t)∥ 3r

r+3 ,w
}.

For z ∈ M, we have∣∣∣∣∣∣
∫ t

0
⟨ − H(z)(t − τ),∇e−τL

′

a,kφ ⟩ dτ

∣∣∣∣∣∣ ≤
∫ t

0

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ

≤

∫ t
2

0

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ

+

∫ t

t
2

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ. (3.5)

By dual inequality, Lemma 2.1, and (2.5), we get∫ t
2

0

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ

≤

∫ t
2

0
∥H(z)(t − τ)∥ 3r

r+3 ,w

∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤

∫ t
2

0

[
∥G(t − τ)∥ 3r

r+3 ,w
+ 2

r+3
3r (∥z(t − τ)∥3,w + 2∥ũ(t − τ)∥3,w)∥z(t − τ)∥r,w

] ∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤

( t
2

)− 1
2+

3
2r [
∥G∥M + 2

r+3
3r (∥z∥M + 2∥ũ∥∞,3,w)∥z∥M

] ∫ t
2

0

∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤ M1

( t
2

)− 1
2+

3
2r

(∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M)∥φ∥ r
r−1 ,1. (3.6)

On the other hand, by (2.2)∫ t

t
2

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ ≤ ∫ t

t
2

∥H(z)(t − τ)∥ 3
2 ,w

∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥

3,1
dτ

≤

∫ t

t
2

[
∥G(t − τ)∥ 3

2 ,w
+ (∥z(t − τ)∥3,w + 2∥ũ(t − τ)∥3,w)∥z(t − τ)∥3,w

] ∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥

3,1
dτ

≤ M(∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M)
∫ ∞

t
2

τ−
3
2+

3
2r ∥φ∥ r

r−1 ,1
dτ

≤ M2t−
1
2+

3
2r (∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M) ∥φ∥ r

r−1 ,1
. (3.7)

By (3.5), (3.6), and (3.7),∣∣∣∣∣∣
∫ t

0
⟨ − H(z)(t − τ),∇e−τL

′

a,kφ ⟩ dτ

∣∣∣∣∣∣ ≤ M̃t−
1
2+

3
2r (∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M) ∥φ∥ r

r−1 ,1
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for all φ ∈ C∞0,σ(Ω). Thus,

sup
t>0

t
1
2−

3
2r ∥(Tz)(t)∥r,w ≤ M∥z0∥3,w + M̃ (∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M). (3.8)

Combining (3.4) and (3.8), we get

∥Tz∥M ≤ C(∥z0∥3,w + ∥G∥M + ∥z∥2M + 2∥ũ∥∞,3,w∥z∥M).

Similarly, for z1, z2 ∈ M, we have

∥Tz1 − Tz2∥M ≤ C(∥z1∥M + ∥z2∥M + 2∥ũ∥∞,3,w)∥z1 − z2∥M.

Let ρ ∈ (0, 1) and consider ∥z∥M ≤ ρ. Then, δ1 ∈ (0, δ) exists such that if

∥z0∥3,w + ∥G∥M + ∥ũ∥∞,3,w < δ1,

then there is a ρ ∈ (0, 1) satisfyingC(∥z0∥3,w + ∥G∥M + ρ2 + 2ρ∥ũ∥∞,3,w) ≤ ρ,

C(2ρ + 2∥ũ∥∞,3,w) ≤ 1
2 .

Thus, the system (3.1) has a unique solution z inM and K1 > 0 exists such that

∥z∥M ≤ K1(∥z0∥3,w + ∥G∥M).

Hence,
∥z(t)∥r,w ≤ K1(∥z0∥3,w + ∥G∥M)t−

1
2+

3
2r for all t > 0.

We now prove (iii). For t > 0 and φ ∈ C∞0,σ(Ω), we have∫ t
2

0

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ

≤

∫ t
2

0

[
∥G(t − τ)∥ 3r

r+3 ,w
+ 2

r+3
3r (∥z(t − τ)∥3,w + 2∥ũ(t − τ)∥3,w)∥z(t − τ)∥r,w

] ∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤

( t
2

)− 3
2p+

3
2r

sup
s>0

s
3

2p−
3
2r ∥G(s)∥ 3r

r+3 ,w

∫ t
2

0

∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

+ 2
r+3
3r

( t
2

)− 3
2p+

3
2r

(∥z∥M + 2∥ũ∥∞,3,w)
∫ t

2

0
(t − τ)

3
2p−

3
2r ∥z(t − τ)∥r,w

∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤ M1

( t
2

)− 3
2p+

3
2r

(sup
s>0

s
3

2p−
3
2r ∥G(s)∥ 3r

r+3 ,w
+ (∥z∥M + 2∥ũ∥∞,3,w) sup

s∈(0,t]
s

3
2p−

3
2r ∥z(s)∥r,w)∥φ∥ r

r−1 ,1,

and ∫ t

t
2

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ
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≤

∫ t

t
2

[
∥G(t − τ)∥ 3r

r+3 ,w
+ 2

r+3
3r (∥z∥M + 2∥ũ∥∞,3,w)∥z(t − τ)∥r,w

] ∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤
(

sup
s>0

s
3

2p−
3
2r ∥G(s)∥ 3r

r+3 ,w

∫ t

t
2

(t − τ)−
3

2p+
3
2r

τ
dτ

+ 2
r+3
3r (∥z∥M + 2∥ũ∥∞,3,w) sup

s∈(0,t]
s

3
2p−

3
2r ∥z(s)∥r,w

∫ t

t
2

(t − τ)−
3

2p+
3
2r

τ
dτ
)
∥φ∥ r

r−1 ,1

≤ M2t−
3

2p+
3
2r (sup

s>0
s

3
2p−

3
2r ∥G(s)∥ 3r

r+3 ,w
+ (∥z∥M + 2∥ũ∥∞,3,w) sup

s∈(0,t]
s

3
2p−

3
2r ∥z(s)∥r,w)∥φ∥ r

r−1 ,1.

Thus,

t
3

2p−
3
2r ∥z(t)∥r,w ≤ M∥z0∥p,w + M̃m + M̃ (∥z∥M + 2∥ũ∥∞,3,w) sup

s∈(0,t]
s

3
2p−

3
2r ∥z(s)∥r,w, (3.9)

where m = sup
s>0

s
3

2p−
3
2r ∥G(s)∥ 3r

r+3 ,w
. On the other hand

s
3

2p−
3
2r ∥z(s)∥r,w = s

3
2p−

1
2 s

1
2−

3
2r ∥z(s)∥r,w ≤ t

3
2p−

1
2 ∥z∥M < ∞

for all s ∈ (0, t]. Therefore, by (3.9), C > 0 exists such that

sup
s∈(0,t]

s
3

2p−
3
2r ∥z(s)∥r,w ≤ C(∥z0∥p,w + m)

for all t > 0. So,
α := sup

t>0
t

3
2p−

3
2r ∥z(t)∥r,w < ∞. (3.10)

Because of p > 3r
r+3 >

3
2 , we have p

p−1 <
3r

2r−3 < 3. Therefore∫ t

0

∣∣∣∣⟨ − H(z)(t − τ),∇e−τL
′

a,kφ ⟩
∣∣∣∣ dτ

≤

∫ t

0

[
∥G(t − τ)∥ 3r

r+3 ,w
+ 2

r+3
3r (∥z∥M + 2∥ũ∥∞,3,w)∥z(t − τ)∥r,w

] ∥∥∥∥∇e−τL
′

a,kφ
∥∥∥∥ 3r

2r−3 ,1
dτ

≤ C(m + α(∥z∥M + 2∥ũ∥∞,3,w))∥φ∥ p
p−1 ,1

∫ t

0
(t − τ)−

3
2p+

3
2r τ−1+ 3

2p−
3
2r dτ

= C(m + α(∥z∥M + 2∥ũ∥∞,3,w))∥φ∥ p
p−1 ,1

∫ 1

0
(1 − τ)−

3
2p+

3
2r τ−1+ 3

2p−
3
2r dτ

for all φ ∈ C∞0,σ(Ω). Hence

∥z(t)∥p,w ≤ M∥z0∥p,w + C̃(m + α(∥z∥M + 2∥ũ∥∞,3,w))

for all t > 0. So,
β := sup

t>0
∥z(t)∥p,w < ∞. (3.11)
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By interpolation theory for Lorentz spaces (see [8, 9]), we have

L3
w(Ω) = (Lp

w(Ω), Lr
w(Ω))θ,∞ with θ =

r(3 − p)
3(r − p)

.

Therefore, from (3.10) and (3.11), we obtain

∥z(t)∥3,w ≤ ∥z(t)∥1−θp,w∥z(t)∥θr,w ≤ β
1−θαθtθ

(
3
2r−

3
2p

)
= Ct

1
2−

3
2p

for all t > 0. □
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