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1. Introduction

Let Q be an exterior domain with a smooth boundary complemented by an obstacle in R*. We are
concerned with the Navier—Stokes—Oseen equations

D+ (u-V)u— Au+ kDzu
—(wxx) - VYu+wxu+Vp = divF in Q X% (0, 00),
divu = 0 in Q X% (0, 00),
ux,t) = WXX— U on 0Q X (0, 00), (L.1)
u(x,0) = ug(x) in Q,
|llim u(x,t) = 0 for all ¢ € (0, 00).

This system describes the dynamics of incompressible viscous fluid flows passing a translating and
rotating obstacle, in which w = aes, e; = (0,0, 1)” and u., = ke; are, respectively, the angular velocity
and the translational velocity of an obstacle; u = u(x,t) = (uy, us, u3) is the velocity field of the fluid;


https://www.aimspress.com/journal/cam
http://dx.doi.org/10.3934/cam.2025036

899

p = p(x,1) is the pressure of the fluid; and F' = F(x,1) = (Fj)js=123 is the external force. Here
D, = 8/0, and V = (Dy, Dy, D3)" with D; = 0/d,,, i = 1,2,3. Note that divF = (3>_, D,F};)j=123.
Considering the case of fixed obstacles, i.e., a = k = 0, then this system becomes the Navier—Stokes
equations.

To study the system (1.1), a common approach is to use the Helmholtz projection to eliminate the
pressure function. Applying the Helmholtz projection P into the system (1.1), we have

Du+P((u-Vu) + L u = PdivFk in Q x (0, 00),
divu = 0 in QX (0, c0), (1.2)
u(x,1) = WX X— Ueo on 0Q X (0, ), ’
u(x,0) = Puy(x) x e,

where L, u = P[-Au + kDsu — ((w X x) - V)u + w X u]. We call the operator L, the Oseen operator.
See Section 2 for the Helmholtz projection and the Oseen operators. By divu = 0, the system (1.2) is
rewritten as follows:

Du+ L, u = Pdiv(F —uQ®u) in Q x (0, 00),
u(x, 1) = WX X— Uy on 0Q % (0, 00), (1.3)
u(x,0) = Puy(x) x e Q.

Many authors have studied the Navier—Stokes—Oseen equations, so hard to give a complete list of
research results on this topic. Therefore, we review only some previous works related to our purposes.
In the case a = k = 0, Kozono and Shimizu [1] have proved the unique existence of global mild
solutions with small initial data in the solenoidal Lorentz spaces L} ,,(R"), and the unique existence of
time-global weak mild solutions with small initial data in the solenoidal Lorentz spaces L7  (€2),n > 3
was shown by Yamazaki [2]. In the case k = 0, the unique existence of time-local mild solutions in
the spaces L/ (Q) have been proved by Geissert, Heck and Hieber [3]. Duoc [4] showed the unique
existence of time-local mild solutions to the system in (1.3) in the solenoidal Lorentz spaces
L), g < oo and the unique existence of time-global weak mild solutions to the system (1.3) in the
solenoidal Lorentz space L. ,(€). In addition, the unique existence of time-global mild solutions of
(1.3) in the solenoidal Lorentz spaces L?,’W(Q) was proved by [5].

Let 1 € Cu((0, oo),Lf,,W(Q)) be the weak mild solution of the system (1.3) corresponding to the
external force F, where C,((0, 00),L(3T’W(Q)) ={u : (0,00) — Lfr’w(Q) is a continuous function such
that sup |[u(?)|lsw < oo}. We note that the unique existence of the solution it € C,((0, o), L;W(Q)) is
guare{;%eed by [4]. Our goal in this paper is to show the stability of the solution i in the solenoidal
Lorentz space L;W(Q) following initial datum and external force. To study the stability of the solution
it in the solenoidal Lorentz space Lfr’W(Q), we set z(x,1) = u(x,t) —ii(x,t) and G = F — F. Tt is easy to
check that z satisfies the following system:

Diz+ Lz = Pdiv(G-zQz—- i ®z7—z7Q1ii) in Q x (0, ),
z2(x, 1) 0 on 0Q X (0, ), (1.4)
2(x,0) = zo(x) x€Q, zp€ L} (Q).

We now study the system in (1.4). Using the dual space pairs and observing the estimates of the
Oseen semigroup, we establish the unique existence and properties of the solution z. From that, we
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get the results for the stability of &. Thus, this paper is organized as follows. Section 2 is designed to
provide some preliminaries about the Oseen operators and solenoidal Lorentz spaces. In Section 3, we
recall the definition of a weak mild solution of the system (1.4) and then prove our main results in this

paper.
2. Preliminaries

In this section, we recall the definition of solenoidal Lorentz spaces and provide some properties of
strongly continuous semigroups generated by Oseen operators.

2.1. Solenoidal Lorentz spaces and Helmholtz projection

Forl <r<ooand 1 < g < oo, let L"(Q)) denote the Lorentz space on Q defined by
L™(Q) = {f € L) + L™(Q) : ||fllrg < o0},

with the norm 1
(7@ fr@)rdys  if 1< g < oo,
Wl =\ sup e £ if g = co.
>0
Here f*(t) = %fot fi(s)ds, f*(t) =inf{s > 0 : m({x € Q : |f(x)| > s}) < t}, for t > 0, and m denotes the
3-dimensional Lebesgue measure.

Note that L (Q) = L"(Q) for r € (1, 0] and L'*(Q) = L'(Q). Moreover, L"*(Q), r € (1, o), is
called the weak-L" space and is denoted by L, (Q2) := L"*(Q), || - |l.w := || - |l.co.. In addition, the Lorentz
space is also defined for r € (0, 1), g € (0, 0] and r € [1, o], g € (0, 1) (see Komatsu [6]).

On the other hand, for 1 < g < oo, the Lorentz spaces can be described by using interpolation pairs
as follows:

1 - 6
L(Q) = (L"(Q), L'(Q))gy for —= + —withl <r<ooand0 <6 < 1.
r Po P1

Readers can refer to [6-9] for the definition of Lorentz spaces and the properties of these spaces.
From [4, Lemma 1.1], we obtain

Lemma 2.1. Let 1 < p,p;,p, < oo, and 1 < q,q1,q2 < oo satisfy pll + plz = Il)

f € LP(Q), g € LP(Q) then fg € LP(Q) and

1
”fg”p,q S 2p||f||p1,q1||g||p2,q2'

Let us assume

Ce Q) :={veCy:divv=0 in Q},

{2

L(Q) :=Co Q) ", re(l,m).

Let P = P, be the Helmholtz projection on L"(£2), which means the projection onto L] (€2)
corresponding to the following Helmholtz decomposition of L"-vector fields (see [3, 10]):

L'(Q=L.(Q)e{VpeL(Q): pel. (Q).

loc
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We now give notation of the solenoidal Lorentz spaces which are defined by
LA(Q) = (L7 (), L7 (Q))eg

withl < ry <r<r < oo, ISqSooand}:I;"+%. If g = oo, then L ,(Q) := L;"(Q). By

ro
interpolation theory, the Helmholtz projection above defines a bounded projection P = P,, on Lorentz

space L"(Q) and
L(Q) = ImP,,.

We also have (see [10, Theorem 5.2])
L9(Q) = L'(Q) @ {Vp e L"(Q) : p € L' (Q)).

loc

Furthermore, if 1 < g < co then

(LH9(Q) = L77(Q)  here ¥ =

and ¢’ =0 if g=1.
q-—1

2.2. Oseen operators

Let us now recall the Oseen operator in the space L () with 1 < r < co. We define the linear
operators £, and .L;,k in L] () by

D(Lap) = {u e LI(Q)NW>(Q):ulsg =0 and (wXx)-V)u e U(Q)},
Lou :=P[-Au+kDsu— (wXxx) - Vu+wxu] for ue D(L,y),

and
L =P[-Au—kDsu+ (wxx) Vu+wxul for D(L,,)=D(Ly).

We call L, the Oseen operator in L] (€2). Moreover, the Oseen operator — L, is a generator of the
bounded Co-semigroup (e™"£+),5 on L (Q), and if L, is an adjoint operator of L, then £}, = L;, o
see [11,12].

By interpolation theory, (e7"£e*),5 is also the bounded Cy-semigroup in the solenoidal Lorentz space
L;(Q) with 1 < g < oo and is strongly continuous on (0, c0) in L;, ,(©). Moreover, we can transfer the
L? — L1 decay estimates obtained by Shibata in [12, Theorem 3] for (e7"£¢*),5 on L () to the L9 —LP4
decay estimates for that semigroup on the space L;?(Q). We now list some important properties of the

semigroup (e~"£a*),5, on the solenoidal Lorentz spaces in the paper [5, Proposition 2.2].

Lemma 2.2. Let 1 < r < o0, 1 < g < oo and denote by ||f||,, the norm in the space L;*(Q). Then, the
following inequalities hold.

(i) Forl < p<r<oo
o _3(1_1
e~ Lor Fllgs lle Loy fllrg < Mt 35 r)||f||pq 2.1)

(ii) Furthermore, when 1 < p <r <3 and1 < g < oo, we have
Ve 4% e Vet fllg < MG £ (2.2)
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(iii) For 1 < p<r<oo, 1 < g < oo then
_ L _3(1_1
™45 fllg, e fllng < M 3G, (2.3)

(iv) Moreover, when 1 < p <r <3 and1 < g < oo, we have

Vet Fllgo IVt fllg < MG, o (2.4)
(v) Forr>3and f € L?’I(Q), we have
[ wwe e il dr < w 2.5)
0

3. Stability of weak mild solutions

To prove the stability of the weak mild solution i in Lf’T’W(Q), we will rewrite the system (1.4) in an
abstract form and then study the unique existence and properties of the solution z.

{D,zu:a,kz: Pdiv(G-z®z—i®z—z®i), t>0, A

Zeo = 20 € L, (D).
Now, we restate the concept of weak mild solutions.
Definition 3.1. A continuous function z : (0, c0) — L;W(Q) is a weak mild solution of the system (3.1)
if it is a solution of the equation

t ’
(2(0),0) = (e Lz @) — f ((G-z®z-i®z-z@i)(7), Ve "t p) dr
0

forall g € L2 (Q) and £ > 0.

For u € C,((0, ), L, (1)), denote the norm |[[ul|e . = sup [|u(?)l|,.w. The results on the stability of
>0
it are as follows.

3
ow(Q)) and G € Cy((0, 00),L(2,,W(Q)3X3). Let r € (3, 00).
Then the constants 6 > 0 and K > 0 exist such that if

Theorem 3.2. Assume that it € Cy((0, o0), L?

1zoll3.w + IGlleo 3. + llitlloo3w <6,

then the following assertions hold true.

(1) The system (3.1) has a unique weak mild solution z in C,((0, o), L-;W(Q)) satisfying
llelleo 3.0 < K(llzoll0 + [1Glles 3 40)-
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(11) If G satisfies sup TR |G| 3y <0, then there are constants 8, € (0,0) and K, > 0 such that if
>0 3

Sup 12 |Gl o} + il 3 < 61, (3.2)

>0

lIzoll3,w + max{|G]|

003w
then the solution 7 satisfies

1_3 1.3
12Dllrw < Ki(llzollzw + max{llGlle 2 > sup 12~ ¥[GOl 2, D> forall 1> 0.
>0

(iii) Let p € (25.3) and assume that the condition (3.2) holds. If supt’ *||G()| -

432 < oo and
>0

20 € LG (Q), then

1.3
sup £~ 2 ||z(D)l3,w + sup [1z()]]p.w < .
>0 >0

Remark 3.3. By (i), the solution i is stable in L;W(Q) following initial datum and external force.
Furthermore, from (iii), if G = 0, this solution is L>*-asymptotically stable, as the initial datum is
better.

Proof. For z € C,((0, 00), L?

oW

(Q)), we define the map T by z — Tz such that for each r > 0, one has
t J
((T2)0), ) = (e 20, 0) - f (H(2)(1), Ve "ur ) dr
0

forall p € L2 (Q), where H(z) =G - 7@z — ii® 7 — 2 ® .
Fixed ¢ > 0, by (2.1) and dual inequality, we have

t
| < e_tLa,kZO, 90) | =+ f
0

! 7
MIIZoIIs,WIIQDII;,1+f IH@)@)Il3 Ve 70t gll3 , d.
0

[ (T2)(®),¢) | (- H)(T), Ve " Lu o)| dr

IA

IA

By Lemma 2.1, we have

21 ® 2(t) + (1) ® 2(t) + 2(0) ® (D) € LE ()

and
ll2(1) ® 2(2) + () ® (1) + 2(1) @ U(D)[3 ,, < 2%(|IZ(I)II§,W + 2/|z@ll3 wllit(Dl3,0)-
Therefore,
H@w 30 < IGlla 3.0 + 23012 3 + 202l slTs 30 (3.3)
Thus,

t
|<(TZ)(t),90>ISMIIZo|I3,w||50II;,1+||H(Z)|Ioo,g,wf Ve ™t gl dr
0
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< Mllzollswllells, + ||H(Z)||m,g,wf Ve ™ |51 dr.
0
By (2.5)
[ (T2)®), ) | < Mllzollswlleells 1 + MIH @)l 3w lloll3 -
Hence, (Tz)(1) € L2 ,(©) and by (3.3)
I(T2)Dll3w < Mllzoll3w + MIH(@)l0 3w
< M[llzoll3w + 1G 1l 3. + 2%(||Z||30,3,W + 2|12l oo 3,wllllc03,0)] (3.4)

for all ¢ > 0.
For t, > t; > 0, we have

((T2)(12) = (T2)(t1), @) = (e Fehigg — e Eokzg, )

- fl (H@(t:~1) -~ HR)(t — 1), Ve L g) dr
0

- f (HE)(1 — 1), Ve ™t @) dr.

Similar to the above, we obtain

I(T2)(t2) = (T2)(t)llzw < lle™> 5420 — 150z I3

+ 0 M sup [|[HZ)( —7) - H@)(n - 7lls,,
7€(0,t1]

+ MIH@)l 3 4 112 = 11l.

Since the functions e "£+z, and H(z) are continuous on (0, c0), it follows that the function Tz is also
continuous. Thus, 7'z € Cy((0, ), LY. ().

Let B, be a closed ball in C,((0, c0), Lg’W(Q)) centered at 0 with a radius p. We will choose p such
that T : B, — B, and is a contractive mapping. The discussion is similar to the estimate of ||(7'z)(?)||3 w.
and we have

2 -
I(Tz1)(®) = (Tz2)Dll3.w < 27 (21w + lI22lloo 30 + 2llitllo 3 w)ll21 = Z2lleo 3w

forall z;, 2, € Cp((0, ), L?

oW

(Q)) and ¢ > 0. Therefore, for z, 21,2, € B,, we get a system of inequalities

252p + 2llillo )

IA
NI

{M[||zO||3,w #1Gl 3. + 230> + 2pllElo3.)] < p,

Therefore, 6 > 0 exists such that if
Izoll3w + 1Glleo,3 s + llilloo 3w < 6,

then the system above has solution p > 0. So, T : B, — B, is a contractive mapping. This leads to the
system (3.1) having a unique solution in C,((0, o), LfT’W(Q)). By (3.4), a constant K > 0 exists such
that

llzllco 3.0 < K(llzoll3.0 + [1Glles 3 40)-
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To prove (ii), we set Banach space

M = {v € Cy((0, 00), L3 (@) : sup ™ F (D) < oo}

>0

. 1.3
endowed with the norm |[v|lyy := max{||[Vl||e3.w, sup 22~ 2 |[v(®)|],.w}. Put
>0

IGllm = max{[|Gl., 3 W,Sllpt2 G EE

>0

!
<f
0

< f ’ \( “HG@(-1), Ve_TL;vk(,o)|dT
0

!
+
L
2

For z € M, we have

f (~ HQ(t - 1), Ve Lup) dr
0

H@)(t - 7), Ve ug)|dr

(—H@@t-1), VefTL:akgo ) ‘ dr.

By dual inequality, Lemma 2.1, and (2.5), we get

HQ@)(t - 1), Ve L) ' dr

dr

3r
2r"51

f IH@) = Dl [T oxg

< f [IG(t = Dll 2 + 27 (et = Dl + 2t = Dl et = D] [Feorg

3r
2r-3 3

dr

3r
2r31

1
[\ 3t
= (5) [I1Gllm + 25 i (Ilzlh + 210 3 w1zl f HVe TLak(p

1
t _§+2r 2 -
<M, (E) (IGlIm + Mzl + 2llitllco 3, wllzlh)llepll 271

On the other hand, by (2.2)

4 t /
H(2)(t — 1), Ve ) ‘ dr < j: IH @) = Dll3 HVe‘TLa,k()D ‘3 1 dr
: :

! /
< f NG =Dl + (2t = Dl + 20l = Dllswllz(t = Dlls.w] |‘Ve_7£a,k(p
2

‘ dr
3,1

(o)
2 ~ _343
< M(lIGllm + llzlly; + 2||u||oo,3,w”Z”M)f T lgll 1y dT
t =
2

< Mot™3*5 (Gl + 112l + 2l 3 wllzlh) gl = -
By (3.5), (3.6), and (3.7),

f
I ~ 1.3 ~
f (= H(2)(t = 1), Ve ™ urg)y dr| < M2 (Gllm + lIzllfy + 2litlloo 3 wlzll) llell =
0

(3.5)

(3.6)

3.7)
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for all ¢ € Cgf’(r(Q). Thus,

sup 12~ |(T2) (Ol < Mllzolls + M (IGlvt + Nzl + 20illeo 30l 12lh)- (3.8)

>0

Combining (3.4) and (3.8), we get
IT2lls < Cllzollsw + Gl + Izl + 2llailloo.3.l12llka)-
Similarly, for z;,z, € M, we have
ITz1 — Tzallw < Cllzillv + llz2lha + 2Mlétllco 3 )l121 = 22l
Let p € (0, 1) and consider ||z|lys < p. Then, 6; € (0, d) exists such that if
lIzoll3.w + [|Gllm + [llleo 30 < 61,

then there is a p € (0, 1) satisfying

Cllzolls w + Gl + p* + 2plliEllw ) < p,
C(2p + 2fitlloo3,w)

IA
=

Thus, the system (3.1) has a unique solution z in M and K; > 0 exists such that

Izl < Ki(llzolls,w + [IGllm)-

Hence,
1 3
lzOllw < Ki(llzoll3w + [IGllm)t 27> forall ¢ > 0.

We now prove (iii). For# > 0 and ¢ € Cng(Q), we have

fo % (= H@ =), Ve )| dr

13
2 3 _ v
< f NG =Dl s + 25 (lz(t = Dllsw + 201 = D3l = Dllw] HVe arg| dr
0 2r-3>
1\ HtE 3_3 2 iy
S (_) Sup SZP 2f||G(S)||371 Wf ”Ve T a,k(p . dT
2 s>0 i 0 731
3 3 L
w3 (P - 2 i_3 L
#25 (2) 7 el + 2illos) | = D3 = Dl [V g, dr
0 2r-3°
3 3
N7 3.3 ~ 3_3
<M, (—) (sup %~ |Gl 2, o + (2l + 2liHlleo30) sUP 57 [|2()lrw)llepll 2.1,
2 550 8 s€(0.1]

and

( — HQ)(t — 1), Ve L) dr

!
\ﬂ
2
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dr

3r
2r31

!
f [IG( = D)l 3., + 2% el + 2l 32t = D] [Te o0

2

— 2p 2r
< (supsF 1G9, f kil

s>0

' 3.3
i3 . 3 3 (l‘ —_ T) 2p ' 2r
25 (lelhs + 2illoos) sup 57 F (5l f ————dr)llgll 5.
13
2

s€(0,1]

3.3
< Myt %" 5 (sup s 2'IIG(S)II sy + (2l + 2llitlloosw) sup s27 2 [|2()rw)llpl] 2.1

s>0 s€(0,1]

Thus,

3_3 ~ ~ - 3 _3
127 zOllrw < Mllzollpw + Mm + M (lIzlle + 2l|itllco3.5) sup s27 7 [|z($)llrw
s€(0,1]

where m = sup s2ﬂ 2r||G(s)|| - On the other hand

s>0
3.3 3.1 1.3 3.1
s2 7 ||z(lrw = 57728277 |2($)llrw < 7272 ||zlhy < o0
for all s € (0, #]. Therefore, by (3.9), C > 0 exists such that

3.3
sup s ||z(s)llw < Cllzollpw + m)
5€(0,1]

for all > 0. So,

3_3
@ := Sup 1% F[|z(D)]| < 0.
>0

Because of p > =%

fo t '( ~HQ)(t - 1), Ve Lug) ‘ dr

f
r+3 - iy
< f Gt = Dl + 2% lelhe + 2l s llett = Dl Ve g, ar
0

3r1

~ ! _3.3 _143_3
< Com + alidhy + 2l llgll £y | (=) 5 % 75 dr
0
~ : _3.3 _143_3
= COm + a(llzlly + 2lalleo s wlipll 2y | (1 =7)" 272 7772 > dr
0
for all ¢ € C(‘;"’U(Q). Hence

I2O)lpw < Mlzolly + Com + a2l + 2lidleo 3.0))

for all > 0. So,
B = sup||z()|]p,w < o0.

>0

(3.9)

(3.10)

(3.11)
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By interpolation theory for Lorentz spaces (see [8,9]), we have

r(3-p)
3(r—p)

L3(Q) = (LL(Q), L () with 6 =
Therefore, from (3.10) and (3.11), we obtain

_ _ 3_3 1_3
IOl < OISO, < B0aG5) = cris

rw —

for all £ > 0. O
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