Research article Special Issues

Maxwell equations with localized internal damping: strong and polynomial stability

  • Published: 10 October 2025
  • 35L60, 35Q

  • We study the Maxwell system with localized conductivity $ \sigma $ and the boundary conditions of a perfect conductor on a simply connected domain $ \Omega $, assuming that there are no electric charges off the support of $ \sigma $. For matrix-valued permittivity $ \varepsilon $ and permeability $ \mu $, we show strong stability of the underlying semigroup by checking the spectral criteria of the Arendt–Batty–Lyubich–Vũ Theorem. If $ \varepsilon = \mu = 1 $, $ \Omega $ is the cube $ (0, \pi)^3 $ and $ \text{supp}\, \sigma $ contains a strip, the semigroup is polynomially stable of rate $ \frac12 $. To derive this result, we establish the resolvent estimate of the Borichev–Tomilov Theorem using an orthonormal basis of eigenfunctions of the Maxwell operator for $ \sigma = 0 $.

    Citation: Serge Nicaise, Roland Schnaubelt. Maxwell equations with localized internal damping: strong and polynomial stability[J]. Communications in Analysis and Mechanics, 2025, 17(4): 849-877. doi: 10.3934/cam.2025034

    Related Papers:

  • We study the Maxwell system with localized conductivity $ \sigma $ and the boundary conditions of a perfect conductor on a simply connected domain $ \Omega $, assuming that there are no electric charges off the support of $ \sigma $. For matrix-valued permittivity $ \varepsilon $ and permeability $ \mu $, we show strong stability of the underlying semigroup by checking the spectral criteria of the Arendt–Batty–Lyubich–Vũ Theorem. If $ \varepsilon = \mu = 1 $, $ \Omega $ is the cube $ (0, \pi)^3 $ and $ \text{supp}\, \sigma $ contains a strip, the semigroup is polynomially stable of rate $ \frac12 $. To derive this result, we establish the resolvent estimate of the Borichev–Tomilov Theorem using an orthonormal basis of eigenfunctions of the Maxwell operator for $ \sigma = 0 $.



    加载中


    [1] M. Eller, Stability of the anisotropic Maxwell equations with a conductivity term, Evol. Equ. Control Theory, 8 (2019), 343–357. https://doi.org/10.3934/eect.2019018 doi: 10.3934/eect.2019018
    [2] S. Nicaise, C. Pignotti, Internal stabilization of Maxwell's equations in heterogeneous media, Abstr. Appl. Anal., 2005 (2005), 791–811. https://doi.org/10.1155/AAA.2005.791 doi: 10.1155/AAA.2005.791
    [3] S. Nicaise, C. Pignotti, Internal and boundary observability estimates for the heterogeneous Maxwell's system, Appl. Math. Optim., 54 (2006), 47–70. https://doi.org/10.1007/s00245-005-0851-0 doi: 10.1007/s00245-005-0851-0
    [4] K. D. Phung, Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87–137. https://doi.org/10.1051/cocv:2000103 doi: 10.1051/cocv:2000103
    [5] I. Lasiecka, M. Pokojovy, R. Schnaubelt, Exponential decay of quasilinear Maxwell equations with interior conductivity, Nonlinear Differ. Equ. Appl., 26 (2019), 51. https://doi.org/10.1007/s00030-019-0595-1 doi: 10.1007/s00030-019-0595-1
    [6] M. Eller, Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), 185–201. https://doi.org/10.1007/s00245-006-0886-x doi: 10.1007/s00245-006-0886-x
    [7] M. Eller, J. E. Lagnese, S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21 (2002), 135–165.
    [8] B. V. Kapitonov, Stabilization and exact boundary controllability for Maxwell's equations, SIAM J. Control Optim., 32 (1994), 408–420. https://doi.org/10.1137/S0363012991218487 doi: 10.1137/S0363012991218487
    [9] V. Komornik, Boundary stabilization, observation and control of Maxwell's equations, PanAmer. Math. J., 4 (1994), 47–61.
    [10] J. E. Lagnese, Exact boundary controllability of Maxwell's equations in a general region, SIAM J. Control Optim., 27 (1989), 374–388. https://doi.org/10.1137/0327019 doi: 10.1137/0327019
    [11] R. Nutt, R. Schnaubelt, Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary, J. Math. Anal. Appl., 532 (2024), 127915. https://doi.org/10.1016/j.jmaa.2023.127915 doi: 10.1016/j.jmaa.2023.127915
    [12] M. Cessenat, Mathematical Methods in Electromagnetism, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/2938
    [13] N. Skrepek, M. Waurick, Semi-uniform stabilization of anisotropic Maxwell's equations via boundary feedback on split boundary, J. Differential Equations, 394 (2024), 345–374. https://doi.org/10.1016/j.jde.2024.03.021 doi: 10.1016/j.jde.2024.03.021
    [14] K. D. Phung, Energy decay for Maxwell's equations with Ohm's law in partially cubic domains, Commun. Pure Appl. Anal., 12 (2013), 2229–2266. https://doi.org/10.3934/cpaa.2013.12.2229 doi: 10.3934/cpaa.2013.12.2229
    [15] Z. Liu, B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630–644. https://doi.org/10.1007/s00033-004-3073-4 doi: 10.1007/s00033-004-3073-4
    [16] M. Costabel, M. Dauge, Maxwell eigenmodes in product domains, In Maxwell's equations—analysis and numerics, volume 24 of Radon Ser. Comput. Appl. Math., De Gruyter, Berlin, 2019,171–198. https://doi.org/10.1515/9783110543612-006
    [17] F. Assous, P. Ciarlet, S. Labrunie, Mathematical Foundations of Computational Electromagnetism, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-70842-3
    [18] W. Arendt, C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 306 (1988), 837–852. https://doi.org/10.1090/S0002-9947-1988-0933321-3 doi: 10.1090/S0002-9947-1988-0933321-3
    [19] Y. I. Lyubich, Q. P. Vũ, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37–42. https://doi.org/10.4064/sm-88-1-37-42 doi: 10.4064/sm-88-1-37-42
    [20] T. Nguyen, J.-N. Wang, Quantitative uniqueness estimate for the Maxwell system with Lipschitz anisotropic media, Proc. Amer. Math. Soc., 140 (2012), 595–605. https://doi.org/10.1090/S0002-9939-2011-11137-7 doi: 10.1090/S0002-9939-2011-11137-7
    [21] M. Eller, M. Yamamoto, A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl., 86 (2006), 449–462. https://doi.org/10.1016/j.matpur.2006.10.004 doi: 10.1016/j.matpur.2006.10.004
    [22] C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci., 21 (1998), 823–864. https://doi.org/10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B doi: 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
    [23] M. Costabel, M. Dauge, Singularities of electromagnetic fields in polyhedral domains, ArchṘational Mech. Anal., 151 (2000), 221–276. https://doi.org/10.1007/s002050050197 doi: 10.1007/s002050050197
    [24] M. Costabel, M. Dauge, S. Nicaise, Singularities of Maxwell interface problems, RAIRO Modél. Math. Anal. Numér., 33 (1999), 627–649. https://doi.org/10.1051/m2an:1999155 doi: 10.1051/m2an:1999155
    [25] R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. Roy. Soc. Edinburgh Sect. A, 92 (1982), 165–174. https://doi.org/10.1017/S0308210500020023 doi: 10.1017/S0308210500020023
    [26] D. Pauly, R. Picard, S. Trostorff, M. Waurick, On a class of degenerate abstract parabolic problems and applications to some eddy current models, J. Funct. Anal., 280 (2021), 108847. https://doi.org/10.1016/j.jfa.2020.108847 doi: 10.1016/j.jfa.2020.108847
    [27] M. Costabel, M. Dauge, S. Nicaise, Singularities of eddy current problems, M2AN Math. Model. Numer. Anal., 37 (2003), 807–831. https://doi.org/10.1051/m2an:2003056 doi: 10.1051/m2an:2003056
    [28] S. Goldberg, Unbounded Linear Operators, Dover Publications, Inc., Mineola, NY, 2006.
    [29] A. Borichev, Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455–478. https://doi.org/10.1007/s00208-009-0439-0 doi: 10.1007/s00208-009-0439-0
    [30] A. Bátkai, K.-J. Engel, J. Prüss, R. Schnaubelt. Polynomial stability of operator semigroups, Math. Nachr., 279 (2006), 1425–1440. https://doi.org/10.1002/mana.200410429 doi: 10.1002/mana.200410429
    [31] C. J. K. Batty, T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ., 8 (2008), 765–780. https://doi.org/10.1007/s00028-008-0424-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(615) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog