In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω). We also obtained the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω).
Citation: Ming Liu, Binhua Feng. Grand weighted variable Herz-Morrey spaces estimate for some operators[J]. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012
[1] | Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On ψ-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005 |
[2] | M. J. Huntul . Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators. AIMS Mathematics, 2024, 9(11): 32734-32756. doi: 10.3934/math.20241566 |
[3] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[4] | Zihan Yue, Wei Jiang, Boying Wu, Biao Zhang . A meshless method based on the Laplace transform for multi-term time-space fractional diffusion equation. AIMS Mathematics, 2024, 9(3): 7040-7062. doi: 10.3934/math.2024343 |
[5] | Junseok Kim . A normalized Caputo–Fabrizio fractional diffusion equation. AIMS Mathematics, 2025, 10(3): 6195-6208. doi: 10.3934/math.2025282 |
[6] | Lahcene Rabhi, Mohammed Al Horani, Roshdi Khalil . Existence results of mild solutions for nonlocal fractional delay integro-differential evolution equations via Caputo conformable fractional derivative. AIMS Mathematics, 2022, 7(7): 11614-11634. doi: 10.3934/math.2022647 |
[7] | Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174 |
[8] | Amjid Ali, Teruya Minamoto, Rasool Shah, Kamsing Nonlaopon . A novel numerical method for solution of fractional partial differential equations involving the ψ-Caputo fractional derivative. AIMS Mathematics, 2023, 8(1): 2137-2153. doi: 10.3934/math.2023110 |
[9] | Jagdev Singh, Jitendra Kumar, Devendra Kumar, Dumitru Baleanu . A reliable numerical algorithm for fractional Lienard equation arising in oscillating circuits. AIMS Mathematics, 2024, 9(7): 19557-19568. doi: 10.3934/math.2024954 |
[10] | Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of φ−Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278 |
In this paper, we established the boundedness of higher-order commutators Imβ,b generated by the fractional integral operator with BMO functions on grand weighted variable-exponent Herz-Morrey spaces M˙Kα,r),θλ,p(⋅)(ω). We also obtained the boundedness of the m−order multilinear fractional Hardy operator Hβ,m and its adjoint operator H∗β,m on weighted variable-exponent Herz-Morrey spaces M˙Kα,λq,p(⋅)(ω).
Ostrowski proved the following interesting and useful integral inequality in 1938, see [18] and [15, page:468].
Theorem 1.1. Let f:I→R, where I⊆R is an interval, be a mapping differentiable in the interior I∘ of I and let a,b∈I∘ with a<b. If |f′(x)|≤M for all x∈[a,b], then the following inequality holds:
|f(x)−1b−a∫baf(t)dt|≤M(b−a)[14+(x−a+b2)2(b−a)2] | (1.1) |
for all x∈[a,b]. The constant 14 is the best possible in sense that it cannot be replaced by a smaller one.
This inequality gives an upper bound for the approximation of the integral average 1b−a∫baf(t)dt by the value of f(x) at point x∈[a,b]. In recent years, such inequalities were studied extensively by many researchers and numerous generalizations, extensions and variants of them appeared in a number of papers, see [1,2,10,11,19,20,21,22,23].
A function f:I⊆R→R is said to be convex (AA−convex) if the inequality
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) |
holds for all x,y∈I and t∈[0,1].
In [4], Anderson et al. also defined generalized convexity as follows:
Definition 1.1. Let f:I→(0,∞) be continuous, where I is subinterval of (0,∞). Let M and N be any two Mean functions. We say f is MN-convex (concave) if
f(M(x,y))≤(≥)N(f(x),f(y)) |
for all x,y∈I.
Recall the definitions of AG−convex functions, GG−convex functions and GA− functions that are given in [16] by Niculescu:
The AG−convex functions (usually known as log−convex functions) are those functions f:I→(0,∞) for which
x,y∈I and λ∈[0,1]⟹f(λx+(1−λ)y)≤f(x)1−λf(y)λ, | (1.2) |
i.e., for which logf is convex.
The GG−convex functions (called in what follows multiplicatively convex functions) are those functions f:I→J (acting on subintervals of (0,∞)) such that
x,y∈I and λ∈[0,1]⟹f(x1−λyλ)≤f(x)1−λf(y)λ. | (1.3) |
The class of all GA−convex functions is constituted by all functions f:I→R (defined on subintervals of (0,∞)) for which
x,y∈I and λ∈[0,1]⟹f(x1−λyλ)≤(1−λ)f(x)+λf(y). | (1.4) |
The article organized three sections as follows: In the first section, some definitions an preliminaries for Riemann-Liouville and new fractional conformable integral operators are given. Also, some Ostrowski type results involving Riemann-Liouville fractional integrals are in this section. In the second section, an identity involving new fractional conformable integral operator is proved. Further, new Ostrowski type results involving fractional conformable integral operator are obtained by using some inequalities on established lemma and some well-known inequalities such that triangle inequality, Hölder inequality and power mean inequality. After the proof of theorems, it is pointed out that, in special cases, the results reduce the some results involving Riemann-Liouville fractional integrals given by Set in [27]. Finally, in the last chapter, some new results for AG-convex functions has obtained involving new fractional conformable integrals.
Let [a,b] (−∞<a<b<∞) be a finite interval on the real axis R. The Riemann-Liouville fractional integrals Jαa+f and Jαb−f of order α∈C (ℜ(α)>0) with a≥0 and b>0 are defined, respectively, by
Jαa+f(x):=1Γ(α)∫xa(x−t)α−1f(t)dt(x>a;ℜ(α)>0) | (1.5) |
and
Jαb−f(x):=1Γ(α)∫bx(t−x)α−1f(t)dt(x<b;ℜ(α)>0) | (1.6) |
where Γ(t)=∫∞0e−xxt−1dx is an Euler Gamma function.
We recall Beta function (see, e.g., [28, Section 1.1])
B(α,β)={∫10tα−1(1−t)β−1dt(ℜ(α)>0;ℜ(β)>0)Γ(α)Γ(β)Γ(α+β) (α,β∈C∖Z−0). | (1.7) |
and the incomplete gamma function, defined for real numbers a>0 and x≥0 by
Γ(a,x)=∫∞xe−tta−1dt. |
For more details and properties concerning the fractional integral operators (1.5) and (1.6), we refer the reader, for example, to the works [3,5,6,7,8,9,14,17] and the references therein. Also, several new and recent results of fractional derivatives can be found in the papers [29,30,31,32,33,34,35,36,37,38,39,40,41,42].
In [27], Set gave some Ostrowski type results involving Riemann-Liouville fractional integrals, as follows:
Lemma 1.1. Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If f′∈L[a,b], then for all x∈[a,b] and α>0 we have:
(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]=(x−a)α+1b−a∫10tαf′(tx+(1−t)a)dt−(b−x)α+1b−a∫10tαf′(tx+(1−t)b)dt |
where Γ(α) is Euler gamma function.
By using the above lemma, he obtained some new Ostrowski type results involving Riemann-Liouville fractional integral operators, which will generalized via new fractional integral operators in this paper.
Theorem 1.2. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′| is s−convex in the second sense on [a,b] for some fixed s∈(0,1] and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals with α>0 holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤Mb−a(1+Γ(α+1)Γ(s+1)Γ(α+s+1))[(x−a)α+1+(b−x)α+1α+s+1] |
where Γ is Euler gamma function.
Theorem 1.3. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−convex in the second sense on [a,b] for some fixed s∈(0,1],p,q>1 and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤M(1+pα)1p(2s+1)1q[(x−a)α+1+(b−x)α+1b−a] |
where 1p+1q=1, α>0 and Γ is Euler gamma function.
Theorem 1.4. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−convex in the second sense on [a,b] for some fixed s∈(0,1],q≥1 and |f′(x)|≤M, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤M(1+α)1−1q(1+Γ(α+1)Γ(s+1)Γ(α+s+1))1q[(x−a)α+1+(b−x)α+1b−a] |
where α>0 and Γ is Euler gamma function.
Theorem 1.5. Let f:[a,b]⊂[0,∞)→R be a differentiable mapping on (a,b) with a<b such that f′∈L[a,b]. If |f′|q is s−concave in the second sense on [a,b] for some fixed s∈(0,1],p,q>1, x∈[a,b], then the following inequality for fractional integrals holds:
|(x−a)α+(b−x)αb−af(x)−Γ(α+1)b−a[Jαx−f(a)+Jαx+f(b)]|≤2s−1q(1+pα)1p(b−a)[(x−a)α+1|f′(x+a2)|+(b−x)α+1|f′(b+x2)|] |
where 1p+1q=1, α>0 and Γ is Euler gamma function.
Some fractional integral operators generalize the some other fractional integrals, in special cases, as in the following integral operator. Jarad et. al. [13] has defined a new fractional integral operator. Also, they gave some properties and relations between the some other fractional integral operators, as Riemann-Liouville fractional integral, Hadamard fractional integrals, generalized fractional integral operators etc., with this operator.
Let β∈C,Re(β)>0, then the left and right sided fractional conformable integral operators has defined respectively, as follows;
βaJαf(x)=1Γ(β)∫xa((x−a)α−(t−a)αα)β−1f(t)(t−a)1−αdt; | (1.8) |
βJαbf(x)=1Γ(β)∫bx((b−x)α−(b−t)αα)β−1f(t)(b−t)1−αdt. | (1.9) |
The results presented here, being general, can be reduced to yield many relatively simple inequalities and identities for functions associated with certain fractional integral operators. For example, the case α=1 in the obtained results are found to yield the same results involving Riemann-Liouville fractional integrals, given before, in literatures. Further, getting more knowledge, see the paper given in [12]. Recently, some studies on this integral operators appeared in literature. Gözpınar [13] obtained Hermite-Hadamard type results for differentiable convex functions. Also, Set et. al. obtained some new results for quasi−convex, some different type convex functions and differentiable convex functions involving this new operator, see [24,25,26]. Motivating the new definition of fractional conformable integral operator and the studies given above, first aim of this study is obtaining new generalizations.
Lemma 2.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. Then the following equality for fractional conformable integrals holds:
(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]=(x−a)αβ+1b−a∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt. |
where α,β>0 and Γ is Euler Gamma function.
Proof. Using the definition as in (1.8) and (1.9), integrating by parts and and changing variables with u=tx+(1−t)a and u=tx+(1−t)b in
I1=∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt,I2=∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt |
respectively, then we have
I1=∫10(1−(1−t)αα)βf′(tx+(1−t)a)dt=(1−(1−t)αα)βf(tx+(1−t)a)x−a|10−β∫10(1−(1−t)αα)β−1(1−t)α−1f(tx+(1−t)a)x−adt=f(x)αβ(x−a)−β∫xa(1−(x−ux−a)αα)β−1(x−ux−a)α−1f(u)x−adux−a=f(x)αβ(x−a)−β(x−a)αβ+1∫xa((x−a)α−(x−u)αα)β−1(x−u)α−1f(u)du=f(x)αβ(x−a)−Γ(β+1)(x−a)αβ+1βJαxf(a), |
similarly
I2=∫10(1−(1−t)αα)βf′(tx+(1−t)b)dt=−f(x)αβ(b−x)+Γ(β+1)(b−x)αβ+1βxJαf(b) |
By multiplying I1 with (x−a)αβ+1b−a and I2 with (b−x)αβ+1b−a we get desired result.
Remark 2.1. Taking α=1 in Lemma 2.1 is found to yield the same result as Lemma 1.1.
Theorem 2.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′| is convex on [a,b] and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.1) |
where α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. From Lemma 2.1 we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|dt≤(x−a)αβ+1b−a[∫10(1−(1−t)αα)βt|f′(x)|dt+∫10(1−(1−t)αα)β(1−t)|f′(a)|dt]+(b−x)αβ+1b−a[∫10(1−(1−t)αα)βt|f′(x)|dt+∫10(1−(1−t)αα)β(1−t)|f′(b)|dt]. | (2.2) |
Notice that
∫10(1−(1−t)αα)βtdt=1αβ+1[B(1α,β+1)−B(2α,β+1)],∫10(1−(1−t)αα)β(1−t)dt=B(2α,β+1)αβ+1. | (2.3) |
Using the fact that, |f′(x)|≤M for x∈[a,b] and combining (2.3) with (2.2), we get desired result.
Remark 2.2. Taking α=1 in Theorem 3.1 and s=1 in Theorem 1.2 are found to yield the same results.
Theorem 2.2. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is convex on [a,b], p,q>1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤M[B(βp+1,1α)αβ+1]1p[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.4) |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. By using Lemma 2.1, convexity of |f′|q and well-known Hölder's inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)a)|qdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)b)|qdt)1q]. | (2.5) |
Notice that, changing variables with x=1−(1−t)α, we get
∫10(1−(1−t)αα)βp=B(βp+1,1α)αβ+1. | (2.6) |
Since |f′|q is convex on [a,b] and |f′|q≤Mq, we can easily observe that,
∫10|f′(tx+(1−t)a)|qdt≤∫10t|f′(x)|qdt+∫10(1−t)|f′(a)|qdt≤Mq. | (2.7) |
As a consequence, combining the equality (2.6) and inequality (2.7) with the inequality (2.5), the desired result is obtained.
Remark 2.3. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.3 are found to yield the same results.
Theorem 2.3. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is convex on [a,b], q≥1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a] | (2.8) |
where α,β>0, B(x,y) and Γ are Euler Beta and Euler Gamma functions respectively.
Proof. By using Lemma 2.1, convexity of |f″|q and well-known power-mean inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a(∫10(1−(1−t)αα)βdt)1−1q(∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|qdt)1q+(b−x)αβ+1b−a(∫10(1−(1−t)αα)βdt)1−1q(∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|qdt)1q. | (2.9) |
Since |f′|q is convex and |f′|q≤Mq, by using (2.3) we can easily observe that,
∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|qdt≤∫10(1−(1−t)αα)β[t|f′(x)|q+(1−t)|f′(a)|q]dt≤Mqαβ+1B(1α,β+1). | (2.10) |
As a consequence,
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a(1αβ+1B(1α,β+1))1−1q(Mqαβ+1B(1α,β+1))1q+(b−x)αβ+1b−a(1αβ+1B(1α,β+1))1−1q(Mqαβ+1B(1α,β+1))1q=Mαβ+1B(1α,β+1)[(x−a)αβ+1b−a+(b−x)αβ+1b−a]. | (2.11) |
This means that, the desired result is obtained.
Remark 2.4. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.4 are found to yield the same results.
Theorem 2.4. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is concave on [a,b], p,q>1 and |f′(x)|≤M with x∈[a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤[B(βp+1,1α)αβ+1]1p[(x−a)αβ+1b−a|f′(x+a2)|+(b−x)αβ+1b−a|f′(x+b2)|] | (2.12) |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler Beta and Gamma functions respectively.
Proof. By using Lemma 2.1 and well-known Hölder's inequality, we have
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)a)|qdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(∫10|f′(tx+(1−t)b)|qdt)1q]. | (2.13) |
Since |f″|q is concave, it can be easily observe that,
|f′(tx+(1−t)a)|qdt≤|f′(x+a2)|,|f′(tx+(1−t)b)|qdt≤|f′(b+x2)|. | (2.14) |
Notice that, changing variables with x=1−(1−t)α, as in (2.6), we get,
∫10(1−(1−t)αα)βp=B(βp+1,1α)αβ+1. | (2.15) |
As a consequence, substituting (2.14) and (2.15) in (2.13), the desired result is obtained.
Remark 2.5. Taking α=1 in Theorem 3.2 and s=1 in Theorem 1.5 are found to yield the same results.
Some new inequalities for AG-convex functions has obtained in this chapter. For the simplicity, we will denote |f′(x)||f′(a)|=ω and |f′(x)||f′(b)|=ψ.
Theorem 3.1. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′| is AG−convex on [a,b], then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤|f′(a)|(x−a)αβ+1αβ(b−a)[ω−1lnω−(ωln−αβ−1(ω)(Γ(αβ+1)−Γ(αβ+1,lnω)))]+|f′(b)|(b−x)αβ+1αβ(b−a)[ψ−1lnψ−(ψln−αβ−1(ψ)(Γ(αβ+1)−Γ(αβ+1,lnψ)))] |
where α>0,β>1, Re(lnω)<0∧Re(lnψ)<0∧Re(αβ)>−1,B(x,y),Γ(x,y) and Γ are Euler Beta, Euler incomplete Gamma and Euler Gamma functions respectively.
Proof. From Lemma 2.1 and definition of AG−convexity, we have
(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]≤(x−a)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)a)|dt+(b−x)αβ+1b−a∫10(1−(1−t)αα)β|f′(tx+(1−t)b)|dt≤(x−a)αβ+1b−a[∫10(1−(1−t)αα)β|f′(a)|(|f′(x)||f′(a)|)tdt]+(b−x)αβ+1b−a[∫10(1−(1−t)αα)β|f′(b)|(|f′(x)||f′(b)|)tdt]. | (3.1) |
By using the fact that |1−(1−t)α|β≤1−|1−t|αβ for α>0,β>1, we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1αβ(b−a)[∫10(1−|1−t|αβ)|f′(a)|(|f′(x)||f′(a)|)tdt]+(b−x)αβ+1αβ(b−a)[∫10(1−|1−t|αβ)|f′(b)|(|f′(x)||f′(b)|)tdt]. |
By computing the above integrals, we get the desired result.
Theorem 3.2. Let f:[a,b]→R be a differentiable function on (a,b) with a<b and f′∈L[a,b]. If |f′|q is AG−convex on [a,b] and p,q>1, then the following inequality for fractional conformable integrals holds:
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(B(βp+1,1α)αβ+1)1p[|f′(a)|(x−a)αβ+1b−a(ωq−1qlnω)1q+|f′(b)|(b−x)αβ+1b−a(ψq−1qlnψ)1q]. |
where 1p+1q=1, α,β>0, B(x,y) and Γ are Euler beta and Euler gamma functions respectively.
Proof. By using Lemma 2.1, AG−convexity of |f′|q and well-known Hölder's inequality, we can write
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(x−a)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(|f′(a)|q∫10(|f′(x)||f′(a)|)qtdt)1q]+(b−x)αβ+1b−a[(∫10(1−(1−t)αα)βp)1p(|f′(b)|q∫10(|f′(x)||f′(b)|)qtdt)1q]. |
By a simple computation, one can obtain
|(x−a)αβ+(b−x)αβ(b−a)αβf(x)−Γ(β+1)b−a[βxJαf(b)+βJαxf(a)]|≤(B(βp+1,1α)αβ+1)1p×[|f′(a)|(x−a)αβ+1b−a(ωq−1qlnω)1q+|f′(b)|(b−x)αβ+1b−a(ψq−1qlnψ)1q]. |
This completes the proof.
Corollary 3.1. In our results, some new Ostrowski type inequalities can be derived by choosing |f′|≤M. We omit the details.
The authors declare that no conflicts of interest in this paper.
[1] |
O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 582–618. http://dx.doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
![]() |
[2] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable Lp spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[3] |
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(⋅) and Wk,p(⋅), Math. Nachr., 268 (2004), 31–43. https://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157
![]() |
[4] |
A. Nekvinda, Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl., 7 (2004), 255–265. https://doi.org/10.7153/mia-07-28 doi: 10.7153/mia-07-28
![]() |
[5] | H. Wang, Z. Fu, Z. Liu, Higher order commutators of Marcinkiewicz integrals on variable Lebesgue spaces, Acta Math. Sci. A, 32 (2012), 1092–1101. |
[6] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
![]() |
[7] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
![]() |
[8] |
L. Wang, M. Qu, L. Shu, Higher Order Commutators of Fractional Integral Operator on the Homogeneous Herz Spaces with Variable Exponent, J. Funct. Space. Appl., 2013 (2013), 1–7. https://doi.org/10.1155/2013/257537 doi: 10.1155/2013/257537
![]() |
[9] |
S. Lu, L. Xu, Boundedness of rough singular integral operators on the Homogeneous Morrey-Herz spaces, Hokkaido Math. J., 34 (2005), 299–314. https://doi.org/10.14492/hokmj/1285766224 doi: 10.14492/hokmj/1285766224
![]() |
[10] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[11] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. https://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[12] | J. Wu, P. Zhang, Boundedness of Multilinear Fractional Hardy Operators on the Product of Herz-Morrey Spaces with Variable Exponent, J. Coll. Univ., 2 (2013), 154–164. |
[13] |
J. Wu, Boundedness for commutators of fractional integrals on Herz-Morrey spaces with variable exponent, Kyoto J. Math., 54 (2014), 483–495. https://doi.org/10.1215/21562261-2693397 doi: 10.1215/21562261-2693397
![]() |
[14] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 223–238. https://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
![]() |
[15] |
D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Am. Math. Soc., 369 (2017), 1205–1235. https://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
![]() |
[16] | M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J.Anal. Appl., 11 (2013), 27–41. |
[17] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[18] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
![]() |
[19] |
M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponent, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.7153/jmi-2017-11-62 doi: 10.7153/jmi-2017-11-62
![]() |
[20] |
M. Izuki, T. Noi, Two weighted Herz spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
![]() |
[21] |
M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 1–12. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
![]() |
[22] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the Fractional Hardy Operator on Weighted Variable Herz-Morrey Spaces, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[23] | S. Wang, J. Xu, Commutators of bilinear hardy operators on weighted Herz-Morrey spaces with variable exponent, Acta Math. Sin., 64 (2021), 123–138. |
[24] |
S. Wang, J. Xu, Boundedness of vector-valued sublinear operators on weighted Herz-Morrey spaces with variable exponent, Open Math., 19 (2021), 412–426. https://doi.org/10.1515/math-2021-0024 doi: 10.1515/math-2021-0024
![]() |
[25] | D. Xiao, L. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Math. Res. Commun., 34 (2018), 371–382. |
[26] | H. Zhao, Z. Liu, Boundedness of commutators of fractional integral operators on variable weighted Herz-Morrey spaces, Adv. Math., 51 (2022), 103–116. |
[27] |
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
![]() |
[28] |
F. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
![]() |
[29] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[30] |
M. Chirst, L. Grafakos, Best constants for two non-convolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. https://doi.org/10.1090/S0002-9939-1995-1239796-6 doi: 10.1090/S0002-9939-1995-1239796-6
![]() |
[31] |
Z. Fu, Z. Liu, S. Lu, H. Wong, Characterization for commutators of n−dimensional fractional Hardy operators, Sci. China, Ser. A: Math., 50 (2007), 1418–1426. https://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
![]() |
[32] |
B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz-Morrey Spaces with Variable Exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
![]() |
[33] |
B. Sultan, M. Sultan, M. Mehmood, M. Azmi, F. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
![]() |
[34] | C. Bennett, R. C. Sharpley, Interpolation of Operators, Springer-Verlag, New York, 1988. |
[35] |
A. L. Bernardis, E. D. Dalmasso, G. G. Pradolini, Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces, Ann. Acad. Sci. Fenn. Math., 39 (2014), 23–50. https://doi.org/10.5186/aasfm.2014.3904 doi: 10.5186/aasfm.2014.3904
![]() |
[36] |
A. W. Huang, J. S. Xu, Multilinear singular integrals and commutators in variable exponent Lebesgue spaces, Appl. Math. J. Chin. Univ., 25 (2010), 69–77. https://doi.org/10.1007/s11766-010-2167-3 doi: 10.1007/s11766-010-2167-3
![]() |
[37] |
C. Kening, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1991), 1–15. http://dx.doi.org/10.4310/mrl.1999.v6.n1.a1 doi: 10.4310/mrl.1999.v6.n1.a1
![]() |
1. | Anjali Upadhyay, Surendra Kumar, The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential, 2023, 168, 09600779, 113202, 10.1016/j.chaos.2023.113202 | |
2. | Amadou Diop, Wei-Shih Du, Existence of Mild Solutions for Multi-Term Time-Fractional Random Integro-Differential Equations with Random Carathéodory Conditions, 2021, 10, 2075-1680, 252, 10.3390/axioms10040252 | |
3. | Yong-Kui Chang, Jianguo Zhao, Some new asymptotic properties on solutions to fractional evolution equations in Banach spaces, 2021, 0003-6811, 1, 10.1080/00036811.2021.1969016 | |
4. | Ahmad Al-Omari, Hanan Al-Saadi, António M. Lopes, Impulsive fractional order integrodifferential equation via fractional operators, 2023, 18, 1932-6203, e0282665, 10.1371/journal.pone.0282665 | |
5. | Hiba El Asraoui, Ali El Mfadel, M’hamed El Omari, Khalid Hilal, Existence of mild solutions for a multi-term fractional differential equation via ψ-(γ,σ)-resolvent operators, 2023, 16, 1793-5571, 10.1142/S1793557123502121 | |
6. | Zhiyuan Yuan, Luyao Wang, Wenchang He, Ning Cai, Jia Mu, Fractional Neutral Integro-Differential Equations with Nonlocal Initial Conditions, 2024, 12, 2227-7390, 1877, 10.3390/math12121877 | |
7. | Jia Mu, Zhiyuan Yuan, Yong Zhou, Mild Solutions of Fractional Integrodifferential Diffusion Equations with Nonlocal Initial Conditions via the Resolvent Family, 2023, 7, 2504-3110, 785, 10.3390/fractalfract7110785 |