Loading [MathJax]/jax/output/SVG/jax.js
Research article

The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation

  • Received: 13 January 2024 Revised: 27 November 2024 Accepted: 07 January 2025 Published: 10 February 2025
  • 35A01, 35Q35, 76D03

  • This paper studies a special 2D anisotropic incompressible Boussinesq equation in T2 with T=[12,12] being a 1D periodic box. The system concerned here possesses vertical dissipation only in the vertical component of the velocity and vertical heat diffusion. When the buoyancy forcing is not present, the 2D Boussinesq equation is a 2D Navier-Stokes equation with vertical dissipation only in the vertical component. The stability and large-time behavior problem on the solutions to the 2D Navier-Stokes equation with only vertical or horizontal dissipation remains unknown. When coupled with the temperature, the global regularity to the system with vertical dissipation and vertical diffusion in R2 has been solved by Cao and Wu (Arch. Ration. Mech. Anal., 208(2013), 985-1004). The stability with horizontal dissipation and horizontal diffusion in the periodic domain T×R has also been established by Dong, Wu, Xu, and Zhu (Calc. Var. Partial Differential Equations, 60(2021)) recently. Now whether the solution of the 2D system remains stable has yet to be solved when the velocity has vertical dissipation only in the u2 equation. This paper aims to solve the problem and investigates the stability and large-time behavior of the solution to the special 2D Boussinesq equations on perturbations near the hydrostatic equilibrium. The basic idea here is to decompose the physical quantity f into its horizontal average, vertical average, and their corresponding oscillations. By establishing the strong Poincaré-type inequalities and several anisotropic inequalities related to the oscillations, we are able to obtain H2-stability of the solution under the assumptions that the initial data is sufficiently small and obeys some symmetries. Furthermore, the exponential decay rates for the oscillation parts in H1 are also established.

    Citation: Hongxia Lin, Sabana, Qing Sun, Ruiqi You, Xiaochuan Guo. The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation[J]. Communications in Analysis and Mechanics, 2025, 17(1): 100-127. doi: 10.3934/cam.2025005

    Related Papers:

    [1] Obaid Algahtani, M. A. Abdelkawy, António M. Lopes . A pseudo-spectral scheme for variable order fractional stochastic Volterra integro-differential equations. AIMS Mathematics, 2022, 7(8): 15453-15470. doi: 10.3934/math.2022846
    [2] Yingchao Zhang, Yingzhen Lin . An ε-approximation solution of time-fractional diffusion equations based on Legendre polynomials. AIMS Mathematics, 2024, 9(6): 16773-16789. doi: 10.3934/math.2024813
    [3] Yingchao Zhang, Yuntao Jia, Yingzhen Lin . An ε-approximate solution of BVPs based on improved multiscale orthonormal basis. AIMS Mathematics, 2024, 9(3): 5810-5826. doi: 10.3934/math.2024282
    [4] Chuanhua Wu, Ziqiang Wang . The spectral collocation method for solving a fractional integro-differential equation. AIMS Mathematics, 2022, 7(6): 9577-9587. doi: 10.3934/math.2022532
    [5] Hui Zhu, Liangcai Mei, Yingzhen Lin . A new algorithm based on compressed Legendre polynomials for solving boundary value problems. AIMS Mathematics, 2022, 7(3): 3277-3289. doi: 10.3934/math.2022182
    [6] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [7] A.S. Hendy, R.H. De Staelen, A.A. Aldraiweesh, M.A. Zaky . High order approximation scheme for a fractional order coupled system describing the dynamics of rotating two-component Bose-Einstein condensates. AIMS Mathematics, 2023, 8(10): 22766-22788. doi: 10.3934/math.20231160
    [8] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [9] Yuanqiang Chen, Jihui Zheng, Jing An . A Legendre spectral method based on a hybrid format and its error estimation for fourth-order eigenvalue problems. AIMS Mathematics, 2024, 9(3): 7570-7588. doi: 10.3934/math.2024367
    [10] Yones Esmaeelzade Aghdam, Hamid Mesgarani, Zeinab Asadi, Van Thinh Nguyen . Investigation and analysis of the numerical approach to solve the multi-term time-fractional advection-diffusion model. AIMS Mathematics, 2023, 8(12): 29474-29489. doi: 10.3934/math.20231509
  • This paper studies a special 2D anisotropic incompressible Boussinesq equation in T2 with T=[12,12] being a 1D periodic box. The system concerned here possesses vertical dissipation only in the vertical component of the velocity and vertical heat diffusion. When the buoyancy forcing is not present, the 2D Boussinesq equation is a 2D Navier-Stokes equation with vertical dissipation only in the vertical component. The stability and large-time behavior problem on the solutions to the 2D Navier-Stokes equation with only vertical or horizontal dissipation remains unknown. When coupled with the temperature, the global regularity to the system with vertical dissipation and vertical diffusion in R2 has been solved by Cao and Wu (Arch. Ration. Mech. Anal., 208(2013), 985-1004). The stability with horizontal dissipation and horizontal diffusion in the periodic domain T×R has also been established by Dong, Wu, Xu, and Zhu (Calc. Var. Partial Differential Equations, 60(2021)) recently. Now whether the solution of the 2D system remains stable has yet to be solved when the velocity has vertical dissipation only in the u2 equation. This paper aims to solve the problem and investigates the stability and large-time behavior of the solution to the special 2D Boussinesq equations on perturbations near the hydrostatic equilibrium. The basic idea here is to decompose the physical quantity f into its horizontal average, vertical average, and their corresponding oscillations. By establishing the strong Poincaré-type inequalities and several anisotropic inequalities related to the oscillations, we are able to obtain H2-stability of the solution under the assumptions that the initial data is sufficiently small and obeys some symmetries. Furthermore, the exponential decay rates for the oscillation parts in H1 are also established.



    In this paper, we propose shifted-Legendre orthogonal function method for high-dimensional heat conduction equation [1]:

    {ut=k(2ux2+2uy2+2uz2),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=ϕ(x,y,z),u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (1.1)

    Where u(t,x,y,z) is the temperature field, ϕ(x,y,z) is a known function, k is the thermal diffusion efficiency, and a,b,c are constants that determine the size of the space.

    Heat conduction system is a very common and important system in engineering problems, such as the heat transfer process of objects, the cooling system of electronic components and so on [1,2,3,4]. Generally, heat conduction is a complicated process, so we can't get the analytical solution of heat conduction equation. Therefore, many scholars proposed various numerical algorithms for heat conduction equation [5,6,7,8]. Reproducing kernel method is also an effective numerical algorithm for solving boundary value problems including heat conduction equation [9,10,11,12,13,14]. Galerkin schemes and Green's function are also used to construct numerical algorithms for solving one-dimensional and two-dimensional heat conduction equations [15,16,17,18,19]. Alternating direction implicit (ADI) method can be very effective in solving high-dimensional heat conduction equations [20,21]. In addition, the novel local knot method and localized space time method are also used to solve convection-diffusion problems [22,23,24,25]. These methods play an important reference role in constructing new algorithms in this paper.

    Legendre orthogonal function system is an important function sequence in the field of numerical analysis. Because its general term is polynomial, Legendre orthogonal function system has many advantages in the calculation process. Scholars use Legendre orthogonal function system to construct numerical algorithm of differential equations [26,27,28].

    Based on the orthogonality of Legendre polynomials, we delicately construct a numerical algorithm that can be extended to high-dimensional heat conduction equation. The proposed algorithm has α-Order convergence, and our algorithm can achieve higher accuracy compared with other algorithms.

    The content of the paper is arranged like this: The properties of shifted Legendre polynomials, homogenization and spatial correlation are introduced in Section 2. In Section 3, we theoretically deduce the numerical algorithm methods of high-dimensional heat conduction equations. The convergence of the algorithm is proved in Section 4. Finally, three numerical examples and a brief summary are given at the end of this paper.

    In this section, the concept of shifted-Legendre polynomials and the space to solve Eq (1.1) are introduced. These knowledge will pave the way for describing the algorithm in this paper.

    The traditional Legendre polynomial is the orthogonal function system on [1,1]. Since the variables t,x,y,z to be analyzed for Eq (1.1) defined in different intervals, it is necessary to transform the Legendre polynomial on [c1,c2], c1,c2R, and the shifted-Legendre polynomials after translation transformation and expansion transformation by Eq (2.1).

    p0(x)=1,p1(x)=2(xc1)c2c11,pi+1(x)=2i+1i+1[2(xc1)c2c11]pi(x)ii+1pi1(x),i=1,2,. (2.1)

    Obviously, {pi(x)}i=0 is a system of orthogonal functions on L2[c1,c2], and

    c2c1pi(x)pj(x)dx={c2c12i+1,i=j,0,ij.

    Let Li(x)=2i+1c2c1pi(x). Based on the knowledge of ref. [29], we begin to discuss the algorithm in this paper.

    Lemma 2.1. [29] {Li(x)}i=0 is a orthonormal basis in L2[c1,c2].

    Considering that the problem studied in this paper has a nonhomogeneous boundary value condition, the problem (1.1) can be homogenized by making a transformation as follows.

    v(t,x,y,z)=u(t,x,y,z)ϕ(x,y,z).

    Here, homogenization is necessary because we can easily construct functional spaces that meet the homogenization boundary value conditions. This makes us only need to pay attention to the operator equation itself in the next research, without considering the interference caused by boundary value conditions.

    In this paper, in order to avoid the disadvantages of too many symbols, the homogeneous heat conduction system is still represented by u, the thermal diffusion efficiency k=1, and the homogeneous system of heat conduction equation is simplified as follows:

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (2.2)

    The solution space of Eq (2.2) is a high-dimensional space, which can be generated by some one-dimensional spaces. Therefore, this section first defines the following one-dimensional space.

    Remember AC represents the space of absolutely continuous functions.

    Definition 2.1. W1[0,1]={u(t)|uAC,u(0)=0,uL2[0,1]}, and

    u,vW1=10uvdt,u,vW1.

    Let c1=0,c2=1, so {Ti(t)}i=0 is the orthonormal basis in L2[0,1], where Ti(t)=Li(t), note Tn(t)=ni=0citi. And {JTn(t)}n=0 is the orthonormal basis of W1[0,1], where

    JTn(t)=ni=0citi+1i+1.

    Definition 2.2. W2[0,a]={u(x)|uAC,u(0)=u(a)=0,uL2[0,a]}, and

    u,vW2=a0uvdx,u,vW2.

    Similarly, {Pn(x)}n=0 is the orthonormal basis in L2[0,a], and denote Pn(x)=nj=0djxj, where djR.

    Let

    JPn(x)=nj=0djxj+2aj+1x(j+1)(j+2),

    obviously, {JPn(x)}n=0 is the orthonormal basis of W2[0,a].

    We start with solving one-dimensional heat conduction equation, and then extend the algorithm to high-dimensional heat conduction equations.

    {2ux2ut=f(x),t[0,1],x[0,a],u(0,x)=0,u(t,0)=u(t,a)=0. (3.1)

    Let D=[0,1]×[0,a], CC represents the space of completely continuous functions, and Nn represents a set of natural numbers not exceeding n.

    Definition 3.1. W(D)={u(t,x)|uxCC,(t,x)D,u(0,x)=0,u(t,0)=u(t,a)=0,3utx2L2(D)}, and

    u,vW(D)=D3utx23vtx2dσ.

    Theorem 3.1. W(D) is an inner product space.

    Proof. u(t,x)W(D), if u,uW(D)=0, means

    D[3u(t,x)tx2]2dσ=0,

    and it implies

    3u(t,x)tx2=t(2u(t,x)x2)=0.

    Combined with the conditions of W(D), we can get u=0.

    Obviously, W(D) satisfies other conditions of inner product space.

    Theorem 3.2. uW(D),v1(t)v2(x)W(D), then

    u(t,x),v1(t)v2(x)W(D)=u(t,x),v1(t)W1,v2(x)W2.
    Proof.u(t,x),v1(t)v2(x)W(D)=D3u(t,x)tx23[v1(t)v2(x)]tx2dσ=D2x2[u(t,x)t]v1(t)t2v2(x)x2dσ=a02x2u(t,x),v1(t)W12v2(x)x2dx=u(t,x),v1(t)W1,v2(x)W2.

    Corollary 3.1. u1(t)u2(x)W(D),v1(t)v2(x)W(D), then

    u1(t)u2(x),v1(t)v2(x)W(D)=u1(t),v1(t)W1u2(x),v2(x)W2.

    Let

    ρij(t,x)=JTi(t)JPj(x),i,jN.

    Theorem 3.3. {ρij(t,x)}i,j=0is an orthonormal basis inW(D).

    Proof. ρij(t,x),ρlm(t,x)W(D),i,j,l,mN,

    ρij(t,x),ρlm(t,x)W(D)=JTi(t)JPj(x),JTl(t)JPm(x)W(D)=JTi(t),JTl(t)W1JPj(x),JPm(x)W2.

    So

    ρij(t,x),ρlm(t,x)W(D)={1,i=l,j=m,0,others.

    In addition, uW(D), if u,ρijW(D)=0, means

    u(t,x),JTi(t)JPj(x)W(D)=u(t,x),JTi(t)W1,JPj(x)W2=0.

    Note that {JPj(x)}j=0 is the complete system of W2, so u(t,x),JTi(t)W1=0.

    Similarly, we can get u(t,x)=0.

    Let L:W(D)L2(D),

    Lu=2ux2ut.

    So, Eq (3.1) can be simplified as

    Lu=f. (3.2)

    Definition 3.2. ε>0, if uW(D) and

    ||Luf||2L(D)<ε, (3.3)

    then u is called the εbest approximate solution for Lu=f.

    Theorem 3.4. Any ε>0, there is NN, when n>N, then

    un(t,x)=ni=0nj=0ηijρij(t,x) (3.4)

    is the εbest approximate solution for Lu=f, where ηij satisfies

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D),dijR,i,jNn.

    Proof. According to the Theorem 3.3, if u satisfies Eq (3.2), then u(t,x)=i=0j=0ηijρij(t,x), where ηij is the Fourier coefficient of u.

    Note that L is a bounded operator [30], hence, any ε>0, there is NN, when n>N, then

    ||i=n+1j=n+1ηijρij||2W(D)<ε||L||2.

    So,

    ||ni=0nj=0ηijLρijf||2L2(D)=mindij||ni=0nj=0dijLρijf||2L2(D)||ni=0nj=0ηijLρijf||2L2(D)=||ni=0nj=0ηijLρijLu||2L2(D)=||i=n+1j=n+1ηijLρij||2L2(D)||L||2||i=n+1j=n+1ηijρij||2W(D)< ε.

    For obtain un(t,x), we need to find the coefficients ηij by solving Eq (3.5).

    min{ηij}ni,j=0J=Lunf2L2(D) (3.5)

    In addition,

    J=Lunf2L2(D)=Lunf,LunfL2(D)=Lun,LunL2(D)2Lun,fL2(D)+f,fL2(D)=ni=0nj=0nl=0nm=0ηijηlmLρij,LρlmL2(D)2ni=0nj=0ηijLρij,fL2(D)+f,fL2(D).

    So,

    Jηij=2nl=0nm=0ηlmLρij,LρlmL2(D)2ηijLρij,fL2(D),i,jNn

    and the equations Jηij=0,i,jNn can be simplified to

    Aη=B, (3.6)

    where

    A=(Lρij,LρlmL2(D))N×N,N=(n+1)2,η=(ηij)N×1,B=(Lρij,fL2(D))N×1.

    Theorem 3.5. Aη=B has a unique solution.

    Proof. It can be proved that A is nonsingular. Let η satisfy Aη=0, that is,

    ni=0nj=0Lρij,LρlmL2(D)ηij=0,l,mNn.

    So, we can get the following equations:

    ni=0nj=0ηijLρij,ηlmLρlmL2(D)=0,l,mNn.

    By adding the above (n+1)2 equations, we can get

    ni=0nj=0ηijLρij,nl=0nm=0ηlmLρlmL2(D)=ni=0nj=0ηijLρij2L2(D)=0.

    So,

    ni=0nj=0ηijLρij=0.

    Note that L is reversible. Therefore, ηij=0,i,jNn.

    According to Theorem 3.5, un(t,x) can be obtained by substituting η=A1B into un=ni=0nj=0ηijρij(t,x).

    {2ux2+2uy2ut=f(x,y),t[0,1],x[0,a],y[0,b],u(0,x,y)=0,u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0. (3.7)

    Similar to definition 2.2, we can give the definition of linear space W3[0,b] as follows:

    W3[0,b]={u(y)|uAC,y[0,b],u(0)=u(b)=0,uL2[0,b]}.

    Similarly, let {Qn(y)}n=0 is the orthonormal basis in L2[0,b], and denote Qn(y)=nk=0qkyk.

    Let

    JQn(y)=nk=0qkyk+2bk+1y(k+1)(k+2),

    it is easy to prove that {JQn(y)}n=0 is the orthonormal basis of W3[0,b].

    Let Ω=[0,1]×[0,a]×[0,b]. Now we define a three-dimensional space.

    Definition 3.3 W(Ω)={u(t,x,y)|2uxyCC,(t,x,y)Ω,u(0,x,y)=0, u(t,0,y)=u(t,a,y)=0,u(t,x,0)=u(t,x,b)=0,5utx2y2L2(Ω)}, and

    u,vW(Ω)=Ω5utx2y25vtx2y2dΩ,u,vW(Ω).

    Similarly, we give the following theorem without proof.

    Theorem 3.6. {ρijk(t,x,y)}i,j,k=0is an orthonormal basis ofW(Ω), where

    ρijk(t,x,y)=JTi(t)JPj(x)JQk(y),i,j,kNn.

    Therefore, we can get un as

    un(t,x,y)=ni=0nj=0nk=0ηijkρijk(t,x,y), (3.8)

    according to the theory in Section 3.1, we can find all ηijk,i,j,kNn.

    {2ux2+2uy2+2uz2ut=f(x,y,z),t[0,1],x[0,a],y[0,b],z[0,c],u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0,u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0. (3.9)

    By Lemma 2.1, note that the orthonormal basis of L2[0,c] is {Rn(z)}n=0, and denote Rn(z)=nm=0rmzm, where rm is the coefficient of polynomial Rn(z).

    We can further obtain the orthonormal basis JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2) of W4[0,c], where

    JRn(z)=nm=0rmzm+2cm+1z(m+1)(m+2),

    and

    W4[0,c]={u(z)|uAC,z[0,c],u(0)=u(c)=0,uL2[0,c]}.

    Let G=[0,1]×[0,a]×[0,b]×[0,c]. Now we define a four-dimensional space.

    Definition 3.4. W(G)={u(t,x,y,z)|3uxyzCC,(t,x,y,z)G,u(0,x,y,z)=0,u(t,0,y,z)=u(t,a,y,z)=0, u(t,x,0,z)=u(t,x,b,z)=0,u(t,x,y,0)=u(t,x,y,c)=0,7utx2y2z2L2(G)}, and

    u,vW(G)=G7utx2y2z27vtx2y2z2dG,u,vW(G),

    where dG = dtdxdydz.

    Similarly, we give the following theorem without proof.

    Theorem 3.7. {ρijk(t,x,y,z)}i,j,k,m=0is an orthonormal basis ofW(G), where

    ρijkm(t,x,y,z)=JTi(t)JPj(x)JQk(y)JRm(z),i,j,k,mN.

    Therefore, we can get un as

    un(t,x,y,z)=ni=0nj=0nk=0nm=0ηijkmρijkm(t,x,y,z), (3.10)

    according to the theory in Section 3.1, we can find all ηijkm,i,j,k,mNn.

    Suppose u(t,x)=i=0j=0ηijρij(t,x) is the exact solution of Eq (3.5). Let PN1,N2u(t,x)=N1i=0N2j=0ηijTi(t)Pj(x) is the projection of u in L(D).

    Theorem 4.1. Suppose r+lu(t,x)trxlL2(D), and N1>r,N2>l, then, the error estimate of PN1,N2u(t,x) is

    ||uPN1,N2u||2L2(D)CNα,

    where C is a constant, N=min{N1,N2},α=min{r,l}.

    Proof. According to the lemma in ref. [29], it follows that

    ||uuN1||2L2t[0,1]=||uPt,N1u||2L2t[0,1]C1Nr1||rtru(t,x)||2L2t[0,1],

    where uN1=Pt,N1u represents the projection of u on variable t in L2[0,1], and ||||L2t[0,1] represents the norm of () with respect to variable t in L2[0,1].

    By integrating both sides of the above formula with respect to x, we can get

    ||uuN1||2L2(D)C1Nr1a0||rtru||2L2t[0,1]dx=C1Nr1||rtru||2L2(D).

    Moreover,

    u(t,x)uN1(t,x)=i=N1+1u,TiL2t[0,1]Ti(t)=i=N1+1j=0u,TiL2t[0,1],PjL2x[0,a]Pj(x)Ti(t).

    According to the knowledge in Section 3,

    ||uuN1||2L2(D)=i=N1+1j=0c2ij,

    where cij=u,TiL2t[0,1],PjL2x[0,a].

    Therefore,

    i=N1+1j=0c2ijC1Nr1||rtru||2L2(D).

    Similarly,

    i=0j=N2+1c2ijC2Nl2||lxlu||2L2(D).

    In conclusion,

    ||uPN1,N2u||2L2(D)=||(i=0j=0N1i=0N2j=0)c2ijTi(t)Pj(x)||2L2(D)i=N1+1N2j=0c2ij+i=0j=N2+1c2iji=N1+1j=0c2ij+i=0j=N2+1c2ijC1Nr1||rtru||2L2(D)+C2Nl2||lxlu||2L2(D)CNα.

    Theorem 4.2. Suppose r+lu(t,x)trxlL2(D), un(t,x) is the εbest approximate solution of Eq (3.2), and n>max{r,l}, then,

    ||uun||2W(D)Cnα.

    where C is a constant, α=min{r,l}.

    Proof. According to Theorem 3.4 and Theorem 4.1, the following formula holds.

    ||uun||2W(D)||uPN1,N2u||2L2(D)Cnα.

    So, the εapproximate solution has α convergence order, and the convergence rate is related to n, where represents the number of bases, and the convergence order can calculate as follows.

    C.R.=logn2n1max|en1|max|en2|. (4.1)

    Where ni,i=1,2 represents the number of orthonormal base elements.

    Here, three examples are compared with other algorithms. N represents the number of orthonormal base elements. For example, N=10×10, which means that we use the orthonormal system {ρij}10i,j=0 of W(D) for approximate calculation, that is, we take the orthonormal system {JTi(t)}10i=0 and {JPj(x)}10j=0 to construct the εbest approximate solution.

    Example 5.1. Consider the following one-demensional heat conduction system [7,20]

    {ut=uxx,(t,x)[0,1]×[0,2π],u(0,x)=sin(x),u(t,0)=u(t,2π)=0.

    The exact solution of Ex. 5.1 is etsinx.

    In Table 1, C.R. is calculated according to Eq (4.2). The errors in Tables 1 and 2 show that the proposed algorithm is very effective. In Figures 1 and 2, the blue surface represents the surface of the real solution, and the yellow surface represents the surface of un. With the increase of N, the errors between the two surfaces will be smaller.

    Table 1.  max|uun| for Ex. 5.1.
    N HOC-ADI Method [20] FVM [7] Present method C.R.
    4×4 6.12E-3 4.92E-2 9.892E-3
    6×6 1.68E-3 2.05E-2 4.319E-4 3.8613
    8×8 7.69E-4 1.27E-2 9.758E-6 6.5873
    10×10 4.40E-4 9.20E-3 1.577E-7 9.2432

     | Show Table
    DownLoad: CSV
    Table 2.  |uun| for Ex. 5.1 (n=9).
    |uun| t=0.1 t=0.3 t=0.5 t=0.7 t=0.9
    x=π5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8
    x=3π5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=7π5 2.583E-8 7.130E-8 1.088E-7 1.390E-7 1.577E-7
    x=9π5 1.195E-8 3.269E-8 5.009E-8 6.473E-8 8.127E-8

     | Show Table
    DownLoad: CSV
    Figure 1.  uandun in Example 5.1(n=9).
    Figure 2.  |u(1,x)un(1,x)| in Example 5.1(n=9).

    Example 5.2. Consider the following two-demensional heat conduction system [20,21]

    {ut=uxx+uyy,(t,x,y)[0,1]×[0,1]×[0,1],u(0,x,y)=sin(πx)sin(πy),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0.

    The exact solution of Ex. 5.2 is u=e2π2tsin(πx)sin(πy).

    Example 5.2 is a two-dimensional heat conduction equation. Table 3 shows the errors comparison with other algorithms. Table 4 lists the errors variation law in the xaxis direction. Figures 3 and 4 show the convergence effect of the scheme more vividly.

    Table 3.  The absolute errors max|uun| for Ex. 5.2 (t=1,(x,y)[0,1]×[0,1]).
    N CCD-ADI Method [21] RHOC-ADI Method [20] Present method C.R.
    4×4×4 8.820E-3 3.225E-2 5.986E-3
    8×8×8 6.787E-5 1.969E-3 3.126E-5 2.52704

     | Show Table
    DownLoad: CSV
    Table 4.  The absolute errors |uun| for Ex. 5.2 (t=1,n=7).
    |uun| y=0.1 y=0.3 y=0.5 y=0.7 y=0.9
    x=0.1 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6
    x=0.3 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.5 2.421E-5 6.347E-5 7.839E-5 6.347E-5 2.421E-5
    x=0.7 1.963E-5 5.130E-5 6.347E-5 5.130E-5 1.963E-5
    x=0.9 7.414E-6 1.963E-5 2.421E-5 1.963E-5 7.414E-6

     | Show Table
    DownLoad: CSV
    Figure 3.  uandun in Example 5.2(n=7).
    Figure 4.  uun in Example 5.2(n=7).

    Example 5.3. Consider the three-demensional problem as following:

    {(1a2+1b2+1c2)ut=uxx+uyy+uzz,(t,x,y,z)[0,1]×[0,a]×[0,b]×[0,c],u(0,x,y)=sin(πxa)sin(πyb)sin(πzc),u(t,0,y)=u(t,1,y)=u(t,x,0)=u(t,x,1)=0.

    The exact solution of Ex. 5.3 is u=eπ2tsin(πxa)sin(πyb)sin(πzc).

    Example 5.3 is a three-dimensional heat conduction equation, this kind of heat conduction system is also the most common case in the industrial field. Table 5 lists the approximation degree between the εbest approximate solution and the real solution when the boundary time t=1.

    Table 5.  The absolute errors |uun| for Ex. 5.3 (t=1,z=0.1,n=2).
    |uun| y=0.2 y=0.6 y=1.0 y=1.4 y=1.8
    x=0.1 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3
    x=0.3 2.893E-3 7.350E-3 8.820E-3 7.350E-3 2.893E-3
    x=0.5 3.482E-3 8.838E-3 1.059E-2 8.838E-3 3.482E-3
    x=0.7 2.893E-3 7.350E-3 8.820E-3 7.735E-3 2.893E-3
    x=0.9 1.130E-3 2.873E-3 3.451E-3 2.873E-3 1.130E-3

     | Show Table
    DownLoad: CSV

    The Shifted-Legendre orthonormal scheme is applied to high-dimensional heat conduction equations. The algorithm proposed in this paper has some advantages. On the one hand, the algorithm is evolved from the algorithm for solving one-dimensional heat conduction equation, which is easy to be understood and expanded. On the other hand, the standard orthogonal basis proposed in this paper is a polynomial structure, which has the characteristics of convergence order.

    This work has been supported by three research projects (2019KTSCX217, 2020WQNCX097, ZH22017003200026PWC).

    The authors declare no conflict of interest.



    [1] P. Constantin, C. R. Doering, Heat transfer in convective turbulence, Nonlinearity, 9 (1996), 1049. https://doi.org/10.1088/0951-7715/9/4/013 doi: 10.1088/0951-7715/9/4/013
    [2] A. Majda, A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203
    [3] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, American Mathematical Society, 2003. http://dx.doi.org/10.1090/cln/009 doi: 10.1090/cln/009
    [4] J. Pedlosky, Geophysical Fluid Dynamics, 2 Eds., New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4650-3
    [5] D. Adhikari, C. Cao, J. Wu, X. Xu, Small global solutions to the damped two-dimensional Boussinesq equations, J. Differ. Equ., 256 (2014), 3594–3613. https://doi.org/10.1016/j.jde.2014.02.012 doi: 10.1016/j.jde.2014.02.012
    [6] D. Adhikari, C. Cao, H. Shang, J. Wu, X. Xu, Z. Ye, Global regularity results for the 2D Boussinesq equations with partial dissipation, J. Differ. Equ., 260 (2016), 1893–1917. https://doi.org/10.1016/j.jde.2015.09.049 doi: 10.1016/j.jde.2015.09.049
    [7] L. Brandolese, M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Am. Math. Soc., 364 (2012), 5057–5090. https://doi.org/10.1090/S0002-9947-2012-05432-8 doi: 10.1090/S0002-9947-2012-05432-8
    [8] B. Dong, Z. Ye, X. Zhai, Global regularity for the 2D Boussinesq equations with temperature-dependent viscosity, J. Math. Fluid Mech., 22 (2020). https://doi.org/10.1007/s00021-019-0463-0 doi: 10.1007/s00021-019-0463-0
    [9] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv. Differential Equations, 12 (2007), 461–480. https://doi.org/10.48550/arXiv.0711.3198 doi: 10.48550/arXiv.0711.3198
    [10] N. Ju, Global regularity and long-time behavior of the solutions to the 2D Boussinesq equations without diffusivity in a bounded domain, J. Math. Fluid Mech., 19 (2017), 105–121. https://doi.org/10.1007/s00021-016-0277-2 doi: 10.1007/s00021-016-0277-2
    [11] C. Khor, X. Xu, Temperature patches for a generalised 2D Boussinesq system with singular velocity, J. Nonlinear. Sci., 33 (2023). https://doi.org/10.1007/s00332-022-09886-7 doi: 10.1007/s00332-022-09886-7
    [12] J. Wu, X. Xu, L. Xue, Z. Ye, Regularity results for the 2d Boussinesq equations with critical and supercritical dissipation, Comm. Math. Sci., 14 (2016), 1963–1997. https://doi.org/10.4310/CMS.2016.v14.n7.a9 doi: 10.4310/CMS.2016.v14.n7.a9
    [13] Z. Ye, Global regularity for a 3D Boussinesq model without thermal diffusion, Z. Angew. Math. Phys., 68 (2017). https://doi.org/10.1007/s00033-017-0832-6 doi: 10.1007/s00033-017-0832-6
    [14] C. R. Doering, J. Wu, K. Zhao, X. Zheng, Long time behavior of the two dimensional Boussinesq equations without buoyancy diffusion, Phys. D., 376 (2018), 144–159. https://doi.org/10.1016/j.physd.2017.12.013 doi: 10.1016/j.physd.2017.12.013
    [15] L. Tao, J. Wu, K. Zhao, X. Zheng, Stability near hydrostatic equilibrium to the 2D Boussinesq equations without thermal diffusion, Arch. Ration. Mech. Anal., 237 (2020), 585–630. https://doi.org/10.1007/s00205-020-01515-5 doi: 10.1007/s00205-020-01515-5
    [16] O. Ben Said, U. Pandey, J. Wu, The stabilizing effect of the temperature on buoyancy-driven fluids, Indiana University Math. J., 71 (2020), 2605–2645. https://doi.org/10.1512/iumj.2022.71.9070 doi: 10.1512/iumj.2022.71.9070
    [17] D. Adhikari, O. Ben Said, U. R. Pandey, J. Wu, Stability and large-time behavior for the 2D Boussineq system with horizontal dissipation and vertical thermal diffusion, Nonlinear Differ. Equ. Appl., 29 (2022). https://doi.org/10.1007/s00030-022-00773-4 doi: 10.1007/s00030-022-00773-4
    [18] D. Chen, Q. Liu, Stability and large Time behavior of the 2D boussinesq equations with mixed partial dissipation near hydrostatic equilibrium, Acta Appl. Math., 181 (2022). https://doi.org/10.1007/s10440-022-00525-7 doi: 10.1007/s10440-022-00525-7
    [19] K. Kang, J. Lee, D. Nguyen, Global well-posedness and stability of the 2D Boussinesq equations with partial dissipation near a hydrostatic equilibrium, J. Differ. Equ., 393 (2024), 1–57. https://doi.org/10.1016/j.jde.2024.02.016 doi: 10.1016/j.jde.2024.02.016
    [20] S. Lai, J. Wu, Y. Zhong, Stability and large-time behavior of the 2D Boussinesq equations with partial dissipation, J. Differ. Equ., 271 (2021), 764–796. https://doi.org/10.1016/j.jde.2020.09.022 doi: 10.1016/j.jde.2020.09.022
    [21] S. Lai, J. Wu, X. Xu, J. Zhang, Y. Zhong, Optimal decay estimates for 2D Boussinesq equations with partial dissipation, J. Nonlinear. Sci., 31 (2021). https://doi.org/10.1007/s00332-020-09672-3 doi: 10.1007/s00332-020-09672-3
    [22] A. Larios, E. Lunasin, E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255 (2013), 2636–2654. https://doi.org/10.1016/j.jde.2013.07.011 doi: 10.1016/j.jde.2013.07.011
    [23] A. Castro, D. Córdoba, D. Lear, On the asymptotic stability of stratified solutions for the 2D Boussinesq equations with a velocity damping term, Math. Models Methods Appl. Sci., 29 (2019), 1227–1277. https://doi.org/10.1142/S0218202519500210 doi: 10.1142/S0218202519500210
    [24] I. Kukavica, W. Wang, Long time behavior of solutions to the 2D Boussinesq equations with zero diffusivity, J. Dyn. Differ. Equ., 32 (2020), 2061–2077. https://doi.org/10.1007/s10884-019-09802-w doi: 10.1007/s10884-019-09802-w
    [25] C. Miao, L. Xue, On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, Nonlinear Differ. Equ. Appl., 18 (2011), 707–735. https://doi.org/10.1007/s00030-011-0114-5 doi: 10.1007/s00030-011-0114-5
    [26] P. Dreyfuss, H. Houamed, Uniqueness result for the 3-D Navier-Stokes-Boussinesq equations with horizontal dissipation, J. Math. Fluid Mech., 23 (2021). https://doi.org/10.1007/s00021-020-00547-x doi: 10.1007/s00021-020-00547-x
    [27] D. Fang, W. Le, T. Zhang, Global solutions of 3D axisymmetric Boussinesq equations with nonzero swirl, Nonlinear Anal., 166 (2018), 48–86. https://doi.org/10.1016/j.na.2017.10.008 doi: 10.1016/j.na.2017.10.008
    [28] F. Jian, D. Chen, X. Chen, Stability and decay rate of smooth solutions for the 3D Boussinesq equation with partial horizontal dissipation and thermal damping, Nonlinear Anal., 234 (2023), 113317. https://doi.org/10.1016/j.na.2023.113317 doi: 10.1016/j.na.2023.113317
    [29] R. Ji, L. Yan, J. Wu, Optimal decay for the 3D anisotropic Boussinesq equations near the hydrostatic balance, Calc. Var., 61 (2022). https://doi.org/10.1007/s00526-022-02242-3 doi: 10.1007/s00526-022-02242-3
    [30] H. Liu, H. Gao, Global well-posedness and long time decay of the 3D Boussinesq equations, J. Differ. Equ., 263 (2017), 8649–8665. https://doi.org/10.1016/j.jde.2017.08.049 doi: 10.1016/j.jde.2017.08.049
    [31] H. Shang, L. Xu, Stability near hydrostatic equilibrium to the three-dimensional Boussinesq equations with partial dissipation, Z. Angew. Math. Phys., 72 (2021). https://doi.org/10.1007/s00033-021-01495-w doi: 10.1007/s00033-021-01495-w
    [32] J. Wu, Q. Zhang, Stability and optimal decay for a system of 3D anisotropic Boussinesq equations, Nonlinearity, 34 (2021), 5456. https://doi.org/10.1088/1361-6544/ac08e9 doi: 10.1088/1361-6544/ac08e9
    [33] C. Cao, J. Wu, Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208 (2013), 985–1004. https://doi.org/10.1007/S00205-013-0610-3 doi: 10.1007/S00205-013-0610-3
    [34] B. Dong, J. Wu, X. Xu, N. Zhu, Stability and exponential decay for the 2D anisotropic Boussinesq equations with horizontal dissipation. Calc. Var. Partial Differential Equations, 60 (2021). https://doi.org/10.1007/s00526-021-01976-w doi: 10.1007/s00526-021-01976-w
    [35] D. Bian, S. Dai, J. Mao, Stability of Couette flow for 2D Boussinesq system in a uniform magnetic field with vertical dissipation, Applied Mathematics Letters, 121 (2021), 107515. https://doi.org/10.1016/j.aml.2021.107415 doi: 10.1016/j.aml.2021.107415
    [36] H. Lin, Q. Sun, S. Liu, H. Zhang, The Stability and Decay for the 2D Incompressible Euler-Like Equations, J. Math. Fluid Mech., 25 (2023). https://doi.org/10.1007/s00021-023-00824-5 doi: 10.1007/s00021-023-00824-5
    [37] M. Schonbek, T. Schonbek, E. Süli, Large-time behaviour of solutions to the magneto-hydrodynamics equations, Math. Ann., 304 (1996), 717–756. https://doi.org/10.1007/BF01446316 doi: 10.1007/BF01446316
    [38] M. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 677–685. https://doi.org/10.1017/S0308210500022976 doi: 10.1017/S0308210500022976
    [39] C. Cao, J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. in Math., 226 (2011), 1803–1822. https://doi.org/10.1016/j.aim.2010.08.017 doi: 10.1016/j.aim.2010.08.017
    [40] T. Tao, Nonlinear dispersive equations: local and global analysis, American Mathematical Society, 2006. http://dx.doi.org/10.1090/cbms/106 doi: 10.1090/cbms/106
  • This article has been cited by:

    1. Yahong Wang, Wenmin Wang, Cheng Yu, Hongbo Sun, Ruimin Zhang, Approximating Partial Differential Equations with Physics-Informed Legendre Multiwavelets CNN, 2024, 8, 2504-3110, 91, 10.3390/fractalfract8020091
    2. Shiyv Wang, Xueqin Lv, Songyan He, The reproducing kernel method for nonlinear fourth-order BVPs, 2023, 8, 2473-6988, 25371, 10.3934/math.20231294
    3. Yingchao Zhang, Yuntao Jia, Yingzhen Lin, A new multiscale algorithm for solving the heat conduction equation, 2023, 77, 11100168, 283, 10.1016/j.aej.2023.06.066
    4. Safia Malik, Syeda Tehmina Ejaz, Shahram Rezapour, Mustafa Inc, Ghulam Mustafa, Innovative numerical method for solving heat conduction using subdivision collocation, 2025, 1598-5865, 10.1007/s12190-025-02429-9
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(583) PDF downloads(51) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog