Citation: Jean Berthier, Kenneth A. Brakke, David Gosselin, Maxime Huet, Erwin Berthier. Metastable capillary filaments in rectangular cross-section open microchannels[J]. AIMS Biophysics, 2014, 1(1): 31-48. doi: 10.3934/biophy.2014.1.31
[1] | Xin Gao, Yue Zhang . Bifurcation analysis and optimal control of a delayed single-species fishery economic model. Mathematical Biosciences and Engineering, 2022, 19(8): 8081-8106. doi: 10.3934/mbe.2022378 |
[2] | Hongwei Sun, Qian Gao, Guiming Zhu, Chunlei Han, Haosen Yan, Tong Wang . Identification of influential observations in high-dimensional survival data through robust penalized Cox regression based on trimming. Mathematical Biosciences and Engineering, 2023, 20(3): 5352-5378. doi: 10.3934/mbe.2023248 |
[3] | Miin-Shen Yang, Wajid Ali . Fuzzy Gaussian Lasso clustering with application to cancer data. Mathematical Biosciences and Engineering, 2020, 17(1): 250-265. doi: 10.3934/mbe.2020014 |
[4] | Linqian Guo, Qingrong Meng, Wenqi Lin, Kaiyuan Weng . Identification of immune subtypes of melanoma based on single-cell and bulk RNA sequencing data. Mathematical Biosciences and Engineering, 2023, 20(2): 2920-2936. doi: 10.3934/mbe.2023138 |
[5] | Wentao Hu, Yufeng Shi, Cuixia Chen, Ze Chen . Optimal strategic pandemic control: human mobility and travel restriction. Mathematical Biosciences and Engineering, 2021, 18(6): 9525-9562. doi: 10.3934/mbe.2021468 |
[6] | Shuo Sun, Xiaoni Cai, Jinhai Shao, Guimei Zhang, Shan Liu, Hongsheng Wang . Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection. Mathematical Biosciences and Engineering, 2023, 20(12): 20599-20623. doi: 10.3934/mbe.2023911 |
[7] | Peiqing Lv, Jinke Wang, Xiangyang Zhang, Chunlei Ji, Lubiao Zhou, Haiying Wang . An improved residual U-Net with morphological-based loss function for automatic liver segmentation in computed tomography. Mathematical Biosciences and Engineering, 2022, 19(2): 1426-1447. doi: 10.3934/mbe.2022066 |
[8] | Jiaxi Lu, Yingwei Guo, Mingming Wang, Yu Luo, Xueqiang Zeng, Xiaoqiang Miao, Asim Zaman, Huihui Yang, Anbo Cao, Yan Kang . Determining acute ischemic stroke onset time using machine learning and radiomics features of infarct lesions and whole brain. Mathematical Biosciences and Engineering, 2024, 21(1): 34-48. doi: 10.3934/mbe.2024002 |
[9] | Taniya Mukherjee, Isha Sangal, Biswajit Sarkar, Qais Ahmed Almaamari . Logistic models to minimize the material handling cost within a cross-dock. Mathematical Biosciences and Engineering, 2023, 20(2): 3099-3119. doi: 10.3934/mbe.2023146 |
[10] | Chengkang Li, Ran Wei, Yishen Mao, Yi Guo, Ji Li, Yuanyuan Wang . Computer-aided differentiates benign from malignant IPMN and MCN with a novel feature selection algorithm. Mathematical Biosciences and Engineering, 2021, 18(4): 4743-4760. doi: 10.3934/mbe.2021241 |
[1] | Kost GJ (2002) Principles and Practice of Point-of-Care Testing. Hagerstwon, MD: Lippincott Williams & Wilkins 3–12. |
[2] | Yager P, Edwards T, Fu E, et al. (2006) Weigl, Microfluidic diagnostic technologies for global public health. Nature 442(7101): 412–418. |
[3] | Martinez AW, Phillips ST, Whitesides GM (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82: 3–10. |
[4] | Gervais L, de Rooij N, Delamarche E (2011) “Microfluidic chips for point-of-care immunodiagnostics”. Adv Mater 23 (24): H151–H176. |
[5] | Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9: 3330–3337. |
[6] | Safavieh R, Juncker D (2013) Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip 13: 4180–4189. |
[7] | Satoh W, Hosono H, Suzuki H (2005) On-Chip Microfluidic Transport and Mixing Using Electrowetting and Incorporation of Sensing Functions. Anal Chem 77: 6857–6863. |
[8] | Casavant BP, Berthier E, Theberge AB, et al. (2013) Suspended microfluidics. Proc Natl Acad Sci110 (25): 10111–10116. |
[9] | Berthier J, Brakke KA, Furlani EP, et al. (2014) Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sensor Actuat B-Chem [impress]. |
[10] | Berthier J, Brakke KA, Gosselin D, et al. (2014) Suspended microflows between vertical parallel walls. Microfluid Nanofluid [impress]. |
[11] | Tung CK, Krupa O, Apaydin E, et al. (2013) A contact line pinning based microfluidic platform for modelling physiological flows. Lab Chip 13: 3876–3885. |
[12] | Cox RG (1983) The spreading of a liquid on a rough solid surface. J Fluid Mech 131: 1–26. |
[13] | Chen YK, Melvin LS, Rodriguez S, et al. (2009) Weislogel, Capillary driven flow in micro scale surface structures. Microelectron Eng 86: 1317–1320. |
[14] | Rye RR, Yost FG, Mann J (1996) Wetting Kinetics in Surface Capillary Grooves. Langmuir 12:4625–4627. |
[15] | Romero LA, Yost FG (1996) Flow in an open channel capillary. J Fluid Mechanics 322: 109–129. |
[16] | Yost FG, Rye RR, Mann JA (1997) Solder wetting kinetics in narrow V-grooves. Acta Materialia45: 5337–5345. |
[17] | Berthier J, Brakke KA, Berthier E (2014) A general condition for spontaneous capillary flow in uniform cross-section microchannels. Microfluid Nanofluid 16: 779–785. |
[18] | Ouali FF, McHale G, Javed H, et al. (2013) Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluid Nanofluid 15:309–326. |
[19] | Concus P, Finn R (1969) On the behavior of a capillary surface in a wedge. Proc Natl Acad Sci63(2): 292–299. |
[20] | Concus P, Finn R (1994) Capillary surfaces in a wedge—differing contact angles. Microgravity Sci Tec 7: 152–155. |
[21] | Berthier J, Brakke KA (2012) The physics of microdrops. Scrivener-Wiley publishing. |
[22] | Brakke KA (1992) Minimal surfaces, corners, and wires. J Geom Anal 2: 11–36. |
[23] | Girardo S, Cingolani R, Chibbaro S, et al. (2009) Corner liquid imbibition during capillary penetration in lithographically made microchannels. Appl Phys Lett 94: 171901–171901–3. |
[24] | Brakke KA (1992) The Surface Evolver. Exp Math 1(2): 141–165. |
[25] | Seemann R, Brinkmann M, Kramer EJ, et al. (2005) Wetting morphologies at microstructured surfaces. Proc Natl Acad Sci 102(6): 1848–1852. |
[26] | Gibbs JW (1873) A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. T Connecticut Academy Arts Sciences 2: 382–404. |
[27] | Jokinen V, Franssila S (2008) Capillarity in microfluidic channels with hydrophilic and hydrophobic walls. Microfluid Nanofluid 5: 443–448. |
[28] | Bracke M, De Voeght E, Joos P (1989) The kinetics of wetting: the dynamic contact angle. Progr Colloid Polym Sci 79:142–149. |
[29] | Seebergh JE, Berg JC (1992) Dynamic wetting in the low capillary number regime. Chem Eng Sci47 (17): 4455–4464. |
1. | Anahita Ghazvini, Nurfadhlina Mohd Sharef, Siva Kumar Balasundram, Lai Soon Lee, A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms, 2024, 14, 2076-3417, 3383, 10.3390/app14083383 | |
2. | 丽鑫 杨, Shanghai 50 Stock Index Tracking Research Based on Elastic Net Dimensionality Reduction Two-Step Estimation Regression Model, 2023, 13, 2163-1476, 7130, 10.12677/ORF.2023.136699 | |
3. | Megat Syahirul Amin Megat Ali, Azlee Zabidi, Nooritawati Md Tahir, Ihsan Mohd Yassin, Farzad Eskandari, Azlinda Saadon, Mohd Nasir Taib, Abdul Rahim Ridzuan, Short-term Gini coefficient estimation using nonlinear autoregressive multilayer perceptron model, 2024, 10, 24058440, e26438, 10.1016/j.heliyon.2024.e26438 | |
4. | Margaretha Ohyver, Achmad Choiruddin, Parameter Estimation of Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression, 2025, 13, 2227-7390, 1345, 10.3390/math13081345 | |
5. | Elrasheid Elkhidir, Tirth Patel, James Olabode Bamidele Rotimi, Predictive Modelling for Residential Construction Demands Using ElasticNet Regression, 2025, 15, 2075-5309, 1649, 10.3390/buildings15101649 |