Citation: Thatiane Rodrigues Mota, Dyoni Matias de Oliveira, Rogério Marchiosi, Osvaldo Ferrarese-Filho, Wanderley Dantas dos Santos. Plant cell wall composition and enzymatic deconstruction[J]. AIMS Bioengineering, 2018, 5(1): 63-77. doi: 10.3934/bioeng.2018.1.63
[1] | Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad . The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151 |
[2] | Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162 |
[3] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[4] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[5] | Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170 |
[6] | Xiao Su, Hongwei Zhang . On the global existence and blow-up for the double dispersion equation with exponential term. Electronic Research Archive, 2023, 31(1): 467-491. doi: 10.3934/era.2023023 |
[7] | Mingfa Fei, Wenhao Li, Yulian Yi . Numerical analysis of a fourth-order linearized difference method for nonlinear time-space fractional Ginzburg-Landau equation. Electronic Research Archive, 2022, 30(10): 3635-3659. doi: 10.3934/era.2022186 |
[8] | Bin Wang . Random periodic sequence of globally mean-square exponentially stable discrete-time stochastic genetic regulatory networks with discrete spatial diffusions. Electronic Research Archive, 2023, 31(6): 3097-3122. doi: 10.3934/era.2023157 |
[9] | Wenjing An, Xingdong Zhang . An implicit fully discrete compact finite difference scheme for time fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(1): 354-369. doi: 10.3934/era.2024017 |
[10] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
In this paper, we consider the following initial value problem for a time-space fractional diffusion equation
$ {∂αtu(t,x)+(−Δ)σ2u(t,x)=F(u(t,x)),(t,x)∈(0,∞)×RN,u(t,x)=h(x),(t,x)∈{0}×RN, $ | (1.1) |
where $ N\ge1 $, $ 0 < \sigma\le2 $, $ h $ is the initial data function, and the symbol $ \partial^\alpha_{t} $ stands for the Caputo derivative of fractional order $ \alpha\in(0, 1) $ (Section 2). In Problem (1.1), we are mainly focus on the semilinear case in which the function $ F $ satisfies the following assumptions
$ |F(u)−F(v)|≤L(|u|ν−1exp(|u|p)+|v|ν−1exp(|v|p))|u−v|,u,v∈R, $ | (1.2) |
and
$ |F(u)|≤L|u|νexp(|u|p),u∈R, $ | (1.3) |
where $ \nu, p > 1 $ and $ L $ is a positive constant. The reason why we study this source function comes from the great interest of the PDEs community with a polynomial source of the form $ G_p(u) = |u|^{p-1}u $ or $ G_p(u) = u^p $ and some similar forms. Many good papers about this topic have attracted our attention. Wang-Xu [1] and Xu-Su [2] used the potential well method to investigate the well-posedness of a pseudo-parabolic equation with nonlinear function $ G_p $. Lian et al. [3] studied a Schrödinger equation with polynomial nonlinearity. They used infinite Nehari manifolds with geometric features to provide infinite sharp conditions for global existence and blowup results of solutions. A modified form of $ G_p $ was considered by Chen et al. [4] in the Gierer–Meinhardt system. The authors applied a functional method to obtain a bound of some ratios of the solution, and then, the existence of global and blowup solutions were proved.
From strong interest of PDEs with polynomial non-linearity through the above mentioned papers and related works, we consider the following heat equation
$ {∂tu(t,x)−Δu(t,x)=|u(t,x)|p−1u(t,x),(t,x)∈(0,∞)×RN,u(t,x)=u0(x),(t,x)∈{0}×RN, $ | (1.4) |
where $ u_0\in L^q({\mathbb{R}}^N), 1 < q < \infty, $ $ p > 1 $. Recall that (1.4) admits a scale solution
$ uλ(t,x):=λ2p−1u(λ2t,λx),λ>0. $ |
and the value $ q_c = \frac{N(p-1)}{2} $ called the critical exponent plays an important role in investigating the existence and uniqueness results. Considering the case when $ q = p = q_c = \frac{N}{N-2} $ in $ {\mathbb{R}}^2 $, the power exponent is approximated $ \infty $. Therefore, it seems reasonable to replace the source function in (1.4) with the nonlinearity of the exponential type. As far as we know, the attention on nonlinear functions satisfying the assumptions (1.2) and (1.3) is derived and developed by several works in the literature [5,6,7,8,9]. Two groups in [5,8] and [7,9] studied, respectively, parabolic equations and the Schrödinger equation (NLS) with exponential nonlinearities. More precisely, in [8], Ioku proved the global-in-time existence of a mild solution to a semilinear heat equation with exponential nonlinearity under some smallness assumptions on the initial data. Meanwhile, Furioli [5] showed that the notions of weak and mild solutions are equivalent and investigated decay estimates and the asymptotic behavior of small-data global solutions. Nakamura and Ozawa in [9] provided global-in-time results for solutions in homogeneous Sobolev spaces and homogeneous Besov space to a NLS with a source function of exponential type. A source function $ f(u) = (e^{4\pi|u|^2}-1-4\pi|u|^2) $ was considered for a two-dimensional NLS problem by Ibrahim et al. [7]. The authors showed that the solution to their problem tends to be a free Schrödinger under certain conditions. Also, we refer to some other works by Nakamura and Ozawa [10] and Ibrahim et al. [6] for wave equations with the nonlinearity of exponential growth.
During the past decades, fractional calculus has received increased attention due to its wide applications in diverse fields of science and engineering such as stochastic processes [11], fluid mechanics [12,13], chemotaxis in biology [14], viscoelasticity [15], etc. Apart from that, many interesting mathematical models and results on this topic have been done [16,17,18,19,20,21,22,23,24,25]. A strong inspiration for studying Problem (1.1) with the presence of the operator $ \partial^\alpha_{t} $ comes from the fact that many physical phenomena carry the substance of diffusion processes, many studies about diffusion equations have been done [26,27,28,29,30], and fractional calculus is very effective in modeling anomalous diffusion processes. In fact, while a diffusive particle in the usual diffusion process possesses the mean square displacement behaving like $ C_1t $ for $ t\to\infty, $ such behavior of a particle in an anomalous diffusion process is $ C_2t^\alpha $ [31], $ C_1, C_2 $ are positive constants. Starting from the above characteristics of an anomalous diffusion process, many good works about fractional diffusion equations have been done. Because it is very difficult and lengthy to present all the related works, we would like to present only the works, which motivated us. In [32], a general time-fractional diffusion equation subject to the Dirichlet boundary condition was studied by Vergara and Zacher. By using energy estimates and a powerful inequality for integrodifferential operators, the authors proved sharp estimates for the decay in time of solutions. Andrade et al. [33] considered the following non-local initial boundary value problem associated with a time-fractional heat equation
$ {∂αtu(t,x)+(−Δ)σ2u(t,x)=f(t,u(t,x)),(t,x)∈(0,∞)×Ω,u(t,x)=0(t,x)∈{0}×∂Ω,u(t,x)=u0(x)+k∑i=1βi(x)u(Ti,x),(t,x)∈{0}×Ω, $ |
where $ \Omega\subset{\mathbb{R}}^N $ is a smooth bounded domain, $ \alpha\in(0, 1), $ $ \sigma\in(0, 2] $, $ T_i\in{\mathbb{R}} $, $ \beta_i:\Omega\to{\mathbb{R}} $, and the continuous function $ f:[0, \infty)\times{\mathbb{R}}\to{\mathbb{R}} $ satisfies, $ |f(t, s)|\le c(1+|s|^p) $ and
$ |f(t,s)−f(t,r)|≤c(1+|s|p−1+|r|p−1)|s−r|, $ |
where $ p > 1 $ and $ c $ is a positive constant. The existence and regularity of mild solutions were established with some sufficient conditions. In [34], Tuan et al. were concerned in a terminal value problem for a time-space fractional diffusion equation. For the problem with linear source function, regularity properties of solutions were studied. The existence, uniqueness and regularity to solution were proved in the case of nonlinear source.
The main results of this paper are providing the existence and uniqueness of mild solutions to Problem (1.1) with function $ F $ satisfying (1.2) and (1.3). Corresponding to two different cases of initial data, we obtain a local-in-time solution and a global small-data solution. With usual initial data, by the Picard iteration method and some $ L^p-L^q $ or $ L^p-L^\Xi $ estimates of fundamental solutions involving the Mittag-Leffler function, we provide the existence and uniqueness of mild solutions to (1.1) on a reasonable time interval $ (0, T] $. Apart from that, we also show that solutions are continuous from $ (0, T] $ to $ L^p({\mathbb{R}}^N). $ Global-in-time results are obtained by making use of the norm (3.14). From the technical point of view, we split the second term of the right-hand side of (2.1) into two parts, while the part with small-time is easy to handle, the controlling of the large time part requires small assumptions on the initial data in an Orlicz space to be achieved.
The structure of the paper is as follows. Firstly, we provided some preliminaries in section 2 including some function spaces, fractional settings and formula, linear estimates for a mild solution. The main results about the local and global well-posedness are stated in section 3.
We first introduce some function spaces. Let $ (B, \left\Vert {\cdot} \right\Vert_B) $ be a Banach space. For $ T > 0 $, we denote by $ C\left([0, T];B\right) $ the space of all continuous functions $ u $ from $ [0, T] $ to $ B $ and define the following space
$ L∞(0,T;B):={u:[0,T]→B|uisboundedalmosteverywhereon[0,T]}. $ |
Recall that $ L^\infty\left(0, T;B\right) $ is a Banach space with respect to the norm
$ ‖u‖L∞(0,T;B):=esssupt∈(0,T)‖u(t)‖B<∞,u∈L∞(0,T;B). $ |
Let $ \Xi(z): = e^{z^p}-1 $. The Orlicz space $ {L^\Xi({\mathbb{R}}^{N})} $ is defined as the space of all functions satisfying the following converging result for some $ \kappa > 0 $
$ ∫RNΞ(κ−1|u(x)|)dx<∞. $ |
The space $ {L^\Xi({\mathbb{R}}^{N})} $ is a Banach space with the Luxemburg norm given as follows
$ ‖u‖LΞ(RN):=inf{κ>0|∫RNΞ(κ−1|u(x)|)dx≤1},u∈LΞ(RN). $ |
Note that the space $ C_0^\infty({\mathbb{R}}^N) $ is not dense in $ {L^\Xi({\mathbb{R}}^{N})} $. In fact, we have the following embeddings
$ Lp(RN)∩L∞(RN)↪clLΞ(RN)(C∞0(RN))↪LΞ(RN). $ |
For more details about Orlicz spaces, we refer the reader to [37], Chapter 8] and references given there.
Next, let us provide some fractional settings. For $ a, b > 0 $, the Beta function $ \textbf{B} $ and the Gamma function $ \Gamma $ are defined respectively as follows
$ B(a,b):=∫10(1−m)a−1mb−1dm,Γ(a):=∫∞0ma−1e−mdm. $ |
Let $ \alpha\in(0, 1) $. By considering the following memory kernel
$ kα(t):=tα−1Γ(α),t>0, $ |
for a smooth enough function $ u $, we can define the Caputo derivative of order $ \alpha $ by
$ ∂αtu(t):=k1−α(⋅)∗ddtu(t). $ |
Also, for two real constants $ \alpha_1 $ and $ \alpha_2 $, we define the Mittag-Leffler function $ E_{\alpha_1, \alpha_2}:\mathbb{C}\to\mathbb{C} $ in the following way
$ Eα1,α2(z):=∞∑k=0zkΓ(α1k+α2). $ |
The fractional Laplace operator can be defined via the Fourier multiplier [5,Section 2]
$ (−Δ)β2u(x):=F−1(|ξ|βF(u)(ξ))(x), $ |
where the Fourier transform is recalled as follows
$ F(u)(ξ):=∫RNu(x)e−i<x,ξ>dx, $ |
and $ \mathcal{F}^{-1} $ is the inverse Fourier transform. From the above definitions, for any $ \alpha\in(0, 1) $ and $ \sigma\in(1, 2] $, we define two functions $ \mathscr{A}_1(\alpha, \sigma)(t) $ and $ \mathscr{A}_2(\alpha, \sigma)(t) $ by
$ A1(α,σ)(t)u(x):=F−1(Eα,1(−|ξ|σtα))∗u(x),A2(α,σ)(t)u(x):=F−1(Eα,α(−|ξ|σtα))∗u(x). $ |
From [35,Section 1.3] or [14,Section 2], we see that the mild solution to Problem (1.1) satisfies the following Duhamel integral equality
$ u(t,x)=A1(α,σ)(t)h(x)+∫t0(t−m)α−1A2(α,σ)(t−m)F(u(m,x))dm. $ | (2.1) |
It turns out that handling the operators $ \mathscr{A}_1(\alpha, \sigma)(t) $ and $ \mathscr{A}_2(\alpha, \sigma)(t) $ plays an important role in controlling norms of the mild solution $ u $. Therefore, we provide some linear estimates of $ \mathscr{A}_1(\alpha, \sigma)(t) $ and $ \mathscr{A}_2(\alpha, \sigma)(t) $ in the following lemma.
Lemma 2.1. [14,Proposition 3.3] Let $ r\in[1, \infty) $. Then, there exists a positive constant $ C_0 $ such that the following statements hold
(i) if $ N > r\sigma $ and $ s\in[r, \frac{Nr}{N-r\sigma}) $, for any $ u\in L^r({\mathbb{R}}^N) $, we have
$ ‖A1(α,σ)(t)u‖Ls(RN)≤C0tαNσ(1s−1r)‖u‖Lr(RN), $ | (2.2) |
(ii) If $ N > 2r\sigma $ and $ s\in[r, \frac{Nr}{N-2r\sigma}) $, for any $ u\in L^r({\mathbb{R}}^N) $, we have
$ ‖A2(α,σ)(t)u‖Ls(RN)≤C0tαNσ(1s−1r)‖u‖Lr(RN). $ | (2.3) |
Furthermore, (2.2) (resp. (2.3)) holds for any $ s\in[r, \infty) $ if $ N = r\sigma $ (resp. $ N = 2r\sigma $) and $ s\in[r, \infty] $ if $ N < r\sigma $ (resp. $ N < 2r\sigma $).
Corollary 2.2. For any $ u\in {L^\Xi({\mathbb{R}}^{N})} $, we have
$ ‖A1(α,σ)(t)u‖LΞ(RN)≤C0‖u‖LΞ(RN),‖A2(α,σ)(t)u‖LΞ(RN)≤C0‖u‖LΞ(RN). $ |
Proof of Corollary 2.2. First, for a positive real number $ a $, we have the following observation
$ inf{κ>0|∫RNΞ(a|u(x)|κ)dx≤1}=inf{aκ>0|∫RNΞ(|u(x)|κ)dx≤1}. $ |
Therefore, the following equality holds
$ inf{κ>0|∫RNΞ(a|u(x)|κ)dx≤1}=ainf{κ>0|∫RNΞ(|u(x)|κ)dx≤1}. $ | (2.4) |
Next, from the expansion of the exponential function, for any $ \kappa > 0 $, we have
$ ∫RNΞ(|A1(α,σ)(t)u(x)|κ)dx=∑j∈N‖A1(α,σ)(t)u‖2jL2j(RN)j!κ2k≤∑j∈NC2j0‖u‖2jL2j(RN)j!κ2k=∫RNΞ(C0|u(x)|κ)dx. $ |
Combining this result and (2.4) yields the desired estimate. Similarly, we can find the estimate of the norm for $ \mathscr{A}_2(\alpha, \sigma)(t)u $. The proof is completed.
This section is used to present the main results of this paper including the existence and uniqueness of mild solutions satisfying Eq (2.1). We provide two different results about local well-posedness and global well-posedness according to two cases of initial data.
● For $ u_0\in L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $, Problem (1.1) possesses a unique mild solution $ u $ on $ [0, T] $ where $ T $ is small enough. In addition, this solution is also continuous on $ (0, T]. $
● By making some small assumptions on the initial data in $ L^\Xi({\mathbb{R}}^N) $, we can prove that the solution $ u $ to Problem (1.1) exists globally in time.
Theorem 3.1 (Local-in-time solution). Let $ \nu, p > 1 $. Suppose that $ h $ belongs to $ L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $. Then, we can find a reasonable number $ T $ such that Problem (1.1) possesses a unique mild solution
$ u∈L∞(0,T;Lp(RN)∩L∞(RN))∩C((0,T];Lp(RN)), $ |
where $ \left\Vert {\cdot} \right\Vert_{L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)}: = \left\Vert {\cdot} \right\Vert_{L^p({\mathbb{R}}^N)}+\left\Vert {\cdot} \right\Vert_{ L^\infty({\mathbb{R}}^N)} $.
Proof. To begin, we consider the sequence $ \{u_l\}_{l\in{\mathbb{N}}} $ as follows
$ u1(t,x):=A1(α,σ)(t)h(x),ul+1(t,x):=A1(α,σ)(t)h(x)+∫t0(t−m)α−1A2(α,σ)(t−m)F(ul(m,x))dm. $ |
We aim to prove that $ \{u_l\}_{l\in{\mathbb{N}}} $ is a Cauchy sequence in $ L^\infty(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)) $. Then, the completeness of this space ensures the existence of a limit function $ u $ that can be shown to be the unique mild solution to Problem (1.1). To this end, the first task is to check whether $ \{u_l\}_{l\in{\mathbb{N}}} $ is in $ L^\infty(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)) $ or not. Indeed, we apply Lemma 2.1 to get
$ ‖A1(α,σ)(t)h(⋅)‖L∞(RN)≤C0‖h‖L∞(RN), $ |
and
$ ‖A1(α,σ)(t)h(⋅)‖Lp(RN)≤C0‖h‖Lp(RN). $ |
Since $ h\in L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $, we easily find that
$ ‖u1‖L∞(0,T;Lp(RN)∩L∞(RN))≤C0‖h‖Lp(RN)∩L∞(RN). $ | (3.1) |
This result implies that $ u_1\in L^\infty(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)) $. Before moving to the second step, we provide some nonlinear estimates of the source function. For functions $ w, v\in L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $, we find that
$ ‖F(w)−F(v)‖L∞(RN)≤L‖w‖ν−1L∞(RN)exp(‖w‖pL∞(RN))‖w−v‖L∞(RN)+L‖v‖ν−1L∞(RN)exp(‖v‖pL∞(RN))‖w−v‖L∞(RN) $ | (3.2) |
and
$ ‖F(w)−F(v)‖Lp(RN)≤L‖w‖ν−1L∞(RN)exp(‖w‖pL∞(RN))‖w−v‖Lp(RN)+L‖v‖ν−1L∞(RN)exp(‖v‖pL∞(RN))‖w−v‖Lp(RN). $ | (3.3) |
We are now ready to consider the remaining elements of $ \{u_l\}_{l\in{\mathbb{N}}} $. Let $ R_1 = 2C_0\big\Vert {h} \big\Vert_{L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)}. $ Suppose that $ u_l $ is in the open ball $ B(0, R_1) \subset L^\infty(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)) $ for any $ l\in{\mathbb{N}} $. From Lemma 1, the following estimate is satisfied for any $ t > 0 $
$ ‖ul+1(t)−u1(t)‖L∞(RN)≤∫t0(t−m)α−1‖A2(α,σ)(t−m)F(ul(m))‖L∞(RN)dm≤C0∫t0(t−m)α−1‖F(ul(m))‖L∞(RN)dm. $ |
Apply (3.2) and the assumption (1.3), we find that
$ ‖ul+1(t)−u1(t)‖L∞(RN)≤C0L∫t0(t−m)α−1‖ul(m)‖νL∞(RN)exp(‖ul(m)‖pL∞(RN))dm≤C0LTαα‖ul‖νL∞(0,T;L∞(RN))exp(‖ul‖pL∞(0,T;L∞(RN))). $ | (3.4) |
By similar arguments, we also get a same result for the $ L^p $-norm as follows
$ ‖ul+1(t)−u1(t)‖Lp(RN)≤C0L∫t0(t−m)α−1‖ul(m)‖νL∞(RN)exp(‖ul(m)‖pL∞(RN))dm≤C0LTαα‖ul‖νL∞(0,T;L∞(RN))exp(‖ul‖pL∞(0,T;L∞(RN))), $ | (3.5) |
where we have used (3.3) with $ w = u_l $ and (1.3).
Combining the above two estimates and choosing
$ T<(2L‖h‖ν−αLp(RN)∩L∞(RN)αexp(2C0‖h‖pLp(RN)∩L∞(RN)))−1α, $ |
we obtain the following result
$ ‖ul+1(t)−u1(t)‖Lp(RN)∩L∞(RN)<R12. $ | (3.6) |
In view of (3.1) and (3.6), for any $ l > 1 $, if $ u_l\in B(0, R_1) $, we obtain the estimate below
$ esssupt∈(0,T)‖ul+1(t)‖Lp(RN)∩L∞(RN)≤esssupt∈(0,T)‖ul+1(t)−u1(t)‖Lp(RN)∩L∞(RN)+esssupt∈(0,T)‖u1(t)‖Lp(RN)∩L∞(RN)≤R1. $ | (3.7) |
From (3.1) and (3.7), the induction method can be applied to conclude that $ \{u_l\}_{l\in{\mathbb{N}}}\subset B(0, R_1). $
In addition, we can check that $ \{u_l\}_{l\in{\mathbb{N}}} $ is a Cauchy sequence in $ B(0, R_1) $. In fact, presume for $ l\ge2 $ that $ u_l $ and $ u_{l-1} $ are elements of $ B(0, R_1) $, the techniques as in (3.4) and (3.5) enable us to find for any $ t\in(0, T) $ that
$ ‖ul+1(t)−ul(t)‖L∞(RN)≤C0∫t0(t−m)α−1‖F(ul(m))−F(ul−1(m))‖L∞(RN)dm≤C0L∑k∈{l−1,l}∫t0‖uk(m)‖ν−1L∞(RN)(t−m)1−αexp(‖uk(m)‖pL∞(RN))‖ul(m)−ul−1(m)‖L∞(RN)dm≤C0LTαα∑k∈{l−1,l}‖uk‖ν−1L∞(0,T;L∞(RN))exp(‖ul‖pL∞(0,T;L∞(RN)))‖ul−ul−1‖L∞(0,T;L∞(RN)) $ | (3.8) |
and
$ ‖ul+1(t)−ul(t)‖Lp(RN)≤C0∫t0(t−m)α−1‖F(ul(m))−F(ul−1(m))‖Lp(RN)dm≤C0L∑k∈{l−1,l}∫t0‖uk(m)‖ν−1L∞(RN)(t−m)1−αexp(‖uk(m)‖pL∞(RN))‖ul(m)−ul−1(m)‖Lp(RN)dm≤C0LTαα∑k∈{l−1,l}‖uk‖ν−1L∞(0,T;L∞(RN))exp(‖ul‖pL∞(0,T;L∞(RN)))‖ul−ul−1‖L∞(0,T;Lp(RN)). $ | (3.9) |
Therefore, if we choose
$ T≤(8L‖h‖ν−αLp(RN)∩L∞(RN)αexp(2C0‖h‖pLp(RN)∩L∞(RN)))−1α, $ |
the following estimate can be drawn from (3.8) and (3.9)
$ ‖ul+1−ul‖L∞(0,T;Lp(RN)∩L∞(RN))≤4C0LTααRν−11exp(Rp1)‖ul−ul−1‖L∞(0,T;Lp(RN)∩L∞(RN))≤12‖ul−ul−1‖L∞(0,T;Lp(RN)∩L∞(RN)), $ |
for any $ l\ge2 $. Based on this result, for any $ l_2 > l_1\ge2, $ we have
$ ‖ul2−ul1‖L∞(0,T;Lp(RN)∩L∞(RN))≤l2−1∑l=l1‖ul+1−ul‖L∞(0,T;Lp(RN)∩L∞(RN))≤l2−1∑l=l121−l‖u2−ul‖L∞(0,T;Lp(RN)∩L∞(RN))≤l2−1∑l=l122−l‖u2−ul‖L∞(0,T;Lp(RN)∩L∞(RN)). $ |
It means $ \{u_l\}_{l\in{\mathbb{N}}} $ is a Cauchy sequence in $ B(0, R_1) $, provided that we have already shown that $ \{u_l\}_{l\in{\mathbb{N}}}\subset B(0, R_1) $. By the completeness of the space $ L^\infty\left(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)\right) $ and the dominated convergence theorem, there exists a unique limit function $ u $ satisfying
$ u=liml→∞A1(α,σ)(t)h(x)+∫t0(t−m)α−1A2(α,σ)(t−m)F(ul(m,x))dm=A1(α,σ)(t)h(x)+∫t0(t−m)α−1A2(α,σ)(t−m)F(u(m,x))dm. $ |
In addition, we can also show that $ u\in C\left((0, T];L^\Xi_0({\mathbb{R}}^N)\right) $. For $ t, \varepsilon > 0, $ it is easy to check that
$ ‖u(t+ε,⋅)−u(t,⋅)‖Lp(RN)≤‖(A1(α,σ)(t+ε)−A1(α,σ)(t))h(⋅)‖Lp(RN)+∫t0‖Q(t+ε−m,t−m)F(u(m,⋅))‖Lp(RN)dm+∫t+εt‖(t+ε−m)α−1A2(α,σ)(t+ε−m)F(u(m,⋅))‖Lp(RN)dm, $ | (3.10) |
where we define
$ Q(t+ε,t)u:=(t+ε)α−1A2(α,σ)(t+ε)u−tα−1A2(α,σ)(t−m)u. $ |
By Theorem 3.2 and Remark 1.6 in [36], we deduce
$ limε→0‖(A1(α,σ)(t+ε)−A1(α,σ)(t))h(⋅)‖Lp(RN)=0 $ | (3.11) |
and
$ limε→0‖Q(t+ε−m,t−m)F(u(m,⋅))‖Lp(RN)=0. $ |
Furthermore, by using Lemma 2.1, we obtain
$ ‖Q(t+ε−m,t−m)F(u(m,⋅))‖Lp(RN)≤2C0(t−m)α−1‖F(u(m,⋅))‖Lp(RN). $ |
From the fact that $ u\in B(0, R_1)\subset L^\infty\left(0, T;L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N)\right) $, it follows immediately
$ ‖Q(t+ε−m,t−m)F(u(m,⋅))‖Lp(RN)≤2C0L(t−m)α−1Rν1exp(Rp1). $ |
In sum, we have
$ limε→0∫t0‖Q(t+ε−m,t−m)F(u(m,⋅))‖Lp(RN)dm=0. $ | (3.12) |
We next consider the third term on the right hand side of (3.10) as follows
$ ∫t+εt‖(t+ε−m)α−1A2(α,σ)(t+ε−m)F(u(m,⋅))‖Lp(RN)dm≤C0∫t+εt(t+ε−m)α−1‖F(u(m,⋅))‖Lp(RN)dm≤C0εααRν1exp(Rp1), $ |
where we apply Lemma 2.1. Therefore, there holds
$ limε→0∫t+εt‖(t+ε−m)α−1A2(α,σ)(t+ε−m)F(u(m,⋅))‖Lp(RN)dm=0. $ | (3.13) |
Combining (3.10), (3.11), (3.12) and (3.13) yields the desired result. The theorem is thus proved.
Theorem 3.2. [Global small-data solution] Let $ \nu > \frac{4}{3} $ and $ p\ge2 $. Suppose that one of the following assumptions is satisfied,
● $ \nu < 2, \; \sigma < N < \frac{\sigma}{\nu-1} $, and there exists a constant $ q\ge2 $ satisfying
$ max{Nσ,p3ν−4}<q<min{Nσ(1−ν−1αν),Nσ−N(ν−1)}; $ |
● $ \nu\ge2, \; \sigma < N $, and there exists a constant $ q\ge2 $ satisfying
$ q>max{Nσ,p2}. $ |
Let $ \beta = \frac{\alpha\left(1-\frac{N}{\sigma q}\right)}{\nu-1} $ and $ \eta = \frac{\alpha N}{\sigma \beta} $. Then, if the data of $ h\in{L^\Xi({\mathbb{R}}^{N})}\cap L^\eta({\mathbb{R}}^N)\cap L^\frac{p\eta}{p+\eta}({\mathbb{R}}^N) $ is small enough, then Problem (1.1) possesses a unique mild solution in $ L^\infty(0, \infty; {L^\Xi({\mathbb{R}}^{N})}) $.
Remark 3.1. It's not too difficult to find a non-empty set of parameters meeting the assumptions of Theorem 3.2. Indeed, it can be pointed out some examples as follows
(i) if $ \alpha = 0.4, \; \nu = 1.66, \; \sigma = 1.5 $ and $ p = 2 $ and $ N = 2 $, we can choose $ q = 2.1 $;
(ii) if $ \alpha = 0.7, \; \nu = 2.5, \; \sigma = 2 $ and $ p = 3 $ and $ N = 3 $, we can choose $ q = 4 $.
Remark 3.2. By the embedding $ {L^\Xi({\mathbb{R}}^{N})}\hookrightarrow L^\eta({\mathbb{R}}^N) $ for any $ \eta\ge p $, the assumption of $ h $ becomes $ h\in{L^\Xi({\mathbb{R}}^{N})}\cap L^{\frac{p\eta}{p+\eta}}({\mathbb{R}}^N) $ whenever $ \eta\ge p $. For example, if $ \alpha = 0.7 $, $ \nu = 2.5, \; p = N = 3 $ and $ q = 4 $, we have $ \eta = 3.6 > p $. Therefore, we only need $ h\in{L^\Xi({\mathbb{R}}^{N})}\cap L^{\frac{p\eta}{p+\eta}}({\mathbb{R}}^N) $.
Proof. We first introduce a function space for the existence of solutions as follows
$ L∞β(0,T;LΞ(RN)):={u∈L∞(0,T;LΞ(RN))|‖u‖L∞β(0,T;LΞ(RN))<∞}, $ |
where $ \left\Vert {\cdot} \right\Vert_{L^\infty_\beta(0, T;{L^\Xi({\mathbb{R}}^{N})})} $ is defined by
$ ‖u‖L∞β(0,T;LΞ(RN)):=max{esssupt∈(0,T)‖u(t)‖LΞ(RN),esssupt∈(0,T)tβ‖u(t)‖LΞ(RN)}. $ | (3.14) |
Next, we consider the estimate of the source term. Suppose that $ w, v\in {L^\Xi({\mathbb{R}}^{N})} $, we can deduce from {Taylor's} expansion of the exponential function and Hölder's inequality with $ {\frac{1}{q} = \frac{1}{3q}+\frac{1}{3q}+\frac{1}{3q}} $ that
$ ‖F(w)−F(v)‖Lq(RN)≤L∑g∈{w,v}(∑j∈N1j!‖g‖ν−1L3q(ν−1)(RN)‖g‖jpL3pqj(RN))‖w−v‖L3q(RN). $ | (3.15) |
Thanks to the definition of the Luxemburg norm and the monotone convergence theorem, for any $ u\in{L^\Xi({\mathbb{R}}^{N})} $ there holds
$ ∫RN|u(t,x)|q‖u(t)‖qLΞ(RN)Γ(qp+1)dx≤∫RN(e|u(t,x)κ|p−1)dx≤1, $ |
provided that
$ zqΓ(q+1)<ez−1 $ |
for any $ q > 1 $ and $ z > 0. $ Therefore, we obtain the following estimate
$ ‖u‖Lq(RN)≤q√Γ(qp+1)‖u‖LΞ(RN). $ | (3.16) |
Applying (3.16) to (3.15), we get immediately that
$ ‖F(w)−F(v)‖Lq(RN)≤L(Γ(3q(ν−1)p+1))13q(ν−1)(Γ(3qp+1))13q×∑g∈{w,v}‖g‖ν−1LΞ(RN)∑j∈N(Γ(3qj+1))13qj!‖g‖jpLΞ(RN)‖w−v‖LΞ(RN). $ |
Using [5,Lemma 3.3], we derive
$ ‖F(w)−F(v)‖Lq(RN)≤C(q)∑g∈{w,v}‖g‖ν−1LΞ(RN)∑j∈N(3q‖g‖pLΞ(RN))j‖w−v‖LΞ(RN), $ | (3.17) |
where we use the fact that for $ j\in{\mathbb{N}} $, there holds $ \Gamma(j+1) = j! $ and denote
$ C(q):=C1L(Γ(3q(ν−1)p+1))13q(ν−1)(Γ(3qp+1))13q, $ |
where $ C_1 $ is a positive constant that is independent of $ w, v $. Let $ R_2 $ be a sufficiently small constant. Suppose that $ u_l $ is in an open ball $ B(0, R_2) \subset L^\infty_\beta(0, T;{L^\Xi({\mathbb{R}}^{N})}) $ for any $ l\in{\mathbb{N}} $, we can show that $ u_{l+1}\in B(0, R_2) $. In fact, on the one hand, by applying Lemma 1, we derive
$ ‖ul+1(t)−u1(t)‖L∞(RN)≤∫t0(t−m)α−1‖A2(α,σ)(t−m)F(ul(m))‖L∞(RN)dm≤C0∫t0(t−m)α(1−Nσq)−1‖F(ul(m))‖Lq(RN)dm. $ |
Then, we use (3.17) with $ w = u_{l} $ and (1.3) to find
$ ‖ul+1(t)−u1(t)‖L∞(RN)≤C0C(q)(∫t0(t−m)α(1−Nσq)−1‖u(m)‖νLΞ(RN)dm)11−3qRp2, $ | (3.18) |
where we presume that $ R_2 < (3q)^{-\frac{1}{p}} $. On the other hand, repeat application of Lemma (2.1) with $ s = p $ and $ r = \frac{pq}{p+q} $ yields
$ ‖ul+1(t)−u1(t)‖Lp(RN)≤∫t0(t−m)α−1‖A2(α,σ)(t−m)F(ul(m))‖Lp(RN)dm≤C0∫t0(t−m)α(1−Nσq)−1‖F(ul(m))‖Lr(RN)dm, $ |
where we note that if $ N < \sigma q < 2\sigma q $, we deduce $ p < \frac{N r}{N-2r\sigma} $. As a consequence, if $ R_2 < (3r)^{-\frac{1}{p}} $, it follows from the above estimate and (3.17) that
$ ‖ul+1(t)−u1(t)‖Lp(RN)≤C0C(r)(∫t0(t−m)α(1−Nσq)−1‖u(m)‖νLΞ(RN)dm)11−3rRp, $ | (3.19) |
provided that $ \max\{3r(\nu-1), 3r\}\ge p $. Combining (3.18), (3.19) and the embedding $ L^\infty({\mathbb{R}}^N)\cap L^p({\mathbb{R}}^N)\hookrightarrow {L^\Xi({\mathbb{R}}^{N})} $ gives
$ ‖ul+1(t)−u1(t)‖LΞ(RN)≤C0C2(2−3Rp(C(r)r+qC(q)))(1−3qRp)(1−3rRp)(∫t0(t−m)α(1−Nσq)−1‖ul(m)‖νLΞ(RN)dm), $ | (3.20) |
where $ C_2 $ is a positive constant coming from the embedding. According to the definition of the Beta function, we have
$ tβ∫t0(t−m)α(1−Nσq)−1m−βνdm=B(α(1−Nσq),1−βν). $ | (3.21) |
In view of (3.20) and (3.21), for any $ t > 0 $, the following estimate is satisfied
$ tβ‖ul+1(t)−u1(t)‖LΞ(RN)≤C0C2(2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2)Rν2B(α(1−Nσq),1−βν), $ | (3.22) |
provided that
$ ‖u(t)‖LΞ(RN)≤t−βesssupt∈(0,T)tβ‖u(t)‖LΞ(RN) $ |
for any $ t > 0 $ and $ u\in L^\infty_\beta\left(0, T;{L^\Xi({\mathbb{R}}^{N})}\right) $. Then, if $ R_2 $ is small enough such that
$ (2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2)Rν−12<(2C0C2B(α(1−Nσq),1−βν))−1, $ |
we get immediately
$ tβ‖ul+1(t)−u1(t)‖LΞ(RN)<R22forallt>0. $ |
Next, we set
$ T=R24(C0C2(2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2)α(1−Nσq)Rν2)−1α(1−Nσq). $ |
Then, for any $ t\le\mathscr{T} $, (3.20) implies
$ ‖ul+1(t)−u1(t)‖LΞ(RN)≤C0C2(2−3Rp2(C(r)r+C(q)q))Rν2(1−3qRp2)(1−3rRp2)(∫t0(t−m)α(1−Nσq)−1dm), $ |
provided that $ u_l\in B(0, R_2) $. Since $ N < \sigma q, $ we obtain
$ ‖ul+1(t)−u1(t)‖LΞ(RN)≤C0C2(2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2)α(1−Nσq)Rν2Tα(1−Nσq)≤R24. $ |
At the same time, if $ t > \mathscr{T} $, we deduce
$ ‖ul+1(t)−u1(t)‖LΞ(RN)≤T−βtβ‖ul+1(t)−u1(t)‖LΞ(RN)≤T−βC0C2(2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2)Rν2B(α(1−Nσq),1−βν)=4β(C0C2(2−3Rp2(C(r)r+C(q)q))(1−3qRp2)(1−3rRp2))1+βα(1−Nσq)Rν(1+βα(1−Nσq))−β2B(α(1−Nσq),1−βν), $ |
where we apply (3.22). If $ R_2 $ satisfies
$ (2−3Rp2(C(r)r+C(q)q))1+βα(1−Nσq)Rν(1+βα(1−Nσq))−β−12((1−3qRp2)(1−3rRp2))1+βα(1−Nσq)<(B(α(1−Nσq),1−βν))−14β+1C0C2, $ |
there holds immediately
$ ‖ul+1(t)−u1(t)‖LΞ(RN)<R24,forallt>T. $ |
From the above results, whether $ t $ is greater than $ \mathscr{T} $ or $ t $ is less than $ \mathscr{T} $, we always get the following result
$ ‖ul+1(t)−u1(t)‖LΞ(RN)<R22 $ |
as long as $ u_l\in B(0, R_2) $ and $ R_2 $ is small enough. For the purpose of proving $ \{u_l\}_{l\in{\mathbb{N}}} $ is a subset of $ B(0, R_2) $, we also need to consider the initial data $ h $. On the one hand, by using Corollary 2.2, we get easily that
$ ‖u1‖LΞ(RN)=‖A1(α,σ)(t)h‖LΞ(RN)≤C0‖h‖LΞ(RN). $ |
On the other hand, Lemma 2.1 shows that
$ ‖A1(α,σ)(t)h‖L∞(RN)≤C0t−αNση‖h‖Lη(RN),‖A1(α,σ)(t)h‖Lp(RN)≤C0t−αNση‖h‖Lpηp+η(RN), $ |
where $ {\eta} = \frac{\alpha N}{\sigma \beta} > 1 $. Then, we get
$ tβ‖A1(α,σ)(t)h‖LΞ(RN)≤C0C2‖h‖Lη(RN). $ |
Presume that the initial data is small enough, precisely,
$ {‖h‖LΞ(RN)≤R22C0,‖h‖Lη(RN)∩Lpηp+η(RN)≤R24C0C2. $ |
Then, we can conclude that $ u_1\in B(0, R_2). $ Hence, if $ u_l\in B(0, R_2) $ for any $ l\ge2 $, we have $ u_{l+1}\in B(0, R_2) $, provided that $ R_2 $ and the initial data are sufficiently small. Summarily, we have $ \{u_l\}_{l\in{\mathbb{N}}}\in B(0, R_2) $.
To complete the Banach principle argument, we need also to show that $ \{u_l\}_{l\in{\mathbb{N}}} $ is a Cauchy sequence in $ B(0, R_2) $. Since the techniques are not too different from those in the results above, we only briefly present the main estimates. For $ u_l $ and $ u_{l-1} $ in $ B(0, R_2) $, $ l\ge2 $, Lemma 2.1 yields
$ ‖ul+1(t)−ul(t)‖L∞(RN)≤C0∫t0(t−m)α(1−Nσq)−1‖F(ul(m))−F(ul−1(m))‖Lq(RN)dm.≤C0C(q)1−3qRp∑k∈{l−1,l}∫t0(t−m)α(1−Nσq)−1‖uk(m)‖ν−1LΞ(RN)‖ul(m)−ul−1(m)‖LΞ(RN)dm $ |
and
$ ‖ul+1(t)−ul(t)‖Lp(RN)≤C0∫t0(t−m)α(1−Nσq)−1‖F(ul(m))−F(ul−1(m))‖Lr(RN)dm.≤C0C(r)1−3rRp∑k∈{l−1,l}∫t0(t−m)α(1−Nσq)−1‖uk(m)‖ν−1LΞ(RN)‖ul(m)−ul−1(m)‖LΞ(RN)dm, $ |
provided that $ R_2 < \min\left\{(3q)^{-\frac{1}{p}}, (3r)^{-\frac{1}{p}}\right\} $. Therefore, since $ L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $ embeds into $ {L^\Xi({\mathbb{R}}^{N})} $, we have
$ \begin{align} \Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\le& \frac{C_0C_2\left(2-3R_2^p(C(r)r+qC(q))\right)}{(1-3qR_2^p)(1-3rR_2^p)}\\ &\times\sum\limits_{k\in\{l-1,l\}}\int_{0}^{t}\frac{\left\Vert {u_k(m)} \right\Vert^{\nu-1}_{{L^\Xi({\mathbb{R}}^{N})}}}{(t-m)^{1-\alpha\left(1-\frac{N}{\sigma q}\right)}}\Big\Vert {u_l(m)-u_{l-1}(m)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\mathrm{d}m. \end{align} $ | (3.23) |
It follows immediately that
$ \begin{align*} t^\beta\Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\le&\frac{2C_0C_2\left(2-3R_2^p(C(r)r+qC(q))\right)R^{\nu-1}_2}{(1-3qR_2^p)(1-3rR_2^p)}\\ &\times\textbf{B}\left(\alpha\left(1-\frac{N}{\sigma q}\right),1-\beta\nu\right)\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}t^\beta\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}. \end{align*} $ |
Presume that $ R_2 $ is small enough such that
$ \begin{align*} \frac{\left(2-3R_2^p(C(r)r+C(q)q)\right)}{(1-3qR_2^p)(1-3rR_2^p)}R^{\nu-1}_2 < \left(4C_0C_2\textbf{B}\left(\alpha\left(1-\frac{N}{\sigma q}\right),1-\beta\nu\right)\right)^{-1}. \end{align*} $ |
We then find that
$ \begin{align} \mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}t^\beta\Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\le\frac{1}{2}\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}t^\beta\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}. \end{align} $ | (3.24) |
Set
$ \begin{align*} \overline{\mathscr{T}} = \frac{1}{8}\left(\frac{C_0C_2\left(2-3R_2^p(C(r)r+C(q)q)\right)}{(1-3qR_2^p)(1-3rR_2^p)\alpha\left(1-\frac{N}{\sigma q}\right)}R^{\nu-1}_2\right)^{\frac{-1}{\alpha\left(1-\frac{N}{\sigma q }\right)}}. \end{align*} $ |
On the one hand, for any $ t\le\overline{\mathscr{T}} $ and $ l\ge2 $, we derive (3.23) that
$ \begin{align} &\Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\\ \le& \frac{2C_0C_2\left(2-3R_2^p(C(r)r+C(q)q)\right)}{(1-3qR_2^p)(1-3rR_2^p)\alpha\left(1-\frac{N}{\sigma q}\right)}R^{\nu-1}_2\mathscr{T}^{\alpha\left(1-\frac{N}{\sigma q }\right)}\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\\ \le&\frac{1}{4}\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}. \end{align} $ | (3.25) |
On the other hand, if $ t > \overline{\mathscr{T}} $, the following estimate holds
$ \begin{align} &\Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\\ \le&\frac{2C_0C_2\left(2-3R_2^p(C(r)r+C(q)q)\right)}{\overline{\mathscr{T}}^{\beta}(1-3qR_2^p)(1-3rR_2^p)}R^{\nu-1}_2\textbf{B}\left(\alpha\left(1-\frac{N}{\sigma q}\right),1-\beta\nu\right)\\ = &4^\beta\left(\frac{2C_0C_2\left(2-3R_2^p(C(r)r+C(q)q)\right)}{(1-3qR_2^p)(1-3rR_2^p)}\right)^{1+\frac{\beta}{\alpha\left(1-\frac{N}{\sigma q }\right)}}R^{(\nu-1)\left(1+\frac{\beta}{\alpha\left(1-\frac{N}{\sigma q }\right)}\right)-\beta}_2\\ &\; \times\textbf{B}\left(\alpha\left(1-\frac{N}{\sigma q}\right),1-\beta\nu\right)\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\\ \le&\frac{1}{4}\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}, \end{align} $ | (3.26) |
as long as $ R_2 $ satisfies
$ \begin{align*} \frac{\left(2-3R_2^p(C(r)r+C(q)q)\right)^{1+\frac{\beta}{\alpha\left(1-\frac{N}{\sigma q }\right)}}R^{(\nu-1)\left(1+\frac{\beta}{\alpha\left(1-\frac{N}{\sigma q }\right)}\right)-\beta}_2}{\big((1-3qR_2^p)(1-3rR_2^p)\big)^{1+\frac{\beta}{\alpha\left(1-\frac{N}{\sigma q }\right)}}} < \frac{\left(\textbf{B}\left(\alpha\left(1-\frac{N}{\sigma q}\right),1-\beta\nu\right)\right)^{-1}}{4^{\beta+\frac{3}{2}} C_0C_2}. \end{align*} $ |
Combining (3.25) and (3.26) yields
$ \begin{align} \mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_{l+1}(t)-u_l(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}}\le\frac{1}{2}\mathop {{\rm{ess}}\;{\rm{sup}}}\limits_{t \in \left( {0,T} \right)}\Big\Vert {u_l(t)-u_{l-1}(t)} \Big\Vert_{{L^\Xi({\mathbb{R}}^{N})}} \end{align} $ | (3.27) |
for any $ T\in(0, \infty) $ and $ l\ge2 $. As the result of (3.24) and (3.27), for $ u_l, u_{l-1}\in B(0, R_2) $ and $ l\ge2 $, we obtain
$ \begin{align*} \Big\Vert {u_{l+1}-u_l} \Big\Vert_{L^\infty_\beta\left(0,T;{L^\Xi({\mathbb{R}}^{N})}\right)}\le\frac{1}{2}\Big\Vert {u_{l}-u_{l-1}} \Big\Vert_{L^\infty_\beta\left(0,T;{L^\Xi({\mathbb{R}}^{N})}\right)}. \end{align*} $ |
Then, by similar arguments of Theorem 3.1, we can show that $ \{u_l\}_{l\in{\mathbb{N}}} $ is a Cauchy sequence. In addition, since $ L^\infty_\beta\left(0, T;{L^\Xi({\mathbb{R}}^{N})}\right) $ is a complete space with the metric
$ \begin{align*} d(u,v): = \Big\Vert {u-v} \Big\Vert_{L^\infty_\beta\left(0,T;{L^\Xi({\mathbb{R}}^{N})}\right)}, \end{align*} $ |
there exists a unique limit function of $ \{u_l\}_{l\in{\mathbb{N}}} $ in $ B(0, R_2) $, which is the unique mild solution to Problem (1.1). The proof is completed.
This paper considers a Cauchy Problem for a time-space fractional diffusion equation with exponential source term. By iteration method, a unique local mild solution is derived for initial data in $ L^p({\mathbb{R}}^N)\cap L^\infty({\mathbb{R}}^N) $. The existence and uniqueness are extended to be global in time when we suppose additionally that initial data in an Orlicz space are small enough. However, since the space $ C_0^\infty(\mathbb{R}^N) $ is not dense in $ L^\Xi(\mathbb{R}^N) $, the continuity of solutions in the term of time-variable is not considered for the global case. This will be a potential approach to improve the results of this work in the future.
The first author Anh Tuan Nguyen is funded by Van Lang University.
The authors declare there is no conflicts of interest.
[1] | Santos WDD, Gómez ED, Buckeridge MS, (2011) Bioenergy and the Sustainable Revolution, In: Buckeridge MS, Goldman GH. Routes to Cellulosic Ethanol. Springer Science and Business Media, LCC, 1 Ed., New York, 15–26. |
[2] |
Jaiswal D, Souza APD, Larsen S, et al. (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Change 7: 788–792. doi: 10.1038/nclimate3410
![]() |
[3] | Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. Biotech 5: 337–353. |
[4] | Buckeridge MS, Dos Santos WD, Mas T, et al. (2016) The cell wall architecture of sugarcane and its implications to cell wall recalcitrance, In: Lam E, Carrer H, Da Silva JA, et al. Compendium of Bioenergy Plants: Compendium of Bioenergy Plants, Boca Raton, FL: CRC Press, 31–50. |
[5] |
Poovaiah CR, Nageswara-Rao M, Soneji JR, et al. (2014) Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant Biotechnol J 12: 1163–1173. doi: 10.1111/pbi.12225
![]() |
[6] |
Torres AF, Visser RGF, Trindade LM (2015) Bioethanol from maize cell walls: Genes, molecular tools, and breeding prospects. GCB Bioenergy 7: 591–607. doi: 10.1111/gcbb.12164
![]() |
[7] |
Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ Convers Manage 52: 858–875. doi: 10.1016/j.enconman.2010.08.013
![]() |
[8] |
Souza APD, Leite DCC, Pattathil S, et al. (2013) Composition and structure of sugarcane cell wall polysaccharides: Implications for second-generation bioethanol production. BioEnergy Res 6: 564–579. doi: 10.1007/s12155-012-9268-1
![]() |
[9] |
Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues. Renew Sust Energ Rev 41: 550–567. doi: 10.1016/j.rser.2014.08.032
![]() |
[10] |
Sims REH, Mabee W, Saddler JN, et al. (2010) An overview of second generation biofuel technologies. Bioresource Technol 101: 1570–1580. doi: 10.1016/j.biortech.2009.11.046
![]() |
[11] |
Amorim HV, Lopes ML, Oliveira JVC, et al. (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91: 1267–1275. doi: 10.1007/s00253-011-3437-6
![]() |
[12] | Verardi A, Blasi A, Molino A, et al. (2016) Improving the enzymatic hydrolysis of Saccharum officinarum L. bagasse by optimizing mixing in a stirred tank reactor: Quantitative analysis of biomass conversion. Fuel Process Technol 149: 15–22. |
[13] |
Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38: 449–467. doi: 10.1016/j.pecs.2012.03.002
![]() |
[14] |
Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energ Policy 36: 2086–2097. doi: 10.1016/j.enpol.2008.02.028
![]() |
[15] | Rocha GJM, Gonçalves AR, Oliveira BR, et al. (2013) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35: 274–279. |
[16] | Buckeridge MS, Santos WDD, Souza AP, (2010) Routes for cellulosic ethanol in Brazil, In: Cortez LAB. Sugarcane Bioethanol, R&D for productivity and sustainability, Blucher, 992. |
[17] | Kou L, Song Y, Zhang X, et al. (2017) Comparison of four types of energy grasses as lignocellulosic feedstock for the production of bio-ethanol. Bioresource Technol 241:434–429. |
[18] |
Álvarez C, Manuel RF, Bruno D (2016) Enzymatic hydrolysis of biomass from wood. Microb Biotechnol 9: 149–156. doi: 10.1111/1751-7915.12346
![]() |
[19] | Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5: 178. |
[20] |
Payne CM, Knott BC, Mayes HB, et al. (2015) Fungal cellulases. Chem Rev 115: 1308–1448. doi: 10.1021/cr500351c
![]() |
[21] |
Khare SK, Pandey A, Larroche C (2015) Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochem Eng J 102: 38–44. doi: 10.1016/j.bej.2015.02.033
![]() |
[22] | Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: Challenges and opportunities. Biofuels Bioprod Biorefin 1: 119–134. |
[23] |
Le GH, Florian F, Jean-Marc D, et al. (2015) Cell wall metabolism in response to abiotic stress. Plants 4: 112–166. doi: 10.3390/plants4010112
![]() |
[24] |
Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as are source for biofuels. Plant J 54: 559–568. doi: 10.1111/j.1365-313X.2008.03463.x
![]() |
[25] |
Höfte H, Voxeur A (2017) Plant cell walls. Curr Biol 27: R865–R870. doi: 10.1016/j.cub.2017.05.025
![]() |
[26] |
Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J 3: 1–30. doi: 10.1111/j.1365-313X.1993.tb00007.x
![]() |
[27] |
Chundawat SPS, Beckham GT, Himmel ME, et al. (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2: 121–145. doi: 10.1146/annurev-chembioeng-061010-114205
![]() |
[28] | Meents MJ, Watanabe Y, Samuels AL (2018) The cell biology of secondary cell wall biosynthesis. Ann Bot. |
[29] | Turner S, Kumar M (2018) Cellulose synthase complex organization and cellulose microfibril structure. Philos Trans 376: 20170048. |
[30] |
Himmel ME, Ding SY, Johnson DK, et al. (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315: 804–807. doi: 10.1126/science.1137016
![]() |
[31] | Carpita NC, Mccann MC, (2000) The cell wall, In: Buchanan BB, Gruissem W, Jones RL, Biochemistry and molecular biology of plants. Rockville: IL: American Society of Plant Physiologists, 1367. |
[32] |
Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178: 61–72. doi: 10.1016/j.plantsci.2009.11.003
![]() |
[33] | Van dWT, Dolstra O, Visser RG, et al. (2017) Stability of cell wall composition and saccharification efficiency in miscanthus across diverse environments. Front Plant Sci 7: 2004. |
[34] |
Pauly M, Keegstra K (2016) Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu Rev Plant Biol 67: 235–259. doi: 10.1146/annurev-arplant-043015-112222
![]() |
[35] | Oliveira DM, Finger-Teixeira A, Mota TR, et al. (2016). Ferulic acid: A key component in grass lignocellulose recalcitrance to hydrolysis. Plant Biotechnol J 13: 1224–1232. |
[36] |
Kozlova LV, Ageeva MV, Ibragimova NN, et al. (2014) Arrangement of mixed-linkage glucan and glucuronoarabinoxylan in the cell walls of growing maize roots. Ann Bot 114: 1135–1145. doi: 10.1093/aob/mcu125
![]() |
[37] |
Srivastava PK, Kapoor M (2017) Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 35: 1–19. doi: 10.1016/j.biotechadv.2016.11.001
![]() |
[38] | Biswal AK, Atmodjo MA, Li M, et al. (2018) Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol. |
[39] |
Voragen AGJ, Coenen GJ, Verhoef RP, et al. (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20: 263–275. doi: 10.1007/s11224-009-9442-z
![]() |
[40] |
Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11: 266–277. doi: 10.1016/j.pbi.2008.03.006
![]() |
[41] | Nguyen TN, Son S, Jordan MC, et al. (2016) Lignin biosynthesis in wheat (Triticum aestivum L.): Its response to waterlogging and association with hormonal levels. BMC Plant Biol 16: 1–16. |
[42] |
Ragauskas AJ, Beckham GT, Biddy MJ, et al. (2014) Lignin valorization: Improving lignin processing in the biorefinery. Science 344: 1246843. doi: 10.1126/science.1246843
![]() |
[43] | Santos WDD, Ferrarese MDLL (2008) Ferulic acid: An allelochemical troublemaker. Funct Plant Sci Biotechnol 2: 47–55. |
[44] |
dos Santos WD, Ferrarese ML, Nakamura CV, et al. (2008) Soybean (Glycine max) root lignification induced by ferulic acid the possible mode of action. J Chem Ecol 34: 1230–1241. doi: 10.1007/s10886-008-9522-3
![]() |
[45] | Liu Q, Luo L, Zheng L (2018) Lignins: Biosynthesis and Biological Functions in Plants. Int J Mol Sci 19: 335. |
[46] |
Salvador VH, Lima RB, dos Santos WD, et al. (2013) Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS One 8: e69105. doi: 10.1371/journal.pone.0069105
![]() |
[47] | Oliveira DMD, Finger-Teixeira A, Freitas DLD, et al. (2017) Phenolic Compounds in Plants: Implications for Bioenergy, In: Buckeridge MS, de Souza AP, Advances of Basic Science for Second Generation Bioethanol from Sugarcane, Springer Int Publishing, 39–52. |
[48] | Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 166: 63–71. |
[49] |
Moreira-Vilar FC, Siqueira-Soares RC, Finger-Teixeira A, et al. (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than klason and thioglycolic acid methods. PLoS One 9: e110000. doi: 10.1371/journal.pone.0110000
![]() |
[50] | Santos WDD, Marchiosi R, Vilar FCW, et al. (2014) Polyvalent Lignin: Recent Approaches in Determination and Applications, In: Lu F, Lignin: Structural analysis, applications in biomaterials and ecological significance, New York: Nova Publishers, 1–26. |
[51] | Fornalé S, Rencoret J, Garcíacalvo L, et al. (2017) Changes in cell wall polymers and degradability in maize mutants lacking 3′- and 5′-O-methyltransferases involved in lignin biosynthesis. Plant Cell Physiol 58: 240–255. |
[52] |
Lima RB, Salvador VH, dos Santos WD, et al. (2013) Enhanced lignin monomer production caused by cinnamic acid and its hydroxylated derivatives inhibits soybean root growth. PLoS One 8: e80542. doi: 10.1371/journal.pone.0080542
![]() |
[53] |
Saritha M, Arora A, Lata (2012) Biological Pretreatment of Lignocellulosic Substrates for Enhanced Delignification and Enzymatic Digestibility. Indian J Microbiol 52: 122–130. doi: 10.1007/s12088-011-0199-x
![]() |
[54] |
Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293: 781–788. doi: 10.1042/bj2930781
![]() |
[55] |
Lombard V, Ramulu HG, Drula E, et al. (2014) The carbohydrate-active enzymes database (CAZy). Nucleic Acids Res 42: D490–D495. doi: 10.1093/nar/gkt1178
![]() |
[56] |
Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases families and functional modules. Curr Opin Struc Biol 11: 593–600. doi: 10.1016/S0959-440X(00)00253-0
![]() |
[57] |
Hashimoto H (2006) Recent structural studies of carbohydrate-binding modules. Cell Mol Life Sci 63: 2954–2967. doi: 10.1007/s00018-006-6195-3
![]() |
[58] |
Boraston AB, Bolam DN, Gilbert HJ, et al. (2004) Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem J 382: 769–781. doi: 10.1042/BJ20040892
![]() |
[59] |
Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859. doi: 10.1016/S0969-2126(01)00220-9
![]() |
[60] | Terrapon N, Lombard V, Drula E, et al. (2017) The CAZy Database/the Carbohydrate-Active Enzyme (CAZy) Database: Principles and Usage Guidelines, In: Aoki-Kinoshita K (eds), A Practical Guide to Using Glycomics Databases. Springer, Tokyo, 117–131. |
[61] | Segato F, Dias B, Berto GL, et al. (2017) Cloning, heterologous expression and biochemical characterization of a non-specific endoglucanase family 12 from Aspergillus terreus NIH2624. BBA 1865: 395–403. |
[62] |
Segato F, Damásio AR, de Lucas RC, et al. (2014) Genomics review of holocellulose deconstruction by aspergilli. Microbiol Mol Biol Rev 78: 588–613. doi: 10.1128/MMBR.00019-14
![]() |
[63] | Olsen JP, Alasepp K, Kari J, et al. (2016) Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnol Bioeng 113: 1178–1186. |
[64] |
Grange DC, Haan R, Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87: 1195–1208. doi: 10.1007/s00253-010-2660-x
![]() |
[65] |
Damásio ARL, Rubio MV, Gonçalves TA, et al. (2017) Xyloglucan breakdown by endo-xyloglucanase family 74 from Aspergillus fumigatus. Appl Microbiol Biotechnol 101: 2893–2903. doi: 10.1007/s00253-016-8014-6
![]() |
[66] |
Dodd D, Cann IKO (2009) Enzymatic deconstruction of xylan for biofuel production. GCB Bioenergy 1: 2–17. doi: 10.1111/j.1757-1707.2009.01004.x
![]() |
[67] |
Damásio ARDL, Pessedela BC, Segato F, et al. (2012) Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochem 47: 2411–2417. doi: 10.1016/j.procbio.2012.09.024
![]() |
[68] |
Wilkens C, Andersen S, Dumon C, et al. (2017) GH62 arabinofuranosidases: Structure, function and applications. Biotechnol Adv 35: 792–804. doi: 10.1016/j.biotechadv.2017.06.005
![]() |
[69] |
Wu L, Jiang J, Kallemeijn W, et al. (2017) Activity-based probes for functional interrogation of retaining β-glucuronidases. Nat Chem Biol 13: 867–873 doi: 10.1038/nchembio.2395
![]() |
[70] |
Bornscheuer UT (2002) Microbial carboxyl esterases: Classification, properties and application in biocatalysis. FEMS Microbiol Rev 26: 73–81. doi: 10.1111/j.1574-6976.2002.tb00599.x
![]() |
[71] | Krastanova I, Guarnaccia C, Zahariev S, et al. (2005) Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase from Bacillus pumilus. BBA 1748: 222–230. |
[72] |
Wong DWS (2006) Feruloyl esterase, a key enzyme in biomass degradation. Appl Biochem Biotechnol 133: 87–111. doi: 10.1385/ABAB:133:2:87
![]() |
[73] |
Dilokpimol A, Mäkelä MR, Aguilarpontes MV, et al. (2016) Diversity of fungal feruloyl esterases: Updated phylogenetic classification, properties, and industrial applications. Biotechnol Biofuels 9: 231. doi: 10.1186/s13068-016-0651-6
![]() |
[74] |
Faulds CB, Mandalari G, Curto RBL, et al. (2006) Synergy between xylanases from glycoside hydrolase family 10 and 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl Microbiol Biotechnol 71: 622–629. doi: 10.1007/s00253-005-0184-6
![]() |
[75] | Wong DWS, Chan VJ, Liao H, et al. (2013) Cloning of a novel feruloyl esterase gene from rumen microbial metagenome and enzyme characterization in synergism with endoxylanases. J Ind Microbiol Biotechnol 40: 287–295. |
[76] |
Pérezrodríguez N, Moreira CD, Torrado AA, et al. (2016) Feruloyl esterase production by Aspergillus terreus CECT 2808 and subsequent application to enzymatic hydrolysis. Enzyme Microb Tech 91: 52–58. doi: 10.1016/j.enzmictec.2016.05.011
![]() |
[77] |
Oliveira DM, Salvador VH, Mota TR, et al. (2016) Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS Bioeng 4: 1–11. doi: 10.3934/bioeng.2017.1.1
![]() |
[78] | Garg G, Singh A, Kaur A, et al. (2016) Microbial pectinases: An ecofriendly tool of nature for industries. Biotech 6: 47. |
[79] | Kant S, Vohra A, Gupta R (2013) Purification and physicochemical properties of polygalacturonase from Aspergillus niger MTCC 3323. Protein Expres Purif 87: 11–16. |
[80] |
Chen Q, Jin Y, Zhang G, et al. (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 5: 3019–3032. doi: 10.3390/en5083019
![]() |
[81] |
Kataria R, Ghosh S (2011) Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresource Technol 102: 9970–9975. doi: 10.1016/j.biortech.2011.08.023
![]() |
[82] | Oberoi HS, Vadlani PV, Nanjundaswamy A, et al. (2011) Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process. Bioresource Technol 102: 1593–1601. |
[83] | Shanmugam VK, Gopalakrishnan D (2016) Screening and partial purification for the production of ligninase enzyme from the fungal isolate Trichosporon asahii. Braz Arch Biol Technol 59: e160220. |
[84] |
Vrsanska M, Voberkova S, Langer V, et al. (2016) Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes. Molecules 21: E1553. doi: 10.3390/molecules21111553
![]() |
[85] | Pan L, Zhao H, Yu Q (2017) miR397/Laccase gene mediated network improves tolerance to fenoxaprop-P-ethyl in Beckmannia syzigachne and Oryza sativa. Front Plant Sci 23: 879. |
[86] |
Kameshwar AKS, Qin W (2016) Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms. Int J Biol Sci 12: 156–171. doi: 10.7150/ijbs.13537
![]() |
[87] |
Rastogi M, Shrivastava S (2017) Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renew Sust Energ Rev 80: 330–340. doi: 10.1016/j.rser.2017.05.225
![]() |
[88] |
Huang R, Su R, Qi W, et al. (2011) Bioconversion of lignocellulose into bioethanol process intensification and mechanism research. BioEnerg Res 4: 225–245. doi: 10.1007/s12155-011-9125-7
![]() |
[89] |
Lygin AV, Upton J, Dohleman FG, et al. (2011) Composition of cell wall phenolics and polysaccharides of the potential bioenergy crop-Miscanthus. Global Change Biol Bioenergy 3: 333–345. doi: 10.1111/j.1757-1707.2011.01091.x
![]() |
[90] |
Wei Y, Li X, Yu L, et al. (2015) Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresource Technol 198: 431–436. doi: 10.1016/j.biortech.2015.09.035
![]() |
[91] |
Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86: 2273–2282. doi: 10.1016/j.apenergy.2009.03.015
![]() |
[92] | Cianchetta S, Maggio BD, Burzi PL, et al. (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173: 609–623. |
[93] |
Behera S, Arora R, Nandhagopal N, et al. (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36: 91–106. doi: 10.1016/j.rser.2014.04.047
![]() |
[94] |
Safari A, Karimi K, Shafiei M (2017) Dilute alkali pretreatment of softwood pine: A biorefinery approach. Bioresource Technol 234: 67–76. doi: 10.1016/j.biortech.2017.03.030
![]() |
[95] |
Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresource Technol 199: 83–91. doi: 10.1016/j.biortech.2015.08.029
![]() |
[96] | Zhu Z, Simister R, Bird S, et al. (2015) Microwave assisted acid and alkali pretreatment of Miscanthus biomass for biorefineries. AIMS Bioeng 2: 446–468. |
[97] |
Tang C, Shan J, Chen Y, et al. (2017) Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresource Technol 232: 222–228. doi: 10.1016/j.biortech.2017.02.041
![]() |
[98] |
Silva ASD, Inoue H, Endo T, et al. (2010) Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technol 101: 7402–7409. doi: 10.1016/j.biortech.2010.05.008
![]() |
[99] |
Chemat S, Lagha A, AitAmar H, et al. (2004) Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour Frag J 19: 188–195. doi: 10.1002/ffj.1339
![]() |
[100] | Sipponen MH, Rahikainen J, Leskinen T, et al. (2017) Structural changes of lignin in biorefinery pretreatments. Nord Pulp Pap Res J 32: 547–568. |
[101] |
Fang H, Zhao C, Song XY, et al. (2013) Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-30 and Aspergillus niger NL02 and by the addition of surfactants. Biotechnol Bioprocess Eng 18: 390–398. doi: 10.1007/s12257-012-0562-8
![]() |
1. | Rupali Gupta, Sushil Kumar, Space-time pseudospectral method for the variable-order space-time fractional diffusion equation, 2023, 2008-1359, 10.1007/s40096-023-00510-7 | |
2. | Anh Nguyen, Tómas Caraballo, Nguyen Tuan, Blow-up solutions of fractional diffusion equations with an exponential nonlinearity, 2024, 0002-9939, 10.1090/proc/16962 | |
3. | Yuchen Zhu, Blow-up of solutions for a time fractional biharmonic equation with exponentional nonlinear memory, 2024, 32, 2688-1594, 5988, 10.3934/era.2024278 |