The rising accessibility in gambling products, such as Electronic Gaming Machines (EGM), has increased interest in the effects of gambling; in particular, the potential for impulse control disorders, such as problem gambling. Nevertheless, empirical research of EGM gambling behaviour is scarce. In this exploratory study, we apply data mining techniques on 46,416 gambling sessions, collected in situ from 288 EGMs. Our research focused on identifying the at-risk behavioural markers of sessions to help distinguish gambling personae. Our data included measures of gambling involvement, out-of pocket expense of sessions, amount won, and cost of gambling. This research, discusses the methodology used to collect and analyze the required gambling measures, explains the criteria used for identifying valid sessions, and combines outlier mining methods to identify instances of heavily involved gambling (i.e., outliers). Our results suggest that sessions were classified as potential non-problem, potential low-risk, potential moderate risk, and potential problem gambling sessions. Further, outlier sessions were more heavily involved in terms of gambling intensity and amount redeemed, despite having low duration times. Finally, our methods suggest that the lack of player identification does not prevent one from identifying the potential incidence of problem gambling behaviour.
Citation: Maria Gabriella Mosquera, Vlado Keselj. Identifying electronic gaming machine gambling personae through unsupervised session classification[J]. Big Data and Information Analytics, 2017, 2(2): 141-175. doi: 10.3934/bdia.2017015
[1] | Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
[2] | Hao Wang, Wei Yang, Yunqing Huang . An adaptive edge finite element method for the Maxwell's equations in metamaterials. Electronic Research Archive, 2020, 28(2): 961-976. doi: 10.3934/era.2020051 |
[3] | Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045 |
[4] | N. Bazarra, J. R. Fernández, R. Quintanilla . A dual-phase-lag porous-thermoelastic problem with microtemperatures. Electronic Research Archive, 2022, 30(4): 1236-1262. doi: 10.3934/era.2022065 |
[5] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[6] | Wenyan Tian, Yaoyao Chen, Zhaoxia Meng, Hongen Jia . An adaptive finite element method based on Superconvergent Cluster Recovery for the Cahn-Hilliard equation. Electronic Research Archive, 2023, 31(3): 1323-1343. doi: 10.3934/era.2023068 |
[7] | Hsueh-Chen Lee, Hyesuk Lee . An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29(4): 2755-2770. doi: 10.3934/era.2021012 |
[8] | Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095 |
[9] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
[10] | Guanrong Li, Yanping Chen, Yunqing Huang . A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042 |
The rising accessibility in gambling products, such as Electronic Gaming Machines (EGM), has increased interest in the effects of gambling; in particular, the potential for impulse control disorders, such as problem gambling. Nevertheless, empirical research of EGM gambling behaviour is scarce. In this exploratory study, we apply data mining techniques on 46,416 gambling sessions, collected in situ from 288 EGMs. Our research focused on identifying the at-risk behavioural markers of sessions to help distinguish gambling personae. Our data included measures of gambling involvement, out-of pocket expense of sessions, amount won, and cost of gambling. This research, discusses the methodology used to collect and analyze the required gambling measures, explains the criteria used for identifying valid sessions, and combines outlier mining methods to identify instances of heavily involved gambling (i.e., outliers). Our results suggest that sessions were classified as potential non-problem, potential low-risk, potential moderate risk, and potential problem gambling sessions. Further, outlier sessions were more heavily involved in terms of gambling intensity and amount redeemed, despite having low duration times. Finally, our methods suggest that the lack of player identification does not prevent one from identifying the potential incidence of problem gambling behaviour.
In the present paper, we focus on the nonlocal dispersal equation with spatially dependent bistable nonlinearity
ut(x,t)=J∗u(x,t)−u(x,t)+f(x,u),x,t∈R, | (1) |
where the nonlinearity
(F) The nonlinearity
{f(x,u)=f1(u)forx≥0,u∈[0,1],f(x,u)=f2(u)forx≤−L,u∈[0,1],f2(u)≤f(x,u)≤f1(u),fu(x,u)<1forx∈[−L,0],u∈[0,1], | (2) |
where
fi∈C1,1([0,1]),fi(0)=fi(1)=0,f′i(0),f′i(1)<0,fi<0in(0,θi),fi>0in(θi,1),0<θ1<θ2<1,and∫10fi(s)ds>0,i=1,2. |
(J) The kernel function
{J(x)=J(−x),J(x)≥0,∫RJ(y)dy=1,∫R|J′(y)|dy<∞,∫RJ(y)e−λydy<∞for allλ>0. | (3) |
A typical example is
The nonlocal dispersal equation has attracted so much attention because of its extensive applications to account for diffusion phenomena involving jumps in biology, physics and chemistry [1,12]. Traveling waves as one kind of special solutions with invariant profile and fixed speed as well as entire solutions have been adequately investigated. It is well-known that the importance of the study of entire solutions of reaction-diffusion equations (nonlocal dispersal equations) is frequently recalled in the literature. Since the pioneering works of Hamel and Nadirashvili [13,14], there have been tremendous advances in studying the existence of entire solutions for various models. In particular, when the nonlinearity is homogeneous (i.e.
However, for the inhomogeneous nonlinearity, several works are devoted to transition fronts (see [3,19]) of nonlocal dispersal equations [17,20] and forced waves in shifting habitats [25]. Traveling waves and spreading speed of monostable nonlocal dispersal equations with space periodic nonlinearity were studied in [21]. Li et al. [16] further obtained the existence of entire solutions for space periodic nonlinearity. Particularly, Eberle [10,11] constructed a heteroclinic orbit connecting two traveling waves for bistable local dispersal equation 1 in cylinders. Meanwhile, Berestycki and Rodríguez [5] considered a bistable nonlocal dispersal equation with a gap in one dimension. As far as we know, there is no result on entire solutions for the nonlocal dispersal equation 1 with inhomogeneous nonlinearity
In this paper, we aim to construct an entire solution connecting traveling waves with the two different nonlinearities, motivated by [10,11]. By constructing suitable sub- and super-solutions, we establish the existence and uniqueness of the entire solution behaving as the traveling wave coming from one side and eventually going to the other side, which is different with the one constructed in [23] for the case
The crucial part of this paper is to figure out the long time asymptotic behavior of the entire solution. Since the lack of compactness of the nonlocal operator, we can not use the Lyapunov function argument as [10,11] to show that the entire solution converges to a translation of the other traveling wave as time goes to positive infinity. However, inspired by the idea in [7], we use a "squeezing" technique to address this issue. Furthermore, we also apply sub- and super-solutions method with comparison principle to establish Lyapunov stability of the entire solution. This can be done because that we can obtain a positive estimate on the derivative of the entire solution with respect to
Now we state the main results of this paper as follows.
Theorem 1.1. Let assumptions
u(x,t)−ϕ1(x+c1t)→0ast→−∞uniformly inx∈R |
and
u(x,t)−ϕ2(x+c2t+β)→0ast→+∞uniformly inx∈R |
for some
{J∗ϕi−ϕi+fi(ϕi)−ciϕ′i=0,ϕi(−∞)=0,ϕi(+∞)=1,0<ϕi<1. | (4) |
Theorem 1.2. The entire solution
|v(x,t,v0)−u(x+a,t+t0)|<ϵ |
for
The rest of this paper is organized as follows. In Section 2, we recall some results of the bistable traveling waves for homogeneous nonlinearities and prove the comparison principle for 1. Section 3 is devoted to constructing the unique entire solution. In Section 4, we study the asymptotic profile as time goes to positive infinity. Finally, we establish Lyapunov stability of the entire solution in Section 5.
In this section, some known results on the traveling waves of 4 are outlined and the comparison principle is established.
It follows from Theorem 2.7 in [2] and Theorem 2.7 in [23] that 4 admits a solution
{β0eλ0z≤ϕ1(z)≤α0eλ0z,z≤0,β1e−λ1z≤1−ϕ1(z)≤α1e−λ1z,z>0, | (5) |
where
cλ0=∫RJ1(y)e−λ0ydy−1+f′1(0)andcλ1=∫RJ1(y)e−λ1ydy−1+f′1(1), |
respectively. Moreover, we have
{˜β0eλ0z≤ϕ′1(z)≤˜α0eλ0z,z≤0,˜β1e−λ1z≤ϕ′1(z)≤˜α1e−λ1z,z>0 | (6) |
for some constants
|f1(u+v)−f1(u)−f1(v)|≤Lfuvfor0≤u,v≤1. |
We show that the following comparison principle holds by a contradiction argument.
Proposition 1. Suppose that assumptions
{∂u(x,t)∂t−(∫RJ(x−y)[u(y,t)−u(x,t)]dy)−f(x,u(x,t))≥0,∀(x,t)∈R×(0,T],u(x,0)≥0,x∈R, |
{∂v(x,t)∂t−(∫RJ(x−y)[v(y,t)−v(x,t)]dy)−f(x,v(x,t))≤0,∀(x,t)∈R×(0,T],v(x,0)≤0,x∈R, |
respectively. Then,
u(x,t)≥v(x,t)inR×[0,T]. |
Furthermore, if
Proof of Proposition 1. Let
limn→+∞ˇw(xn,tn)=infR×[0,ϵ0T]ˇw(x,t)<0. |
Observe that
ˇwt(x,t)=Zˇw(x,t)+eZtˉwt(x,t)≥Zˇw(x,t)+eZt∫RJ(x−y)[ˉw(y,t)−ˉw(x,t)]dy+eZt[f(x,u(x,t))−f(x,v(x,t))]=Zˇw(x,t)+∫RJ(x−y)[ˇw(y,t)−ˇw(x,t)]dy+fu(x,uθ(x,t))ˇw(x,t). |
where
ˇw(xn,tn)−ˇw(xn,0)≥∫tn0[J∗ˇw(xn,s)−ˇw(xn,s)+Zˇw(xn,s)+fu(x,uθ(x,s))ˇw(xn,s)]ds≥∫tn0[J∗ˇw(xn,s)+(‖fu(x,u)‖∞−fu(x,uθ(x,s)))infR×[0,ϵ0T]ˇw(x,t)]ds. |
Letting
infR×[0,ϵ0T]ˇw(x,t)≥(1+‖fu(x,u)‖∞−minR×[0,1]|fu(x,uθ(x,s))|)ϵ0TinfR×[0,ϵ0T]ˇw(x,t). |
Since
infR×[0,ϵ0T]ˇw(x,t)≥(1+‖fu(x,u)‖∞−minR×[0,1]|fu(x,uθ(x,s))|)ϵ0TinfR×[0,ϵ0T]ˇw(x,t)>infR×[0,ϵ0T]ˇw(x,t). |
Thus, we get a contradiction. Therefore, we obtain
infR×[0,ϵ0T]ˇw(x,t)≥(1+‖fu(x,u)‖∞−minR×[0,1]|fu(x,uθ(x,s))|−ϵinfR×[0,ϵ0T]ˇw(x,t))ϵ0TinfR×[0,ϵ0T]ˇw(x,t). |
Here, we can also choose
(1+‖fu(x,u)‖∞−minR×[0,1]|fu(x,uθ(x,s))|−ϵinfR×[0,ϵ0T]ˇw(x,t))ϵ0T<1. |
This finishes the proof.
In this section, we focus on the construction of the entire solution which behaves like a traveling wave approaching from infinity. The main idea is to establish suitable sub- and super-solutions, which are defined as follows.
W−(x,t)={ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t)),x≥0,0,x<0, |
and
W+(x,t)={ϕ1(x+c1t+ξ(t))+ϕ1(−x+c1t+ξ(t)),x≥0,2ϕ1(c1t+ξ(t)),x<0, |
here
˙ξ(t)=Meλ(c1t+ξ),t<−T,ξ(−∞)=0, |
where
ξ(t)=1λln11−c−11Meλc1t. |
For the function
c1t+ξ(t)≤0for−∞<t≤−T, |
where
Now we verify that
Lu=ut−(J∗u−u)−f(x,u). |
We first deal with the sub-solution
LW−(x,t)=(c1−˙ξ(t))[ϕ′1(x+c1t−ξ(t))−ϕ′1(−x+c1t−ξ(t))]−∫+∞0J(x−y)[ϕ1(y+c1t−ξ(t))−ϕ1(−y+c1t−ξ(t))]dy+[ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))]−f(x,W−)=−˙ξ(t)[ϕ′1(x+c1t−ξ(t))−ϕ′1(−x+c1t−ξ(t))]+∫0−∞J(x−y)[ϕ1(y+c1t−ξ(t))−ϕ1(−y+c1t−ξ(t))]dy+f1(ϕ1(x+c1t−ξ(t)))−f1(ϕ1(−x+c1t−ξ(t)))−f(x,W−). |
Recall that
LW−(x,t)≤−˙ξ(t)[ϕ′1(x+c1t−ξ(t))−ϕ′1(−x+c1t−ξ(t))]+f1(ϕ1(x+c1t−ξ(t)))−f1(ϕ1(−x+c1t−ξ(t)))−f1(ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))). |
Then we continue to show
Case 1. For
ϕ′1(x+c1t−ξ(t))−ϕ′1(−x+c1t−ξ(t))>m[ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))] |
for some
LW−(x,t)≤−˙ξ(t)[ϕ′1(x+c1t−ξ(t))−ϕ′1(−x+c1t−ξ(t))]+Lfϕ1(−x+c1t−ξ(t)))[ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))]≤[ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))][−mMeλ(c1t+ξ(t))+Lfα0eλ0(−x+c1t−ξ(t))]=[ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))]eλ(c1t+ξ(t))[−mM+Lfα0eλ0(−x−2ξ(t))]. |
Therefore, if we choose
Case 2. For
LW−(x,t)≤−Meλ(c1t+ξ(t))[~β1e−λ1(x+c1t−ξ(t))−˜αeλ0(−x+c1t−ξ(t))]+Lfα0eλ0(−x+c1t−ξ(t))[α1e−λ1(x+c1t−ξ(t))−β0eλ0(−x+c1t−ξ(t))]≤−eλ0(−x+c1t−ξ(t))[M~β1e(λ0−λ1)xe−(λ0+λ1−λ)c1t+(λ+λ0+λ1)ξ(t))−M˜αeλ(c1t+ξ(t))−Lfα0]. |
Since
For
LW−(x,t)≤Meλ(c1t+ξ(t))ϕ′1(−x+c1t−ξ(t))+f1(ϕ1(x+c1t−ξ(t)))−f1(ϕ1(−x+c1t−ξ(t)))−f1(ϕ1(x+c1t−ξ(t))−ϕ1(−x+c1t−ξ(t))). |
Moreover, if
LW−(x,t)≤Meλ(c1t+ξ(t))ϕ′1(−x+c1t−ξ(t))+[f′1(1)−f′(0)]ϕ1(−x+c1t−ξ(t))+o(ϕ1(−x+c1t−ξ(t)))≤eλ0(−x+c1t−ξ(t))[M˜α0eλ(c1t+ξ(t))+(f′1(1)−f′(0))−o(1)]. |
Since
LW−(x,t)≤−eλ0(−x+c1t−ξ(t))[M~β1e(λ0−λ1)xe−(λ0+λ1−λ)c1t+(λ+λ0+λ1)ξ(t))−M˜αeλ(c1t+ξ(t))−Lfα0]≤−eλ0(−x+c1t−ξ(t))[M~β1e(λ0−λ1)Le(λ−2λ0)c1t+(λ+2λ0)ξ(t))−M˜αeλ(c1t+ξ(t))−Lfα0]. |
Thanks to
LW−(x,t)≤0. |
We intend to testify the super-solution
Step 1.
LW+(x,t)=2(c1+˙ξ(t))ϕ′1(c1t+ξ(t))−∫RJ(x−y)W+(y,t)dy+2ϕ1(c1t+ξ(t))−f(x,2ϕ1(c1t+ξ(t)))≥2(c1+˙ξ(t))ϕ′1(c1t+ξ(t))−f1(2ϕ1(c1t+ξ(t)))−∫+∞0J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))]dy. |
Denote
I=∫+∞0J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))]dy. |
Then, it follows that
I=∫−c1t−ξ(t)0J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))]dy+∫+∞−c1t−ξ(t)J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))]dy≤α0eλ0(c1t+ξ(t))∫+∞0J(x−y)[eλ0y+e−λ0y]dy+2∫+∞−c1t−ξ(t)J(x−y)dy. |
Let
Jλ0=∫+∞0J(y)[eλ0y+e−λ0y]dy. |
It follows from assumption
J(x)≤KJe2λ0xforx≥0. |
Furthermore, there hold
I≤Jλ0α0eλ0(c1t+ξ(t))+2KJ∫+∞−c1t−ξ(t)e2λ0(x−y)dy≤Jλ0α0eλ0(c1t+ξ(t))+2KJλ0e2λ0(c1t+ξ(t)). |
Therefore, according to
LW+(x,t)≥2(c1+˙ξ(t))ϕ′1(c1t+ξ(t))−Jλ0α0eλ0(c1t+ξ(t))−2KJλ0e2λ0(c1t+ξ(t))−f1(2ϕ1(c1t+ξ(t)))≥(2c1~β0−α0Jλ0−2f′1(0)β0−o(1))eλ0(c1t+ξ(t))+(2M~β0−2KJλ0)e2λ0(c1t+ξ(t)). |
Since
M>KJ~β0λ0andJλ0<2c1~β0+2|f′1(0)|β0α0, |
consequently, we have
Step 2. For
LW+(x,t)=(c1+˙ξ(t))[ϕ′1(x+c1t+ξ(t))+ϕ′1(−x+c1t+ξ(t))]−∫RJ(x−y)W+(y,t)dy+[ϕ1(x+c1t+ξ(t))+ϕ1(−x+c1t+ξ(t))]−f1(W+)=˙ξ(t)[ϕ′1(x+c1t+ξ(t))+ϕ′1(−x+c1t+ξ(t))]+∫0−∞J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))−2ϕ1(c1t+ξ(t))]dy+f1(ϕ1(x+c1t+ξ(t)))+f1(ϕ1(−x+c1t+ξ(t)))−f1(ϕ1(x+c1t+ξ(t))+ϕ1(−x+c1t+ξ(t))). |
Denote
II=∫0−∞J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))−2ϕ1(c1t+ξ(t))]dy. |
We consider two cases.
Case 1.
II=∫0c1t+ξ(t)J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))−2ϕ1(c1t+ξ(t))]dy+∫c1t+ξ(t)−∞J(x−y)[ϕ1(y+c1t+ξ(t))+ϕ1(−y+c1t+ξ(t))−2ϕ1(c1t+ξ(t))]dy≥∫0c1t+ξ(t)J(x−y)Cλ0eλ0(c1t+ξ(t))[eλ0y+e−λ0y−2−(2+e(λ0+η)y+e−(λ0+η)y)Cηeη(c1t+ξ(t))]dy≥−(2+Jη)Cλ0Cηe(λ0+η)(c1t+ξ(t)). |
The second inequality follows from
|ϕ1(x)−Cλ0eλ0x|≤Cηe(λ0+η)xforx≤0and some0<η<λ0, |
which can be easily obtained by 5 and 6. As a consequence,
LW+(x,t)≥Me(λ+λ0)(c1t+ξ(t))~β0(eλ0x+e−λ0x)−(2+Jη)Cλ0Cηe(λ0+η)(c1t+ξ(t))−Lfα20e2λ0(c1t+ξ(t)))≥e(λ+λ0)(c1t+ξ(t))[2M~β0−(2+Jη)Cλ0Cηe(η−λ)(c1t+ξ(t))−Lfα20e(λ0−λ)(c1t+ξ(t))]≥e(λ+λ0)(c1t+ξ(t))[2M~β0−(2+Jη)Cλ0Cη−Lfα20]. |
The last inequality holds since
M≥(2+Jη)Cλ0Cη+Lfα202~β0. |
Case 2. Here
II≥−∫0c1t+ξ(t)J(x−y)Cλ0eλ0(c1t+ξ(t))(2+e(λ0+η)y+e−(λ0+η)y)Cηeη(c1t+ξ(t))dy≥−Cλ0CηKJe(λ0+η)(c1t+ξ(t))∫0c1t+ξ(t)e−2λ0(x−y)(3+e−(λ0+η)y)dy≥−Cλ0CηKJeλ0(−x+c1t+ξ(t))−λ0x(3λ0eη(c1t+ξ(t))+1η). |
Moreover, if
LW+(x,t)≥Meλ(c1t+ξ(t))(~β1e−λ1(x+c1t+ξ(t))+~β0eλ0(−x+c1t+ξ(t)))−Lfα0eλ0(−x+c1t+ξ(t))−Cλ0CηKJeλ0(−x+c1t+ξ(t))(3λ0eη(c1t+ξ(t))+1η)≥eλ(c1t+ξ(t))+λ0(−x+c1t+ξ(t))[M~β1e(λ0−λ1)x−(λ0+λ1)(c1t+ξ(t))−3Cλ0CηKJλ0e(η−λ)(c1t+ξ(t))−(Lfα0+Cλ0CηKJη)e−λ(c1t+ξ(t))]. |
Remember that
M~β1−3Cλ0CηKJλ0−(Lfα0+Cλ0CηKJη)≥0. | (7) |
This yields that
If
f1(ϕ1(x+c1t+ξ(t)))+f1(ϕ1(−x+c1t+ξ(t)))−f1(W+)=[f′1(0)−f′1(1)]ϕ1(−x+c1t+ξ(t))+o(ϕ1(−x+c1t+ξ(t))). |
Meanwhile,
LW+(x,t)≥eλ(c1t+ξ(t))+λ0(−x+c1t+ξ(t))(M~β1e(λ0−λ1)x−(λ0+λ1)(c1t+ξ(t))−3Cλ0CηKJλ0e(η−λ)(c1t+ξ(t)))+([f′1(0)−f′1(1)]β0−Cλ0CηKJηe−λ0x)eλ0(−x+c1t+ξ(t)). |
Then
[f′1(0)−f′1(1)]β0−Cλ0CηKJηe−λ0x≥0. |
When
LW+(x,t)≥eλ(c1t+ξ(t))+λ0(−x+c1t+ξ(t))[M~β1e(λ0−λ1)x−(λ0+λ1)(c1t+ξ(t))−3Cλ0CηKJλ0e(η−λ)(c1t+ξ(t))−(Lfα0+Cλ0CηKJη)e−λ(c1t+ξ(t))]≥eλ(c1t+ξ(t))+λ0(−x+c1t+ξ(t))[M~β1e(λ0−λ1)M−2λ0(c1t+ξ(t))−3Cλ0CηKJλ0e(η−λ)(c1t+ξ(t))−(Lfα0+Cλ0CηKJη)e−λ(c1t+ξ(t))]. |
Similar to the case
Proof of Theorem 1.1. Let
{(un)t(x,t)=J∗un(x,t)−un(x,t)+f(x,un),x∈R,t>−n,un(x,−n)=W−(x,−n),x∈R. |
Since
W−(x,t)≤un(x,t)≤W+(x,t)forx∈R,t∈[−n,−T]. |
Moreover, since
{v′(t)=Lη−mv(t),t>−n,v(−n)=Mη, |
where
Proposition 2. Let
|u(x+η,t)−u(x,t)|≤M′η, |
and
|∂u(x+η,t)∂t−∂u(x,t)∂t|≤M"η |
for
The proof is similar to that of Proposition 3.1 in [23] by virtue of the fact
As for the uniqueness, since it is easy to see
In this section, we are going to show the entire solution established in previous section converges to a shift of
ω<min{|f′1(0)|4,|f′2(0)|4,|f′1(1)|4,|f′2(1)|4}, |
there hold
ϕ1(x),ϕ2(x)≤σ2forx≤−Xandϕ1(x),ϕ2(x)≥1−σ2forx≥X, |
besides,
f′1(s),f′2(s)≤−ωfors∈[0,σ]∪[1−σ,1]. |
Theorem 4.1. Let assumptions
u(x,t)−ϕ1(x+c1t)→0ast→−∞uniformly inx∈R. | (8) |
Then
u(x,t)−ϕ2(x+c2t+β)→0ast→+∞uniformly inx∈R |
for some
Lemma 4.2. Suppose assumptions
u(x,t)≥max{ϕ2(x+c2t−β−)−δ−e−ωt,0} |
for
Proof of Lemma 4.2. In fact, it follows from 8 that there exists
|u(x,t−)−ϕ1(x+c1t−)|≤ϵ−2 |
for any
˜u(x,t)=u(x,t+t−)andu_(x,t)=max{ϕ2(ξ−(x,t))−Cve−ωt,0}, |
where
ξ−(x,t)=x+c2(t+t−)−β0+Cve−ωt−Cvfort≥0,x∈R. |
We first show
ϕ1(x+c1t−)≥1−ϵ−2andϕ2(x+c2t−)≥1−ϵ−2forx≥x1. |
As
1−ϵ−2≤u(x,t)≤1and1−ϵ−2≤ϕi≤1,i=1,2 |
for
|ϕi−u(x,t)|≤ϵ−,i=1,2fort≥t−,x≥x1. |
Meanwhile, there exists
0<ϕi(x+cit−)≤ϵ−2,i=1,2forx≤x2. |
Particularly, there holds
|u(x,t−)−ϕ2(x+c2t−)|≤ϵ−forx∈R∖(x1,x2). |
In addition,
ϕ2(x+c2t–β0)≤u(x,t−)forx∈[x1,x2]. |
From all the discussion above we obtain
Lu_(x,t)=u_t(x,t)−(J∗u_(x,t)−u_(x,t))−f(x,u_)≤0fort≥0,x∈R. |
In fact, we only need to consider
Lu_(x,t)=(c2−Cvωe−ωt)ϕ′2(ξ−(x,t))+Cvωe−ωt−∫RJ(x−y)ϕ2(ξ−(y,t))dy+ϕ2(ξ−(x,t))−f(x,u_(x,t))≤−Cvωe−ωtϕ′2(ξ−(x,t))+f2(ϕ2(ξ−(x,t)))−f2(ϕ2(ξ−(x,t))−Cve−ωt)+Cvωe−ωt. |
In the following, we continue the proof in three cases.
Case
ϕ2(ξ−)−Cve−ωt≤ϕ2(ξ−)≤σ. |
Then, by
Lu_(x,t)≤(f′2(0)+2ω)Cve−ωt≤0. |
Case
1−σ≤1−σ2−Cv≤ϕ2(ξ−)−Cve−ωt≤ϕ2(ξ−)<1. |
Then, since
Lu_(x,t)≤(f′2(1)+2ω)Cve−ωt≤0. |
Case
Lu_(x,t)≤−τ0Cvωe−ωt+‖f′2‖∞Cve−ωt+Cvωe−ωt≤(‖f′2‖∞Cv++Cvω−τ0Cvω)e−ωt. |
Choose
Similarly, we can prove the following lemma.
Lemma 4.3. Under the assumptions of Lemma 4.2, there exist
min{ϕ1(x+c1t+β+)+C+e−ωt,1}≥u(x,t) |
for
Now we are in a position to establish an important lemma.
Lemma 4.4. Under the assumptions of Lemma 4.2, there exist
min{ϕ2(x+c2t+β)+Ce−ωt,1}≥u(x,t) |
for
Proof of Lemma 4.4. Define
ξ+(x,t)=x+c2(t+T)+β++V(t),V(t)=KV∫t0v(s)ds, |
and
v(t)=(ϵ1+C3)e−ωt−C3e−λ1c2t |
for
c2λ1=∫RJ(x−y)e−λ1ydy−1+f′2(1). |
Then
v(0)=ϵ1,0<v(t)<σ2fort≥0 |
and
˙v(t)=−ωv(t)−(w−λ1c2)C3eλ1c2tfort≥0. |
Now we intend to show
|f1(s)−f2(s)|≤C0|1−s|fors∈[0,1]. |
Since
ϕ1(x+c1T+β+)<ϵ12andϕ2(x+c2T)<ϵ1forx<x3 |
as well as
ϕ2(x+c2T−β−)≥1−ϵ1andϕ2(x+c2T)≥1−ϵ1 |
for
max{C+,δ−}e−ωT<ϵ12andX−c2T≤−x0. |
Therefore, it is obvious that
u(x,T)≤min{ϕ2(x+c2T)+ϵ1,1}≤¯u(x,0)forx∈R∖(x3,x4). |
Furthermore, since
ϕ2(x+c2T+β+)≥u(x,T)forx∈[x3,x4]. |
This yields that
In the following, we are going to prove
L¯u(x,t)=¯ut(x,t)−(J∗¯u(x,t)−¯u(x,t))−f(x,¯u)≥0fort≥0,x∈R. |
Here we only need to consider
L¯u(x,t)=˙ξ+(x,t)ϕ′2(ξ+(x,t))+˙v(t)−∫RJ(x−y)ϕ2(ξ+(y,t))dy+ϕ2(ξ+(x,t))−f(x,ϕ2(ξ+(x,t))+v(t)) |
=˙V(t)ϕ′2(ξ+(x,t))+˙v(t)+f2(ϕ2(ξ+(x,t)))−f(x,ϕ2(ξ+(x,t))+v(t))≥{˙V(t)ϕ′2(ξ+(x,t))+˙v(t)+f2(ϕ2(ξ+(x,t)))−f2(ϕ2(ξ+(x,t))+v(t))forx<−L,˙V(t)ϕ′2(ξ+(x,t))+˙v(t)+f2(ϕ2(ξ+(x,t)))−f1(ϕ2(ξ+(x,t))+v(t))forx≥−L. |
We continue to prove
Case 1. If
L¯u(x,t)≥˙V(t)ϕ′2(ξ+(x,t))+˙v(t)+f1(ϕ2(ξ+(x,t)))−f1(ϕ2(ξ+(x,t))+v(t))−C0|1−ϕ2(ξ+(x,t))|≥˙V(t)ϕ′2(ξ+(x,t))+˙v(t)−(f′1(1)+ω)˙v(t)−C2C0e−λ1(x+c2(t+T)+β++V(t))≥˙V(t)ϕ′2(ξ+(x,t))+˙v(t)−(f′1(1)+ω)˙v(t)−C2C0e−λ1c2teλ1(L−c2T). |
Particularly, choose
˙v(t)=−ωv(t)+C2C0e−λ1c2teλ1(L−c2T), |
which means
C3=C2C0eλ1(L−c2T)λ1c2−ω. |
As a consequence,
L¯u(x,t)≥−(f′1(1)+2ω)v(t)≥0. |
In addition, if
L¯u(x,t)≥−ωv(t)−(w−λ1c2)C3eλ1c2t−(f′2(1)+ω)v(t)≥−(f′2(1)+2ω)v(t)≥0. |
Case 2. If
Case 3. For
L¯u(x,t)≥˙V(t)ϕ′2(ξ+(x,t))+˙v(t)−‖f′2‖∞v(t)≥˙V(t)τ0˙V(t)−ωv(t)−‖f′2‖∞v(t)≥(KVτ0−ω−‖f′2‖∞)v(t), |
where
KV≥ω+‖f′2‖∞τ0 |
that
Now we are ready to show that the entire solution converges to a shift of
minx∈[−n,n]{u1(x,1)−u2(x,1)}≥ζ(n)∫10[u1(y,0)−u2(y,0)]dyform≥1. |
In fact, it follows from the comparison principle that
˘wt(x,t)≥K˘w(x,t)+J∗˘w(x,t)−˘w(x,t)+f(x,u(x,t))−f(x,v(x,t))≥J∗˘w(x,t)+[K−(1+maxs∈[−1,2]|fs(x,s)|)]˘w(x,t)≥J∗˘w(x,t), |
which implies that
\begin{equation*} \breve{w}(x,T)\geq\left(\frac{T}{N_0}\right)^NJ*\breve{w}(x,0)\geq\left(\frac{T}{N_0}\right)^N c(M)\int_0^1\breve{w}(y,0)dy, \end{equation*} |
where
\begin{equation*} c(M) = \min\limits_{x\in[-M-1,M+1]}J(x) > 0. \end{equation*} |
Thus, there exists a positive function
\begin{equation*} u(x,t)-v(x,t)\geq\eta(|x|,t)\int_0^1[u(y,0)-v(y,0)]dy\; \text{for}\; x\in\mathbb{R},t > 0, \end{equation*} |
which implies the assumption (A) holds.
Now, we start to prove the following lemma, which plays an important role in the proof of Theorem 4.1.
Lemma 4.5. Suppose that assumptions
\begin{equation} \phi_2(x+c_2\tau+\xi)-\delta\leq u(x,t)\leq\phi_2(x+c_2\tau+\xi+h)+\delta\; \mathit{\text{for}}\; x\in\mathbb{R}, \end{equation} | (9) |
then for every
\begin{align*} &\tilde{\xi}(t)\in\left[\xi-\delta\frac{\gamma}{C_m},\xi+h+\delta\frac{\gamma}{C_m}\right],\\ &\tilde{\delta}(t)\leq e^{-\omega(t-\tau-1)}\left[\delta+\epsilon_0 \min\{h,1\}\right],\\ &\tilde{h}(t)\leq\tau h-\frac{\gamma\epsilon_0}{C_m}\min\{h,1\}+2\delta\frac{\gamma}{C_m} \end{align*} |
such that 9 holds with
Proof of Lemma 4.5. In view of Lemmas 4.2 and 4.4, it is easy to see that
\begin{equation*} \phi_2(x+c_2t-\beta_-)-\delta_-e^{-\omega t}\leq u(x,t)\leq \phi_2(x+c_2t+\beta)+Ce^{-\omega t}. \end{equation*} |
Furthermore, as in the proofs of Lemmas 4.2 and 4.4,
\begin{equation*} \phi_2\left(x+c_2t-\beta^0+C^ve^{-\omega t}-C^v\right)-\delta_-e^{-\omega t}\leq u(x,t) \end{equation*} |
and
\begin{equation*} \phi_2\left(x+c_2t+\beta^++\frac{K_V}{\omega}-\frac{K_V}{\omega}e^{-\omega t}\right)+Ce^{-\omega t}\geq u(x,t). \end{equation*} |
Denote
\begin{equation*} \kappa = \max\{-\beta^0-\gamma\}, \; h = \beta^++\frac{K_V}{\omega}-\kappa. \end{equation*} |
In addition, by the definition of
\begin{equation*} \phi_2\left(x+c_2t+\gamma e^{-\omega t}\right)-C_me^{-\omega t}\leq\check{u}(x,t) \leq \phi_2\left(x+c_2t+h+\gamma e^{-\omega t}\right)+C_me^{-\omega t}. \end{equation*} |
Let
\begin{equation*} \int_0^1\left[\phi_2(y+\overline{h})-\phi_2(y)\right]dy\geq2\vartheta_0\overline{h}. \end{equation*} |
Therefore, at least one of the following two inequalities is true
\begin{equation*} \text{(i)}\; \int_0^1[\check{u}(y,0)-\phi_2(y)]dy\geq\vartheta_0\overline{h},\qquad\qquad \; \; \text{(ii)}\; \int_0^1[\phi_2(y+\overline{h})-\check{u}(y,0)]dy\geq\vartheta_0\overline{h}. \end{equation*} |
Next, we consider the case (i) since the case (ii) is similar. According to the assumption (A), for
\begin{equation*} \check{u}(x,1)-\left[\phi_2\left(x+\gamma e^{-\omega}\right)-C_me^{-\omega}\right]\geq\zeta\int_0^1[\check{u}(y,0)-(\phi_2(y)-C_m)]dy \geq\zeta\vartheta_0\overline{h}. \end{equation*} |
Now define
\begin{equation*} \epsilon_0 = \min\left\{\frac{\sigma}{2},\frac{\gamma}{2C_m},\min\limits_{x\in[-M-c_2-\gamma,M+c_2+\gamma]} \frac{\zeta\vartheta_0\gamma}{2C_m\phi'_2(x)}\right\}. \end{equation*} |
Accordingly, there exists
\begin{equation*} \begin{split} \phi_2\left(x+\gamma e^{-\omega}+2\epsilon_0\overline{h}\frac{\gamma}{C_m}\right)- \phi_2\left(x+\gamma e^{-\omega}\right) = &\phi'_2\left(x+\gamma e^{-\omega}+2\epsilon_0\overline{h}\tilde{\theta}\frac{\gamma} {C_m}\right)2\epsilon_0\overline{h}\frac{\gamma}{C_m}\\ \leq&\zeta\vartheta_0\overline{h} \end{split} \end{equation*} |
for all
\begin{equation*} \check{u}(x,1)\geq\phi_2\left(x+\gamma e^{-\omega}+2\epsilon_0\overline{h}\frac{\gamma}{C_m}\right)-C_me^{-\omega} \end{equation*} |
for
For
\begin{equation*} \phi_2\left(x+\gamma e^{-\omega}\right)\geq\phi_2\left(x+\gamma e^{-\omega}+2\epsilon_0\overline{h}\frac{\gamma}{C_m}\right)-\epsilon_0\overline{h}. \end{equation*} |
Then, it follows that
\begin{equation*} u(x,1)\geq\phi_2\left(x+\kappa+\gamma e^{-\omega}+2\epsilon_0\overline{h}\frac{\gamma}{C_m}\right)-\epsilon_0\overline{h}-C_me^{-\omega} \; \text{for}\; x\in\mathbb{R}. \end{equation*} |
Note that
\begin{equation*} \begin{split} u(x,1+t')\geq&\phi_2\left(x+c_2t+\kappa+\gamma e^{-\omega}+2\epsilon_0\overline{h}\frac{\gamma}{C_m}+\gamma e^{-\omega t'}\right)-pe^{-\omega t'}\\ \geq&\phi_2\left(x+c_2(t'+1)+\kappa+\epsilon_0\overline{h}\frac{\gamma}{C_m}-\frac{\delta \gamma}{C_m}\right)-(\delta+\epsilon_0\overline{h})e^{-\omega t'}. \end{split} \end{equation*} |
Thus we finish the proof by setting
\begin{align*} &t = 1+t',\; \tilde{\xi}(t) = \frac{\gamma\epsilon_0\overline{h}}{C_m} ,\; \tilde{\delta} = (\delta+\epsilon_0\overline{h})e^{-\omega (t-1)}\\ &\tilde{h} = \left[h+\delta\frac{\gamma}{C_m}e^{-\omega t}\right]-\tilde{\xi}(t) = h-\frac{\epsilon_0\gamma}{C_m}\overline{h}+\delta\frac{\gamma}{C_m}\left[2-e^{-\omega t}\right]. \end{align*} |
Now we shall prove Theorem 4.1.
Proof of Theorem 4.1. We shall divide the proof in three steps.
Step 1. Following from Lemmas 4.2 and 4.4, there exist
\begin{equation} \phi_2(x+c_2T^*-M^*)-C_m\leq u(x,T^*)\leq\phi_2(x+c_2T^*+M^*)+C_m\; \text{for}\; x\in\mathbb{R}. \end{equation} | (10) |
Here,
\begin{equation*} \epsilon^* = \min\left\{\frac{\sigma}{2},\frac{\epsilon_0}{4}\right\}\; \text{and} \; k_0 = \epsilon_0\frac{\gamma}{C_m}-2\epsilon^*\frac{\gamma}{C_m}\geq\frac{\gamma\epsilon_0}{2C_m} > 0. \end{equation*} |
Meanwhile, fix
\begin{equation*} e^{-\omega(t^*-1)}\left[1+\frac{\epsilon_0}{\epsilon^*}\right]\leq1-k^*. \end{equation*} |
Then, replace
By 10, applying Lemma 4.5 with
\begin{equation*} \hat{\delta}(T_0+t^*)\leq[\epsilon^*+\epsilon_0]e^{-\omega t^*}\leq\epsilon^*\; \text{and}\; \hat{h}(T_0+t^*)\leq h_0-\frac{\gamma}{C_m}\epsilon_0+2\epsilon^*\frac{\gamma}{C_m}\leq h_0-k^*. \end{equation*} |
Repeat the same process, it yields that 9 holds for
Step 2. In this step, we use a mathematical induction to show that for every nonnegative integer
\begin{equation*} \tau = T^k: = T_1+kt^*,\; \delta = \delta^k: = (1-k^*)^k\epsilon^*,\; h = h^k: = (1-k^*)^k. \end{equation*} |
It is obvious that the assertion holds for
\begin{align*} &\hat{\xi}\in\left[\xi^l-\delta^l\frac{\gamma}{C_m},\xi^l+\delta^l\frac{\gamma}{C_m}\right],\\ &\hat{\delta}\leq\left(\delta^l+\epsilon_0h^l\right) = [1-k^*]^l\epsilon^*\left(1 +\frac{\epsilon_0}{\epsilon^*}\right) e^{-\omega(t^*-1)}\leq(1-k^*)^{l+1}\epsilon^*,\\ &\hat{h}\leq h^l-h^l\epsilon_0\frac{\gamma}{C_m}+2\delta^l\frac{\gamma}{C_m} = [1-k^*]^l\left[1-\epsilon_0\frac{\gamma}{C_m}+2\epsilon^*\frac{\gamma}{C_m}\right] = [1-k^*]^{l+1} \end{align*} |
by the definition of
Step 3. So far, we have known that 9 holds for
Now we define
\begin{equation*} \delta(t) = \delta^k, \; \xi(t) = \xi^k-\delta^k\frac{\gamma}{C_m},\; h(t) = h^k+2\delta^k\frac{\gamma}{C_m} \end{equation*} |
for
\begin{equation*} \phi_2(x+c_2t+\xi(t))-\delta(t)\leq u(x,t)\leq\phi_2(x+c_2t+\xi(t+h(t))+\delta(t)\; \text{for}\; t\geq T_1,\; x\in\mathbb{R}. \end{equation*} |
It follows from the definition of
\begin{align*} &\delta(t) = \delta^k = [1-k^*]^k\epsilon^*\leq\epsilon^*\exp{\left[\left(\frac{t-T_1}{t^*}-1\right)\ln(1-k^*)\right]} \; \text{for}\; t\geq T_1,\\ &h(t) = h^k+2\delta^k\frac{\gamma}{C_m}\leq\left[1+2\epsilon^*\frac{\gamma}{C_m}\right] \exp{\left[\left(\frac{t-T_1}{t^*}-1\right)\ln(1-k^*)\right]} \; \text{for}\; t\geq T_1. \end{align*} |
Moreover, since for any
\begin{equation*} \xi(t)\in\left[\xi(\tau)-\delta(\tau)\frac{\gamma}{C_m},\xi(\tau)+h(\tau) +\delta(\tau)\frac{\gamma}{C_m}\right], \end{equation*} |
there holds
\begin{equation*} |\xi(t)-\xi(\tau)|\leq h(\tau)+2\delta(\tau)\frac{\gamma}{C_m}, \end{equation*} |
which implies that
\begin{equation*} |\xi(\infty)-\xi(\tau)|\leq h(\tau)+2\delta(\tau)\frac{\gamma}{C_m}\leq\left[1+4\epsilon^*2\delta(\tau) \frac{\gamma}{C_m}\right]e^{\left[\left(\frac{t-T_1}{t^*}-1\right)\ln(1-k^*)\right]} \; \text{for}\; t\geq T_1. \end{equation*} |
Therefore, we have that
\begin{equation*} |u(x,t)-\phi_2(x+c_2t+\xi(\infty))|\rightarrow0\; \text{as}\; t\rightarrow+\infty. \end{equation*} |
Furthermore, the convergence is exponential. Then we complete the proof.
We investigate the Lyapunov stability of the entire solution obtained in Theorem 1.1 in this section. That is, the aim here is to prove Theorem 1.2. The following lemma plays an important role in proving Theorem 1.2.
Lemma 5.1. Let
u_t(x,t)\geq K_\varphi\; \mathit{\text{for any}}\; t\geq T_\varphi\; \mathit{\text{and}}\; x\in\Omega_{\varphi}(t), |
where
\Omega_{\varphi}(t) = \left\{x\in\mathbb{R}:\; \varphi\leq u(x,t)\leq1-\varphi\right\}. |
Proof of Lemma 5.1. It is easy to choose
\begin{equation*} \Omega_{\varphi}(t)\subset\left\{x\in\mathbb{R}:\; |x+c_2t|\leq M_\varphi\right\}\subset\{x\in\mathbb{R}:\; x\leq-1\}. \end{equation*} |
Now suppose there exist sequences
\begin{equation*} u_t(t_k,x^k)\rightarrow0\; \text{as}\; k\rightarrow+\infty. \end{equation*} |
Here only two cases happen,
For the former case, denote
\begin{equation*} u_k(x,t) = u(x+x^k,t+t_k). \end{equation*} |
By Proposition 2,
\begin{equation*} u_k\rightarrow u_*\; \text{as}\; k\rightarrow+\infty \end{equation*} |
for some function
\begin{equation*} \frac{\partial u_*(x,t)}{\partial t}\equiv0\; \text{for}\; t\geq0. \end{equation*} |
However, this is impossible because by Theorem 4.1
\begin{equation*} u_*(x,t) = \phi_2(x+c_2t+\beta+a)\; \text{for some}\; a\in[-M_\eta,M_\eta]. \end{equation*} |
For the second case,
\begin{equation*} u_k(x,t): = u(x+x^k,t). \end{equation*} |
Then, each
\begin{equation*} u_k\rightarrow u^*\; \text{as}\; k\rightarrow+\infty \end{equation*} |
for some function
\begin{equation*} u^*(x,t)-\phi_2(x+\beta+x^*+c_2t)\rightarrow0\; \text{as}\; t\rightarrow+\infty. \end{equation*} |
This ends the proof.
Proof of Theorem 1.2. We first define a pair of sub- and super-solutions as follows.
\begin{equation*} U^{\pm}(x,t) = u(x+a,t+t_0\pm\tilde{\delta}\varpi(1-e^{-\omega t}))\pm\varpi e^{-\omega t}, \end{equation*} |
where
\begin{equation} U^-(x,t)\leq v(x,t)\leq U^+(x,t)\; \text{for}\; x\in\mathbb{R},\; t\geq0. \end{equation} | (11) |
In view of that for all
\begin{equation} \sup\limits_{x\in\mathbb{R},\; t\in\mathbb{R}}|u(x,t)-u(x,t+\tau)| \leq\sup\limits_{x\in\mathbb{R},\; t\in\mathbb{R}}|u_t(x,t)|\varpi\leq\frac{\epsilon}{2}. \end{equation} | (12) |
It then follows from 11 and 12 that
\begin{equation*} |v(x,t,v_0)-u(x+a,t+t_0)| < \epsilon \end{equation*} |
for
Now we prove the claim. We show
\begin{equation*} \begin{split} \mathcal{L}U^+(x,t) = &U_t^+(x,t)-(J*U^+(x,t)-U^+(x,t))-f(x,U^+)\\ = &\tilde{\delta}\varpi\omega e^{-\omega t}-\varpi\omega e^{-\omega t}+f(x,u)-f(x,U^+)\\ \geq&0. \end{split} \end{equation*} |
We go further to show
Case 1. For any
\begin{equation*} \begin{split} \mathcal{L}U^+(x,t)\geq&-\min\left\{\frac{|f_u(x,0)|}{2},\frac{|(f_u(x,1)|}{2}\right\}\varpi e^{-\omega t}-\omega\varpi e^{-\omega t}\\ \geq&\varpi e^{-\omega t}(2\omega-\omega)\\ \geq&0. \end{split} \end{equation*} |
Case 2. For
\begin{equation*} \begin{split} \mathcal{L}U^+(x,t)\geq&\tilde{\delta}\varpi\omega K_\sigma e^{-\omega t}-\varpi\omega e^{-\omega t}-\|f_u(x,u)\|_\infty\varpi e^{-\omega t}\\ \geq&\varpi e^{-\omega t}\left(\tilde{\delta}\omega K_\sigma-\omega-\|f_u(x,u))\|_\infty\right). \end{split} \end{equation*} |
Let
\begin{equation*} \tilde{\delta}\geq\frac{\omega K_\sigma}{\omega+\|f_u(x,u)\|_\infty}. \end{equation*} |
Thus, we have
Remark 1. In this paper, we have considered the existence, uniqueness, asymptotic behavior and Lyapunov stability of entire solutions of the nonlocal dispersal equation 1 under the assumption
Remark 2. The method used here can be also applied to consider the bistable lattice differential equations with
\begin{equation} \dot{u}_i(t) = u_{i+1}(t)+u_{i-1}(t)-2u_i(t)+f_i(u_i(t)),\; i\in\mathbb{Z},\; t\in\mathbb{R}. \end{equation} | (13) |
The existence, uniqueness, asymptotic behavior and the Lyapunov stability of entire solutions to 13 can be similarly obtained.
While for bistable random diffusion equations with
\begin{equation*} u_t = u_{xx}+f(x,u),\; x\in\mathbb{R},\; t\in\mathbb{R}, \end{equation*} |
the construction of the entire solution behaving as the traveling wave pertaining to
[1] |
C. C. Aggarwal, Outlier Analysis, Springer, New York, 2013. MR3024573 |
[2] | American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, American Psychiatric Association, Washington, DC, 1994. |
[3] | G. Banks, R. Fitzgerald and L. Sylvan, Gambling: Productivity Commission Inquiry Report, Technical Report 50,2010, http://www.pc.gov.au/inquiries/completed/gambling-2009/report/gambling-report-volume1.pdf(visited on: 09/12/2012). |
[4] | M. Berry and G. Linoff, Data Mining Techniques for Marketing, Sales, and Customer Relationship Management, 2nd edition, Wiley Publishing Inc., Indianapolis, 2004. |
[5] |
Braverman J., LaBrie R.A., Shaffer H.J. (2011) A taxometric analysis of actual Internet sport gambling behavior. Psychological Assessment 23: 234-244. doi: 10.1037/a0021404
![]() |
[6] |
Braverman J., LaPlante D.A., Nelson S.E., Shaffer H.J. (2013) Using cross-game behavioral markers for early identification of high-risk Internet gamblers. Psychology of Addictive Behaviors 27: 868-877. doi: 10.1037/a0032818
![]() |
[7] |
Braverman J., Shaffer H.J. (2012) How do gamblers start gambling: Identifying behavioral markers for high-risk Internet gambling. European Journal of Public Health 22: 273-278. doi: 10.1093/eurpub/ckp232
![]() |
[8] |
S. Carpendale, Evaluating information visualizations, in Information Visualization, Lecture Notes in Computer Science, A simple univariate outlier identification procedure, 4950 (2008), 19-45. 10.1007/978-3-540-70956-5_2 |
[9] | National Research Council (1999) Pathological Gambling: A Critical Review Washington D.C.: National Academies Press. |
[10] | P. Delfabbro, A. Osborn, M. Nevile, L. Skelt and J. MacMillen, Identifying Problem Gamblers in Gambling Venues, Technical report, 2007. |
[11] |
Dixon M.J., Harrigan K.A., Jarrick M., MacLaren V., Fugelsang J.A., Sheepy E. (2011) Psychophysiological arousal signatures of near-misses in slot machine play. International Gambling Studies 11: 393-407. doi: 10.1080/14459795.2011.603134
![]() |
[12] |
Dixon L., Trigg R., Griffiths M. (2007) An empirical investigation of music and gambling behaviour. International Gambling Studies 7: 315-326. doi: 10.1080/14459790701601471
![]() |
[13] |
Dragicevic S., Tsogas G., Kudic A. (2011) Analysis of casino online gambling data in relation to behavioural risk markers for high-risk gambling and player protection. International Gambling Studies 11: 377-391. doi: 10.1080/14459795.2011.629204
![]() |
[14] |
Ellery M., Stewart S.H., Loba P. (2005) Alcohol's effects on video lottery terminal (vlt) play among probable pathological and non-pathological gamblers. Journal of Gambling Studies 21: 299-324. doi: 10.1007/s10899-005-3101-0
![]() |
[15] | J. Ferris and H. Wynne, The Canadian Problem Gambling Index: Final Report, Technical Report, 2001, http://www.ccgr.ca/en/projects/resources/CPGI-Final-Report-English.pdf(visited on: 06/28/2013). |
[16] | G. Data, Canadian Gaming Market Report, Technical report, 2011, http://www.gamblingdata.com/files/Gambling%20Data%20Canadian%20Gaming%20Market%20Report%20Final_0.pdf (visited on: 04/10/2013). |
[17] | GSA, G2S Message Protocol v1. 1 Game-to-system, Technical Report GSA-P0075. 024. 00-2011, GSA, 2011. |
[18] | GSA, G2S Message Protocol v2. 0 Game-to-system, Technical Report GSA-P0075. 0800. 00-2006, GSA, 2006. |
[19] | J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd edition, Morgan Kaufmann, Waltham, 2012. |
[20] | Harrigan K.A., Dixon M. (2009) Par sheets, probabilities, and slot machine play: Implications of problem and non-problem gambling. Journal of Gambling Issues 23: 81-110. |
[21] | Harrigan K.A. (2007) Slot machine structural characteristics: Distorted player views of payback percentages. Journal of Gambling Issues 20: 215-234. |
[22] |
Harrigan K.A. (2009) Slot machines: Pursuing responsible gaming practices for virtual reels and near misses. International Journal of Mental Health Addiction 7: 68-83. doi: 10.1007/s11469-007-9139-8
![]() |
[23] |
Hennig C. (2007) Cluster-wise assessment of cluster stability. Computational Statistics & Data Analysis 52: 258-271. doi: 10.1016/j.csda.2006.11.025
![]() |
[24] |
Hoaglin D.C. (2003) John W. Tukey and data analysis. Statistical Science 18: 311-318. doi: 10.1214/ss/1076102418
![]() |
[25] | B. Iglewicz and S. Banerjee, A Simple Univariate Outlier Identification Procedure, Proceedings of Annual Meeting of the American Statistical Association, 2001. |
[26] |
LaBrie R.A., LaPlante D.A., Nelson S.E., Schumann A., Shaffer H.J. (2007) Assessing the playing field: A prospective longitudinal study of Internet sports gambling behavior. Journal of Gambling Studies 23: 347-362. doi: 10.1007/s10899-007-9067-3
![]() |
[27] |
LaBrie R.A., Kaplan S.A., LaPlante D.A., Nelson S.E., Shaffer H.J. (2008) Inside the virtual casino: A prospective longitudinal study of actual Internet casino gambling. European Journal of Public Health 18: 410-416. doi: 10.1093/eurpub/ckn021
![]() |
[28] |
LaPlante D. A., Nelson S. E., LaBrie R. A., Shaffer H. J. (2008) Stability and progression of disordered gambling: Lessons from longitudinal studies. Canadian Journal of Psychiatry 53: 52-60. doi: 10.1177/070674370805300108
![]() |
[29] |
LaPlante D.A., Nelson S.E., LaBrie R.A., Shaffer H.J. (2011) Disordered gambling, type of gambling and gambling involvement in the British gambling prevalence survey 2007. European Journal of Public Health 21: 532-537. doi: 10.1093/eurpub/ckp177
![]() |
[30] |
Liu H., Keselj V. (2007) Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users' future requests. Data & Knowledge Engineering 61: 304-330. doi: 10.1016/j.datak.2006.06.001
![]() |
[31] | Loba P., Stewart S. H., Klein R. M., Blackburn J. R. (2001) Manipulations of the features of standard video lottery terminal (VLT) games: Effects in pathological and non-pathological gamblers. Journal of Gambling Studies 17: 94-98. |
[32] |
MacLaren V.V., Fugelsang J.A., Harrigan K., Dixon M. (2011) The personality of pathological gamblers: A meta-analysis. Clinical Psychology Review 31: 1057-1067. doi: 10.1016/j.cpr.2011.02.002
![]() |
[33] | K. Marshall, Gambling 2011, Technical Report 4,2011, http://www.statcan.gc.ca/pub/75-001-x/2011004/article/11551-eng.pdf(visited on: 04/10/2013). |
[34] |
Mishra S., Lumiére M.L., Williams R.J. (2010) Gambling as a form of risk-taking: Individual differences in personality, risk-accepting attitudes, and behavioral preferences for risk. Personality and Individual Differences 49: 616-621. doi: 10.1016/j.paid.2010.05.032
![]() |
[35] | National Research Council (1999) Pathological Gambling: A Critical Review Washington D.C.: The National Academies Press. |
[36] |
Nelson S.R., LaPlante D.A., Peller A.J., Schumann A., LaBrie R.A., Shaffer H.J. (2008) Real limits in the virtual world: Self-limiting behavior of Internet gamblers. Journal of Gambling Studies 24: 463-477. doi: 10.1007/s10899-008-9106-8
![]() |
[37] | J. Pallant, SPSS Survival Manual: A Step By Step Guide to Data Analysis Using SPSS, 4th edition, Allen & Unwin, Sydney, 2011. |
[38] |
Y. Peng, K. Gang and Y. Shi (eds. ), Knowledge-rich data mining in financial risk detection, in Computational Science - ICCS 2009 (eds. G. Allen, J. Nabrzyski, E. Seidel, G. D. van Albada, J. Dongarra and P. M. A. Sloot), Springer Berlin Heidelberg, 5545 (2009), 534-542. 10.1007/978-3-642-01973-9_60 |
[39] |
Pham D. T., Dimov S. S., Nguyen C. D. (2005) Selection of k in k-means clustering. Journal of Mechanical Engineering Science 219: 103-119. doi: 10.1243/095440605X8298
![]() |
[40] | A. Rakhlin and A. Caponnetto (eds. ), Stability of k-means clustering, in Advances in Neural Information Processing Systems 19 (eds. B. Schölkopf, J. Platt and T. Hoffman), MIT Press, (2006), 1121-1128. http://papers.nips.cc/paper/3116-stability-of-k-means-clustering (visited on: 12/10/2014) |
[41] | Responsible Gambling Council, Electronic Gaming Machines and Problem Gambling, Saskachewan Liquour and Gaming Authority, 2006, http://www.responsiblegambling.org/docs/research-reports/electronic-gaming-machines-and-problem-gambling.pdf?sfvrsn=10 (visited on: 06/28/2013). |
[42] | Responsible Gambling Council, Canadian Gambling Digest 2011-2012, Technical report, 2013, http://www.responsiblegambling.org/docs/default-document-library/20130605_canadian_gambling_digest_2011-12.pdf?sfvrsn=2 (visited on: 05/04/2015). |
[43] | G. Schwartz, The Impulse Economy, Atria Books, New York, 2011. |
[44] | S. Seo, A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets, M. S thesis, University of Pittsburg in Pensylvania, 2006. |
[45] |
Shaffer H.J., Korn D.A. (2002) Gambling and related mental disorders: A public health analysis. Annual Review of Public Health 23: 171-212. doi: 10.1146/annurev.publhealth.23.100901.140532
![]() |
[46] |
Shaffer H.J., Peller A.J., LaPlante D.A., Nelson S.E., LaBrie R.A. (2010) Toward a paradigm shift in Internet gambling research: From opinion and self-report to actual behavior. Addiction Research and Theory 18: 270-283. doi: 10.3109/16066350902777974
![]() |
[47] | Sim J., Wright C.C. (2005) Understanding interobserver agreement: The Kappa statistic. Family Medicine 37: 360-363. |
[48] |
Stewart S. H., Collins P., Blackburn J. R., Ellery M., Klein R. M. (2005) Heart rate increase to alcohol administration and video lottery terminal (VLT) play among regular VLT players. Psychology of Addictive Behaviors 19: 94-98. doi: 10.1037/0893-164X.19.1.94
![]() |
[49] |
S. Tufféry, Data Mining and Statistics for Decision Making, John Wiley & Sons, Ltd., Chichester, 2011.
10.1002/9780470979174 |
[50] | Viera A.J., Garrett J.M. (2005) The Kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Journal of the American Physical Therapy Association 85: 257-268. |
[51] | C. Wheelan, Naked Statistics: Stripping the Dread from the Data, W. W. Norton and Company, New York, 2013. |
[52] | R. J. Williams, R. A. Volberg and R. M. G. Stevens, The Population Prevalence of Problem Gambling: Methodological Influences, Standardized Rates, Jurisdictional Differences, and Worldwide Trends, Technical report, 2012, https://www.uleth.ca/dspace/bitstream/handle/10133/3068/2012-PREVALENCE-OPGRC%20(2).pdf?sequence=3 (visited on: 08/12/2013). |
[53] |
Wilson D. S., Kauffman R. A., Purdy M. S. (2002) A program for at-risk high school students
informed by evolutionary science. PLoS ONE 31: 76-77. doi: 10.1371/journal.pone.0027826
![]() |
[54] |
Witten I.H., Frank E. (2002) Data mining: Practical machine learning tools and techniques. Newsletter: ACM SIGMOD Record Homepage archive 31: 76-77. doi: 10.1145/507338.507355
![]() |
[55] |
Xuan Z., Shaffer H. (2009) How do gamblers end gambling: Longitudinal analysis of Internet gambling behaviors prior to account closure due to gambling related problems. Journal of Gambling Studies 25: 239-252. doi: 10.1007/s10899-009-9118-z
![]() |