Loading [MathJax]/extensions/TeX/boldsymbol.js

Forward Supervised Discretization for Multivariate with Categorical Responses

  • Given a data set with one categorical response variable and multiple categorical or continuous explanatory variables, it is required in some applications to discretize the continuous explanatory ones. A proper supervised discretization usually achieves a better result than the unsupervised ones. Rather than individually doing so as recently proposed by Huang, Pan and Wu in[12, 13], we suggest a forward supervised discretization algorithm to capture a higher association from the multiple explanatory variables to the response variable. Experiments with the GK-tau and the GK-lambda are presented to support the statement.

    Citation: Wenxue Huang, Qitian Qiu. Forward Supervised Discretization for Multivariate with Categorical Responses[J]. Big Data and Information Analytics, 2016, 1(2): 217-225. doi: 10.3934/bdia.2016005

    Related Papers:

    [1] Chao-Jen Li, Peiwen Li, Kai Wang, Edgar Emir Molina . Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems. AIMS Energy, 2014, 2(2): 133-157. doi: 10.3934/energy.2014.2.133
    [2] Ayman B. Attya, T. Hartkopf . Wind Turbines Support Techniques during Frequency Drops — Energy Utilization Comparison. AIMS Energy, 2014, 2(3): 260-275. doi: 10.3934/energy.2014.3.260
    [3] Jialin Song, Haoyi Zhang, Yanming Zhang, Zhongjiao Ma, Mingfei He . Research progress on industrial waste heat recycling and seasonal energy storage. AIMS Energy, 2025, 13(1): 147-187. doi: 10.3934/energy.2025006
    [4] Joaquim Azevedo, Jorge Lopes . Energy harvesting from hydroelectric systems for remote sensors. AIMS Energy, 2016, 4(6): 876-893. doi: 10.3934/energy.2016.6.876
    [5] Tan Nguyen Tien, Quang Khong Vu, Vinh Nguyen Duy . Novel designs of thermoelectric generator for automotive waste heat recovery: A review. AIMS Energy, 2022, 10(4): 922-942. doi: 10.3934/energy.2022042
    [6] Azevedo Joaquim, Mendonça Fábio . Small scale wind energy harvesting with maximum power tracking. AIMS Energy, 2015, 2(3): 297-315. doi: 10.3934/energy.2015.3.297
    [7] Joanna McFarlane, Jason Richard Bell, David K. Felde, Robert A. Joseph III, A. Lou Qualls, Samuel Paul Weaver . Performance and Thermal Stability of a Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop. AIMS Energy, 2014, 2(1): 41-70. doi: 10.3934/energy.2014.1.41
    [8] Nathnael Bekele, Wondwossen Bogale . Parametric study of a diffuser for horizontal axis wind turbine power augmentation. AIMS Energy, 2019, 7(6): 841-856. doi: 10.3934/energy.2019.6.841
    [9] Obafemi O. Olatunji, Stephen Akinlabi, Nkosinathi Madushele, Paul A. Adedeji, Ishola Felix . Multilayer perceptron artificial neural network for the prediction of heating value of municipal solid waste. AIMS Energy, 2019, 7(6): 944-956. doi: 10.3934/energy.2019.6.944
    [10] Daido Fujita, Takahiko Miyazaki . Techno-economic analysis on the balance of plant (BOP) equipment due to switching fuel from natural gas to hydrogen in gas turbine power plants. AIMS Energy, 2024, 12(2): 464-480. doi: 10.3934/energy.2024021
  • Given a data set with one categorical response variable and multiple categorical or continuous explanatory variables, it is required in some applications to discretize the continuous explanatory ones. A proper supervised discretization usually achieves a better result than the unsupervised ones. Rather than individually doing so as recently proposed by Huang, Pan and Wu in[12, 13], we suggest a forward supervised discretization algorithm to capture a higher association from the multiple explanatory variables to the response variable. Experiments with the GK-tau and the GK-lambda are presented to support the statement.


    1. Introduction

    Let 0<T< be a constant of time, and let NN be a constant of spatial dimension such that 1N3. Let ΩRN be a bounded domain such that Γ:=Ω is smooth when N>1. Besides, let us denote by Q:=(0,T)×Ω the product space of the time-interval (0,T) and the spatial domain Ω, and similarly, let us set Σ:=(0,T)×Γ.

    In this paper, we fix a constant ν0, and consider the following system of initial-boundary value problems of parabolic types, denoted by (S)ν.

    (S)ν:

    {[uλ(w)]tΔu=f   in Q, DunΓ+n0(ufΓ)=0   on Σ, u(0,x)=u0(x),  xΩ; (1.1)
    {wtΔw+γ(w)+gw(w,η)+λ(w)u              +αw(w,η)|Dθ|+ν2βw(w,η)|Dθ|20 in Q,DwnΓ=0   on Σ,w(0,x)=w0(x),  xΩ; (1.2)
    {ηtΔη+gη(w,η)+αη(w,η)|Dθ|+ν2βη(w,η)|Dθ|2=0   in Q,DηnΓ=0   on Σ,η(0,x)=η0(x),  xΩ; (1.3)
    {α0(w,η)θtdiv(α(w,η)Dθ|Dθ|+2ν2β(w,η)Dθ)=0   in Q,(α(w,η)Dθ|Dθ|+2ν2β(w,η)Dθ)nΓ=0   on Σ,θ(0,x)=θ0(x),  xΩ. (1.4)

    Here, Du, Dw, Dη and Dθ denote, respectively, the (distributional) gradients of the unknowns u, w, η and θ on Ω. f=f(t,x) is the source term on Q, fΓ=fΓ(t,x) is the boundary source on Σ. u0=u0(x), w0=w0(x), η0=η0(x) and θ0=θ0(x) are given initial data on Ω. γ is the subdifferential of a proper lower semi-continuous (l.s.c.) and convex function γ=γ(w) on R. λ=λ(w), g=g(w,η), α0=α0(w,η), α=α(w,η) and β=β(w,η) are given real-valued functions, and the scripts "'", "w" and "η" denote differentials with respect to the corresponding variables. n0 is a given positive constant, and nΓ is the unit outer normal on Γ.

    The system (S)ν is based on the non-isothermal model of grain boundary motion by Warren et al. [36], which was derived as an extending version of the "Kobayashi-Warren-Carter model" of grain boundary motion by Kobayashi et al. [22,23]. Hence, the study of this paper is based on the previous works related to the Kobayashi-Warren-Carter model (e.g., [13,15,16,17,20,21,22,23,25,26,28,29,30,31,32,36,37,39]).

    According to the modeling method of [36], the system (S)ν is roughly configured as a coupled system of the heat equation in (1.1), and a gradient system {(1.2)-(1.4)} of the following governing energy, called free-energy:

    εν(u,w,η,θ):=12Ω|Dw|2dx+Ωγ(w)dx+Ωuλ(w)dx+12Ω|Dη|2dx+Ωg(w,η)dx+Ωα(w,η)d|Dθ|+Ωβ(w,η)|D(νθ)|2dx, (1.5)

    for [u,w,η,θ]L2(Ω)×H1(Ω)×H1(Ω)×BV(Ω) with νθH1(Ω).

    In this context, the unknown u=u(t,x) is the relative temperature with the critical degree 0, and the unknown w=w(t,x) is an order parameter to indicate the solidification order of the polycrystal. The term uλ(w) in (1.1) is the so-called enthalpy, and then the term λ(w) corresponds to the effect of the latent heat. The unknowns η=η(t,x) and θ=θ(t,x) are components of the vector field

    (t,x)Qη(t,x)[ cosθ(t,x),sinθ(t,x)]R2,

    which was adopted in [22,23] as a vectorial phase field to reproduce the crystalline orientation in Q. Here, the components η and θ are order parameters to indicate, respectively, the orientation order and angle of the grain. In particular, w and η are taken to satisfy the constraints 0w,η1 in Q, and the cases [w,η][1,1] and [w,η][0,0] are respectively assigned to "the solidified-oriented phase" and "the liquefied-disoriented phase" which correspond to two stable phases in physical.

    In view of these, we suppose that

    (g0) the function w ∈ [0, 1] 7→ λ(w) ∈ R is increasing, and if the temperature u is closed to the critical

    value, i.e. u ≈ 0, then the function

    [u,w,η]R2γ(w)+g(w,η)λ(w)u(,]

    has two minimums, around [1,1] and [0,0].

    Besides, referring to the previous works on phase transitions (e.g., [7,8,14,18,19,34,35]), we can exemplify the following settings as possible expressions of the functions λ, γ and g in the above (g0):

    (g1) (constrained setting by logarithmic function; cf. [14,34,35])

    {λ(w)=Lw, γ(w):=12(wlogw+(1w)log(1w))with  γ(0)=γ(1):=1,g(w,η):=L2(w12)2+c2(wη)2,    for  w,ηR,

    (g2) (setting with non-smooth constraint; cf. [7,8,18,19,35])

    {λ(w)=Lw,γ(w):=I[0,1](w),g(w,η):=L2(w12)2+c2(wη)2,   for  w,ηR.

    Here, L and c are positive constants, and R{0,} is the indicator function on the compact interval [0,1].

    Now, the objective of this study is to generalize the line of recent results [25,26,28,29,30,31,32,37,39], and to obtain an enhanced theory which enables the versatile analysis for Kobayashi-Warren-Carter type systems, under various situations. To this end, we set the goal of this paper to specify the assumptions, which can cover the settings as in (g1)-(g2), and can guarantee the validity of the following Main Theorem.

    Main Theorem: the existence theorem of the solution [u,w,η,θ] to the systems (S)ν, for any ν0, which behaves in the range of C([0,T];L2(Ω)4), with the L2-based sources fL2(0,T;L2(Ω)) and fΓL2(0,T;L2(Γ)).

    The main theorem is somehow to enhance the results [25,31,32] concerned with qualitative properties of isothermal/non-isothermal Kobayashi-Warren-Carter type systems.


    2. Preliminaries

    First we elaborate the notations which is used throughout this paper.

    Notation 1 (Real analysis). For arbitrary a0, b0 ∈ [-∞, ∞], we define

    Fix dN as a constant of dimension. Then, we denote by |x| and xy the Euclidean norm of xRd and the standard scalar product of x,yRd, respectively, as usual, i.e.:

    |x|:=x21++x2d and xy:=x1y1++xdyd for all x=[x1,,xd], y=[y1,,yd]Rd.

    The d-dimensional Lebesgue measure is denoted by Ld, and unless otherwise specified, the measure theoretical phrases, such as "a.e.", "dt", "dx", and so on, are with respect to the Lebesgue measure in each corresponding dimension. Also, in the observations on a smooth surface SRd, the phrase "a.e." is with respect to the Hausdorff measure in each corresponding Hausdorff dimension, and the area element on S is denoted by dS.

    For a (Lebesgue) measurable function f:B[,] on a Borel subset BRd, we denote by [f]+ and [f], respectively, the positive and negative parts of f, i.e.,

    [f]+(x):=f(x)0  and [f](x):=(f(x)0), a.e. xB.

    Notation 2 (Abstract functional analysis). For an abstract Banach space X, we denote by ||X the norm of X, and when X is a Hilbert space, we denote by (,)X its inner product. For a subset A of a Banach space X, we denote by int(A) and ¯A the interior and the closure of A, respectively.

    Fix 1<dN. Then, for a Banach space X, the topology of the product Banach space Xd is endowed with the norm:

    |z|Xd:=dk=1|zk|X, for z=[z1,,zd]Xd.

    However, if X is a Hilbert space, then the topology of the product Hilbert space Xd is endowed with the inner product:

    (z,˜z)Xd:=dk=1(zk,˜zk)X, for z=[z1,,zd]Xd and ˜z=[˜z1,,˜zd]Xd

    and hence, the norm in this case is provided by

    |z|Xd:=(z,z)Xd=(dk=1|zk|2X)1/2,for z=[z1,,zd]Xd.

    For a Banach space X, we denote the dual space by X. For a single-valued operator A:XX, we write

    Az=[Az1,,Azd][X]d for any z=[z1,,zd]Xd.

    For any proper lower semi-continuous (l.s.c. hereafter) and convex function Ψ defined on a Hilbert space X, we denote by D(Ψ) its effective domain, and denote by Ψ its subdifferential. The subdifferential Ψ is a set-valued map corresponding to a weak differential of Ψ, and it has a maximal monotone graph in the product Hilbert space X2. More precisely, for each z0X, the value Ψ(z0) is defined as the set of all elements z0X that satisfy the variational inequality

    (z0,zz0)XΨ(z)Ψ(z0) for any zD(Ψ)

    and the set D(Ψ):={zXΨ(z)} is called the domain of Ψ. We often use the notation "[z0,z0]Ψ in X2, " to mean "z0Ψ(z0) in X with z0D(Ψ)" by identifying the operator Ψ with its graph in X2.

    Notation 3 (Basic elliptic operators). Let V=H1(Ω) be a Hilbert space endowed with the inner product:

    (w,z)V:=Ωwzdx+n0ΓwzdΓ,  for [w,z]V2,

    and let CV>0 be the embedding constant of VL2(Ω).

    Let , be the duality pairing between V and the dual space V, and let F: VV be the duality mapping defined by

    Fw,z:=(w,z)V,   for [w,z]V2.

    Note that V forms a Hilbert space endowed with the inner product:

    (w,z)V:=w,F1z,  for [w,z](V)2.

    For any ϱL2(Ω) and any ϱΓL2(Γ), we can regard the vectorial function ϱ:=[ϱ,ϱΓ]L2(Ω)×L2(Γ) as an element of V, via the following variational form:

    ϱ,z:=(ϱ,z)L2(Ω)+n0(ϱΓ,z)L2(Γ)forzV. (2.1)

    Note that for any ϱ=[ϱ,ϱΓ]L2(Ω)×L2(Γ), the variational form (2.1) enables the following identification:

    Fω=ϱinV,iff.ωH2(Ω)and{Δω=ϱinL2(Ω)DωnΓ+n0(ωϱΓ)=0inL2(Γ).

    On this basis, the product space L2(Ω)×L2(Γ) can be regarded as a subspace of V, and the restriction F|H2(Ω):H2(Ω)L2(Ω)×L2(Γ) can be regarded as a bijective linear operator associated with the Laplacian, subject to Robin type boundary condition (cf. [24]).

    In the meantime, we denote by ΔN the Laplacian operator subject to the zero-Neumann boundary condition, i.e.,

    ΔN:zWN:={zH2(Ω)DznΓ=0 in L2(Γ)}L2(Ω)ΔzL2(Ω).

    Remark 1. We here show some representative examples of the subdifferentials, which is intimately related to our study.

    (Ex.1) The quadratic functional uL2(Ω)12|u|2L2(Ω) can be regarded as a proper l.s.c. and convex function on V, via the standard -extension, and then, the V-subdifferential of this function coincides with the duality map F:VV, i.e.:

    [u,u][12||2L2(Ω)] in [V]2, iff. uV and u=Fu in V.

    (Ex.2) Let dN, and let γ0:RdR be a convex function defined as

    y=[y1,,yd]Rdγ0(y):=γ1(y1)+γ2(y2)++γd(yd),

    by using proper l.s.c. and convex functions γk:R(,], for k=1,,d. Let Ψdγ0:L2(Ω)d(,] be a proper l.s.c. and convex function defined as:

    zL2(Ω)dΨdγ0(z):={12Ω|Dz|2RN×ddx+Ωγ0(z)dx,ifzH1(Ω)d, otherwise.

    Then, with regard to the subdifferential Ψdγ0[L2(Ω)d]2, it is known (see, e.g., [4,6]) that

    zL2(Ω)dΨdγ0(z)={zL2(Ω)d|z+ΔNzγ0(z)inRd,a.e.inΩ}ifzWdN,,otherwise.

    This fact is often summarized as Ψdγ0=ΔN+γ0 in [L2(Ω)d]2.

    Notation 4 (BV theory; cf. [2,3,11,12]). Let dN, and let URd be an open set. We denote by M(U) the space of all finite Radon measures on U. The space M(U) is known as the dual space of the Banach space C0(U), i.e., M(U)=C0(U), where C0(U) is the closure of the class of test functions Cc(U) in the topology of C(¯U).

    A function zL1(U) is called a function of bounded variation on U, iff. its distributional gradient Dz is a finite Radon measure on U, namely, DzM(U)d. Here, for any zBV(U), the Radon measure Dz is called the variation measure of z, and its total variation |Dz| is called the total variation measure of z. Additionally, for any zBV(U), it holds that

    |Dz|(U)=sup{UzdivφdxφC1c(U)d and |φ|1 on U}.

    The space BV(U) is a Banach space, endowed with the norm

    |z|BV(U):=|z|L1(U)+|Dz|(U) for any zBV(U)

    and we say that znz weakly- in BV(U), iff. zBV(U), {zn}n=1BV(U), znz in L1(U) and DznDz weakly- in M(U)d, as n.

    The space BV(U) has another topology, called "strict topology", which is provided by the following distance (cf.[2, Definition 3.14]):

    [φ,ψ]BV(U)2|φψ|L1(U)+||Dφ|(U)|Dψ|(U)|.

    In this regard, we say that znz strictly in BV(U) iff. zBV(U), {zn}n=1BV(U), znz in L1(U) and |Dzn|(U)|Dz|(U), as n.

    Specifically, when the boundary U is Lipschitz, the Banach space BV(U) is continuously embedded into Ld/(d1)(U) and compactly embedded into Lp(U) for any 1p<d/(d1) (see, e.g., [2, Corollary 3.49] or [3, Theorems 10.1.3-10.1.4]). Furthermore, if 1q<, then the space C(¯U) is dense in BV(U)Lq(U) for the intermediate convergence, i.e., for any zBV(U)Lq(U), there exists a sequence {zn}n=1C(¯U) such that znz in Lq(U) and strictly in BV(U), as n (see, e.g., [3, Definition 10.1.3 and Theorem 10.1.2]).

    Notation 5 (Weighted total variation; cf. [1,2]). For any nonnegative ϱH1(Ω)L(Ω) (i.e. any 0ϱH1(Ω)L(Ω)) and any zL2(Ω), we call the value Varϱ(z)[0,], defined as,

    Varϱ(v):=sup[Ωvdivϖdx|ϖL(Ω)Nwithacompactsupport,and|ϖ|ϱa.e.inΩ][0,],

    "the total variation of v weighted by ϱ", or the "weighted total variation" in short.

    Remark 2. Referring to the general theories (e.g., [1,2,5]), we can confirm the following facts associated with the weighted total variations.

    (Fact 1)(Cf.[5, Theorem 5]) For any 0ϱH1(Ω)L(Ω), the functional zL2(Ω)Varϱ(z)[0,] is a proper l.s.c. and convex function that coincides with the lower semi-continuous envelope of

    zW1,1(Ω)L2(Ω)Ωϱ|Dz|dx[0,).

    (Fact 2) (Cf. [1, Theorem 4.3] and [2, Proposition 5.48]) If 0ϱH1(Ω)L(Ω) and zBV(Ω)L2(Ω), then there exists a Radon measure |Dz|ϱM(Ω) such that

    |Dz|ϱ(Ω)=Ωd|Dz|ϱ=Varϱ(z),

    and

    {|Dz|ϱ(A)|ϱ|L(Ω)|Dz|(A)|Dz|ϱ(A)=inf{liminfnAϱ|D˜zn|dx|{˜zn}n=1W1.1(A)L2(A)suchthat˜znzinL2(A)asn} (2.2)

    for any open set AΩ.

    (Fact 3) If ϱH1(Ω)L(Ω), cϱ:=essinfxΩϱ>0, and zBV(Ω)L2(Ω), then for any open set AΩ, it follows that

    {|Dz|ϱ(A)cϱ|Dz|(A)foranyopensetAΩD(Varϱ)=BV(Ω)L2(Ω),andVarϱ(z)=sup{Ωzdiv(ϱϖ)dx|ϖL(Ω)Nwithacompactsupport,and|ϖ|1a.e.inΩ} (2.3)

    Moreover, the following properties can be inferred from (2.2)-(2.3):

    · |Dz|c=c|Dz| in M(Ω) for any constant c0 and zBV(Ω)L2(Ω);

    · |Dz|ϱ=ϱ|Dz|LN in M(Ω), if 0ϱH1(Ω)L(Ω) and zW1,1(Ω)L2(Ω).

    Notation 6 (Generalized weighted total variation; cf. [25, Section 2]). For any linebreak ϱH1(Ω)L(Ω) and any zBV(Ω)L2(Ω), we define a real-valued Radon measure [ϱ|Dz|]M(Ω), as follows:

    [ϱ|Dz|](B):=|Dz|[ϱ]+(B)|Dz|[ϱ](B) for any Borel set BΩ.

    Note that [ϱ|Dz|](Ω) can be configured as a generalized total variation of zBV(Ω)L2(Ω) by the possibly sign-changing weight ϱH1(Ω)L(Ω).

    Remark 3. With regard to the generalized weighted total variations, the following facts are verified in [25, Section 2].

    (Fact 4) (Strict approximation) Let ϱH1(Ω)L(Ω) and zBV(Ω)L2(Ω) be arbitrary fixed functions, and let {zn}n=1C(¯Ω) be a sequence such that

    znz in L2(Ω) and strictly in BV(Ω) as n.

    Then

    Ωϱ|Dzn|dxΩd[ϱ|Dz|] as n.

    (Fact 5) For any zBV(Ω)L2(Ω), the mapping

    ϱH1(Ω)L(Ω)Ωd[ϱ|Dz|]R

    is a linear functional, and moreover, if φH1(Ω)C(¯Ω) and ϱH1(Ω)L(Ω), then

    Ωd[φϱ|Dz|]=Ωφd[ϱ|Dz|].

    Finally, we mention the notion of functional convergences.

    Definition 1 (Mosco convergence; cf. [27]). Let X be an abstract Hilbert space. Let Ψ:X(,] be a proper l.s.c. and convex function, and let {Ψn}n=1 be a sequence of proper l.s.c. and convex functions Ψn:X(,], n=1,2,3,. We say that ΨnΨ on X, in the sense of Mosco, as n, iff. the following two conditions are fulfilled.

    The condition of lower bound: lim infnΨn(zn)Ψ(z), if zX, {zn}n=1X, and znz weakly in X as n.

    The condition of optimality: for any zD(Ψ), there exists a sequence {zn}n=1X such that znz in X and Ψn(zn)Ψ(z) as n.

    Definition 2 (Γ-convergence; cf. [9]). Let X be an abstract Hilbert space, Ψ:X(,] be a proper functional, and {Ψn}n=1 be a sequence of proper functionals Ψn:X(,], n=1,2,3,. We say that ΨnΨ on X, in the sense of Γ-convergence, as n, iff. the following two conditions are fulfilled.

    The condition of lower bound: lim infnΨn(zn)Ψ(z), if zX, {zn}n=1X, and znz (strongly) in X as n.

    The condition of optimality: for any zD(Ψ), there exists a sequence {zn}n=1X such that znz in X and Ψn(zn)Ψ(z) as n.

    Remark 4. Note that if the functionals are convex, then Mosco convergence implies Γ-convergence, i.e., the Γ-convergence of convex functions can be regarded as a weak version of Mosco convergence. Additionally, in the Γ-convergence of convex functions, we can see the following:

    (Fact 6) Let Ψ:X(,] and Ψn:X(,] be proper l.s.c. and convex functions on a Hilbert space X such that ΨnΨ on X, in the sense of Γ-convergence, as n. If it holds that:

    {X2,[zn,zn]ΨninX2,n=1,2,3,,znzinXandznzweaklyinX,asn

    then [z,z]Ψ in X2 and Ψn(zn)Ψ(z) as n.


    3. Main Theorem and the demonstration scenario

    Throughout the paper, we set the following assumptions.

    (A1) Let fL2(0,T;L2(Ω)) and fΓL2(0,T;L2(Γ)) be given functions, and let f:=[f,fΓ]L2(0,T;L2(Ω)×L2(Γ)) be a time-dependent vectorial function which is regarded as fL2(0,T;V), via (2.1) applied to ϱ=f(t) for a.e. t>0.

    (A2) Let λW2,loc(R) be a function, and let A>0 be a constant which is defined as:

    A:=14(1+C2V|λ|2W2,(0,1)),

    by using the embedding constant CV>0 of VL2(Ω).

    (A3) Let α0W1,loc(R2) and α,βC2(R2) be functions, such that:

    · α and β are convex on R2;

    · δ:=inf[α0(R2)α(R2)β(R2)]>0;

    · αη(w,0)0, βη(w,0)0, αη(w,1)0, and βη(w,1)0, for any w[0,1].

    (A4) Let γ : R(,] be a proper l.s.c. and convex function, such that D(γ)=[0,1].

    (A5) Let gC2(R2) be a function such that

    gη(w,0)0 and gη(w,1)0, for any w[0,1]

    (A6) There exists a constant c such that

    γ(w)+g(v)c, for any v=[w,η]R2

    (A7) Let [u0,v0,θ0]=[u0,w0,η0,θ0] is a quartet of initial data, such that:

    [u0,w0,η0,θ0]{D0:={[˜u,˜w,˜η,˜θ]|˜uL2(Ω),˜w,˜ηH1(Ω),˜θBV(Ω)L(Ω),and0˜w,˜η1a.e.inΩ},ifν=0D1:=D0[L2(Ω)×H1(Ω)×H1(Ω)×H1(Ω)],ifν>0.

    Now, for simplicity of description, we prepare the following notations:

    {G(u;v)=G(u;w,η):=g(w,η)+uλ(w),[g](v)=[g](w,η):=[gw(w,η),gη(w,η)],[G](u;v)=[G](u;w,η):=[gw(w,η)+uλ(w),gη(w,η)],

    and

    {[α](v)=[α](w,η):=[αw(w,η),αη(w,η)],[β](v)=[β](w,η):=[βw(w,η),βη(w,η)], for uR and v=[w,η]R2.

    For any ν0 and any v=[w,η][H1(Ω)L(Ω)]2, we define a proper l.s.c. and convex function Φν(v;) on L2(Ω) by letting:

    θL2(Ω)Φν(v;θ)=Φν(w,η;θ):={Ωd[α(v)|Dθ|]+Ωβ(v)|D(νθ)|2dx,ifθBV(Ω)andνθH1(Ω),, otherwise.

    Additionally, we set:

    B:=1+A2,byusingtheconstantAasin(A2), (3.1)

    and define a functional Fν on L2(Ω)4 by letting:

    \begin{array}{*{20}{l}} {[u,\mathit{\boldsymbol{v}},\theta ] = [u,w,\eta ,\theta ] \in {L^2}{{(\Omega )}^4} \mapsto \mathscr{F}(u,\mathit{\boldsymbol{v}},\theta ) = \mathscr{F}(u,w,\eta ,\theta )}\\ {: = {B_*}|u|_{{L^2}(\Omega )}^2 + \Psi _\gamma ^2(\mathit{\boldsymbol{v}}) + \int_\Omega {(g(} v) - {c_*})dx + {\Phi _\nu }(\mathit{\boldsymbol{v}};\theta ),} \end{array} (3.2)

    where \Psi_{\gamma}^{2} is the convex function \Psi_{\gamma_{0}}^{d} in Remark 1 in the case when d=2 and \gamma_{0}=\gamma. The above functional \mathscr{F}_\nu is a modified version of the free-energy as in (1.5), and the assumptions (A3)-(A6) guarantee the non-negativity of this functional, i.e. \mathscr{F}_\nu \geq 0 on L^2(\Omega)^4.

    Based on these, we define the solutions to the systems (S)_\nu, for \nu \geq 0 , as follows.

    Definition 3. For any \nu \geq 0 , a quartet [u, v, \theta]=[u, w, \eta, \theta] \in L^2(0, T; L^2(\Omega)^4) with v=[w, \eta] is called a solution to (S)_{\nu}, iff. [u, v, \theta] fulfills the following (S1)-(S6).

    (S1) u \in W^{1, 2}(0, T; V^{\ast}) \cap L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; V) \subset C ([0, T]; L^2(\Omega)) .

    (S2) v=[w, \eta] \in W^{1, 2}(0, T; L^2(\Omega)^{2}) \cap L^\infty (0, T; H^1(\Omega)^{2}) , and 0 \leq w (t, x) \leq 1 and 0 \leq \eta (t, x) \leq 1 , a.e. (t, x) \in Q .

    (S3) \theta \in W^{1, 2}(0, T; L^2(\Omega)) \cap L^\infty (Q) , |D \theta (\, \cdot\, )|(\Omega) \in L^\infty (0, T) , \nu \theta \in L^\infty (0, T; H^1(\Omega)), and |\theta| \le |\theta_{0}|_{L^{\infty}(\Omega)} a.e. in Q.

    (S4) u satisfies the following variational form:

    \begin{array}{c} \langle [u-\lambda(w)]_{t}(t), z \rangle +(D u(t), D z)_{L^2(\Omega)^N} + n_{0} ( u(t), z)_{L^2(\Gamma)} \\ = (f(t), z)_{L^2(\Omega)} +n_0(f_\Gamma(t), z)_{L^2(\Gamma)}, \mbox{ for any $z \in V$, and a.e. $ t \in (0, T) $, } \end{array}

    with the initial condition u (0)=u_{0} in L^{2}(\Omega).

    (S5) v=[w, \eta] satisfies the following two variational forms:

    \begin{array}{l} \left( w_t(t) +g_w(v)(t) +u(t)\lambda'(w(t)), w(t) - \varphi \right)_{L^{2}(\Omega)} + (D w(t), D(w(t)-\varphi))_{L^{2}(\Omega)^{N}} \\[2ex] \qquad + \int_\Omega d[(w(t)-\varphi)\alpha_{w}(v(t)) |D \theta(t)|] +\int_\Omega (w(t) -\varphi) \beta_w(v(t)) |D(\nu \theta)(t)|^2 \, dx \\[2ex] \qquad +\int_\Omega \gamma(w(t)) \, dx \le \int_{\Omega}\gamma(\varphi) dx, \mbox{ for any $ \varphi \in H^1(\Omega) \cap L^{\infty}(\Omega) $ and a.e. $ t \in (0, T) $, } \end{array}

    and

    \begin{array}{l} \left( \eta_t(t) +g_\eta(v)(t), \psi \right)_{L^{2}(\Omega)} + (D \eta(t), D \psi)_{L^{2}(\Omega)^{N}} \\[1ex] \qquad +\int_\Omega d \bigl[\psi \alpha_{\eta}(v(t)) |D \theta(t)| \bigr] +\int_\Omega \psi \beta_\eta(v(t)) |D (\nu \theta)(t)|^2 \, dx = 0, \\[2ex] \qquad \mbox{for any $ \psi \in H^1(\Omega) \cap L^{\infty}(\Omega) $ and a.e. $ t \in (0, T) $, } \end{array}

    with the initial condition v (0)=[w (0), \eta (0)]=v_0=[w_0, \eta_{0}] in L^{2}(\Omega)^2.

    (S6) \theta satisfies the following variational form:

    \begin{array}{c} \displaystyle (\alpha_0(v(t)) \theta_t(t), \theta(t) - \omega)_{L^2(\Omega)} + \Phi_{\nu}(v(t); \theta(t)) \le \Phi_{\nu}(v(t); \omega), \\[1ex] \displaystyle \mbox{for any $ \omega \in D(\Phi_{\nu}(v(t);{}\cdot\, )) $ and a.e. $ t \in (0, T) $, } \end{array}

    with the initial condition \theta (0)=\theta_{0} in L^{2}(\Omega).

    Remark 5. The variational identity in the above (S4) can be reformulated as:

    {[u - \lambda (w)]_t}(t) + Fu(t) = {\rm{ }}{\mathit{\boldsymbol{f}}^ * }(t)\;\;{\rm{ in }}{V^ * },\;{\rm{ }}for a.e.{\rm{ }}t \in (0,T). (3.3)

    Also, two variational forms in (S5) can be reduced to:

    \begin{array}{l} {({\mathit{\boldsymbol{v}}_t}(t) + [\nabla G](u;\mathit{\boldsymbol{v}}(t)),\mathit{\boldsymbol{v}}(t) - \varpi )_{{L^2}{{(\Omega )}^2}}}\\ + {(D\mathit{\boldsymbol{v}}(t),D(\mathit{\boldsymbol{v}}(t) - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}}\\ + \int_\Omega d [|D\theta (t)|(\mathit{\boldsymbol{v}}(t) - \varpi ) \cdot [\nabla \alpha ](\mathit{\boldsymbol{v}}(t))]\\ + \int_\Omega | D(\nu \theta )(t){|^2}(\mathit{\boldsymbol{v}}(t) - \varpi ) \cdot [\nabla \beta ](\mathit{\boldsymbol{v}}(t)){\mkern 1mu} dx\\ + \int_\Omega \gamma (\mathit{\boldsymbol{v}}(t)){\mkern 1mu} dx \le \int_\Omega \gamma (\varpi ){\mkern 1mu} dx,\\ for\;any\;\varpi = [\varphi ,\psi ] \in {[{H^1}(\Omega ) \cap {L^\infty }(\Omega )]^2}\;and\;a.e.t \in \left( {0,T} \right), \end{array} (3.4)

    by using the identification

    \gamma(\tilde{v}) := \gamma(\tilde{w}), \ \ \mbox{ for all } \tilde{v}=[\tilde{w}, \tilde{\eta}] \in \mathbb{R}^{2},

    and by using the abbreviation:

    \begin{array}{l} \int_\Omega d [|D\tilde \theta |\varpi \cdot \mathit{\boldsymbol{\widetilde v}}]: = \int_\Omega d [\varphi \tilde w|D\tilde \theta |] + \int_\Omega d [\psi \tilde \eta |D\tilde \theta |],\\ \mathit{for}\;\mathit{\boldsymbol{\widetilde v}} = [\tilde w,\tilde \eta ],{\rm{ }}\varpi = [\varphi ,\psi ] \in {[{H^1}(\Omega ) \cap {L^\infty }(\Omega )]^2}\;and\;\tilde \theta \in BV(\Omega ) \cap {L^2}(\Omega ) \end{array} (3.5)

    Furthermore, the variational form in (S6) is equivalent to the following evolution equation:

    {\alpha _0}(\mathit{\boldsymbol{v}}(t)){\theta _t}(t) + \partial {\Phi _\nu }(\mathit{\boldsymbol{v}}(t);\theta (t)) \ni 0{\rm{ }}\;in\;{L^2}(\Omega ),a.e.t \in (0,T), (3.6)

    governed by the subdifferential \partial \Phi_{\nu}(v (t); {}\cdot\, ) \subset L^2(\Omega)^2 of the time-dependent convex function \Phi_{\nu}(v (t); {}\cdot\, ) , for t \in (0, T) .

    Now, our Main Theorem is stated as follows.

    Main Theorem Let \nu \ge 0 be a fixed constant. Then, under (A1)-(A7), the system (S)_{\nu} admits at least one solution [u, v, \theta]=[u, w, \eta, \theta] \in L^2(0, T; L^2(\Omega)^4) with v=[w, \eta] .

    Remark 6. Note that the presence of mobilities \alpha_0=\alpha_0(w, \eta) , \alpha=\alpha (w, \eta) and \beta=\beta (w, \eta) makes the uniqueness problems for the systems (S)_\nu, \nu \geq 0 , be quite tough. In fact, even if we overview the kindred works to this study, we can find only two cases [15, Theorem 2.2] and [40, Theorem 2.2] that obtained the uniqueness results under some restricted situations.

    Finally, we devote the remaining part of this Section to show the sketch of the demonstration scenario, since the proof of the Main Theorem is going to be extended.

    In this paper, the Main Theorem will be obtained as a consequence of some approximating approaches, and then, the approximating problems will be associated with the time-discretization versions of (3.3)-(3.6), under positive setting of the constant \nu . Hence, when we consider the approximating problems, we suppose \nu > 0 , and fix the constant of time-step h \in (0, 1] . Also, we denote by [f]_0^{\rm ex} \in L^2(\mathbb{R}; L^2(\Omega)) , [f_\Gamma]_0^{\rm ex} \in L^2(\mathbb{R}; L^2(\Gamma)) and [{f}^*]_0^{\rm ex} \in L^2(\mathbb{R}; V^*) the zero-extensions of f , f_\Gamma and {f}^* (=[f, f_\Gamma]) , respectively.

    On this basis, the approximating problem for our system (S)_\nu is denoted by (AP)_h^\nu, and stated as follows.

    (AP)_h^\nu: to find a sequence \{ [u_i^\nu, v_i^\nu, \theta_i^\nu] \}_{i=1}^\infty \subset D_1 with \{ v_i^\nu \}_{i=1}^\infty=\{ [w_i^\nu, \eta_i^\nu] \}_{i=1}^\infty , which fulfills that

    \frac{{u_i^\nu - u_{i - 1}^\nu }}{h} - \lambda '(w_i^\nu )\frac{{w_i^\nu - w_{i - 1}^\nu }}{h} + Fu_i^\nu = {[\mathit{\boldsymbol{f}}_i^*]^h}{\rm{ }}\;in\;{V^*}, (3.7)
    \begin{array}{l} \frac{1}{h}{(\mathit{\boldsymbol{v}}_i^\nu - \mathit{\boldsymbol{v}}_{i - 1}^\nu ,\mathit{\boldsymbol{v}}_i^\nu - \varpi )_{{L^2}{{(\Omega )}^2}}} + {(D\mathit{\boldsymbol{v}}_i^\nu ,D(\mathit{\boldsymbol{v}}_i^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}}\\ + {([\nabla G](u_i^\nu ;\mathit{\boldsymbol{v}}_i^\nu ),\mathit{\boldsymbol{v}}_i^\nu - \varpi )_{{L^2}{{(\Omega )}^2}}} + \int_\Omega \gamma (\mathit{\boldsymbol{v}}_i^\nu ){\mkern 1mu} dx\\ + \int_\Omega {(\mathit{\boldsymbol{v}}_i^\nu - \varpi )} \cdot (|D\theta _{i - 1}^\nu |[\nabla \alpha ](\mathit{\boldsymbol{v}}_i^\nu ) + {\nu ^2}|D\theta _{i - 1}^\nu {|^2}[\nabla \beta ](\mathit{\boldsymbol{v}}_i^\nu )){\mkern 1mu} dx \end{array} (3.8)
    \begin{array}{l} \le \int_\Omega \gamma (\varpi ){\mkern 1mu} dx,{\rm{ for}}\;{\rm{any}}\;\varpi \in {[{H^1}(\Omega ) \cap {L^\infty }(\Omega )]^2},\\ {\alpha _0}(\mathit{\boldsymbol{v}}_i^\nu )\frac{{\theta _i^\nu - \theta _{i - 1}^\nu }}{h} + \partial {\Phi _\nu }(\mathit{\boldsymbol{v}}_i^\nu ;\theta _i^\nu ) \ni 0{\rm{ in}}\;{L^2}(\Omega ), \end{array} (3.9)

    for i=1, 2, 3, \dots , starting from the initial data:

    [u_0^\nu, v_0^\nu, \theta_0^\nu] \in D_1 \mbox{ with } v_0^\nu = [w_0^\nu, \eta_0^\nu].

    In the context, for any i \in \mathbb{N} , [{f}_i^*]^h=[f_i^h, f_{\Gamma, i}^h] \in L^2(\Omega) \times L^2(\Gamma) (\subset V^*) , consists of the components:

    f_i^h := \frac{1}{h} \int_{(i -1)h}^{ih} [f]_0^{\rm ex}(\tau) \, d\tau \mbox{ in $ L^2(\Omega) $ and } f_{\Gamma, i}^h := \frac{1}{h} \int_{(i -1)h}^{ih} [f_\Gamma]_0^{\rm ex}(\tau) \, d\tau \mbox{ in $ L^2(\Gamma) $.}

    Hence, before the proof of Main Theorem, it will be needed to verify the following theorem.

    Theorem 1 (Solvability of the approximating problem). There exists a small constant h_1^\circ \in (0, 1] such that if \nu > 0 and h \in (0, h_1^\circ] , then the approximating problem (AP)^{\nu}_{h} admits a unique solution \{ [u_{i}^{\nu}, v_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty \subset D_1 , and moreover,

    \begin{array}{l} \frac{{{A_*}}}{{2h}}|u_i^\nu - u_{i - 1}^\nu |_{{V^*}}^2 + \frac{1}{{2h}}|\mathit{\boldsymbol{v}}_i^\nu - \mathit{\boldsymbol{v}}_{i - 1}^\nu |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{h}|\sqrt {{\alpha _0}(\mathit{\boldsymbol{v}}_i^\nu )} (\theta _i^\nu - \theta _{i - 1}^\nu )|_{{L^2}(\Omega )}^2 + \frac{h}{2}|u_i^\nu |_V^2\\ + \mathscr{F}(u_i^\nu ,\mathit{\boldsymbol{v}}_i^\nu ,\theta _i^\nu ) \le \mathscr{F}(u_{i - 1}^\nu ,\mathit{\boldsymbol{v}}_{i - 1}^\nu ,\theta _{i - 1}^\nu ) + h|{[\mathit{\boldsymbol{f}}_i^*]^h}|_{{V^*}}^2,for\;i = 1,2,3, \ldots \end{array} (3.10)

    where A_* is the constant as in (A2).

    However, due to the presence of L^1-terms \nu^2 |D \theta_{i -1}|^2 [\nabla \beta](v_i^\nu) \in L^1(\Omega)^2 , i=1, 2, 3, \dots , in (3.8), the above Theorem 1 will not be a straightforward consequence of standard variational method, and in fact, this theorem will be obtained via further approximating approach by means of some relaxed systems for (AP)_h^\nu.

    In the observation of the relaxed system, we first fix a large constant M > (N +2)/2 , and fix a small constant \varepsilon \in (0, 1] as the relaxation index. Besides, we define

    D_M := D_1 \cap [L^2(\Omega) \times H^1(\Omega) \times H^1(\Omega) \times H^M(\Omega)],

    and for any \tilde{v} \in L^2(\Omega)^2 , we define a relaxed functional \Phi_\varepsilon^\nu (\tilde{v}; {}\cdot\, ) for \Phi_\nu (\tilde{v}; {}\cdot\, ) , by letting:

    \theta \in {L^2}(\Omega ) \mapsto \Phi _\varepsilon ^\nu (\widetilde {\text{v}};\theta ): = \left\{ {\begin{array}{*{20}{l}} {{\Phi _\nu }(\widetilde v;\theta ) + \frac{{{\varepsilon ^2}}}{2}|\theta |_{{H^M}(\Omega )}^2, {\text{ }}if\;\theta \in {H^M}(\Omega ), }&{} \\ {\infty, }&{{\text{otherwise}}{\text{.}}} \end{array}} \right.

    Note that for any \tilde{v} \in L^2(\Omega)^2 , the functional \Phi_\varepsilon^\nu (\tilde{v}; {}\cdot\, ) is proper l.s.c. and convex on L^2(\Omega) , such that:

    D(\Phi_{\varepsilon}^\nu(\tilde{v};{}\cdot\, )) = H^{M}(\Omega) \subset W^{1, \infty}(\Omega),

    and hence, the L^2-subdifferential \partial \Phi_\varepsilon^\nu (\tilde{v}; {}\cdot\, ) is a maximal monotone graph in L^2(\Omega)^2 .

    On this basis, we denote by (RX)_\varepsilon the relaxed system for (AP)_h^\nu, and prescribe the system (RX)_\varepsilon as follows.

    (RX)_\varepsilon:to find a sequence \{ [u_{\varepsilon, i}^\nu, v_{\varepsilon, i}^\nu, \theta_{\varepsilon, i}^\nu] \}_{i=1}^\infty \subset D_M with \{ v_{\varepsilon, i}^\nu \}_{i=1}^\infty=\{ [w_{\varepsilon, i}^\nu, \eta_{\varepsilon, i}^\nu] \}_{i=1}^\infty , which fulfills that

    \frac{{u_{\varepsilon ,i}^\nu - u_{\varepsilon ,i - 1}^\nu }}{h} - \lambda '(w_{\varepsilon ,i}^\nu )\frac{{w_{\varepsilon ,i}^\nu - w_{\varepsilon ,i - 1}^\nu }}{h} + Fu_{\varepsilon ,i}^\nu = {[\mathit{\boldsymbol{f}}_i^*]^h}{\rm{ }}\;{\rm{in}}\;{V^*}, (3.11)
    \begin{array}{l} \frac{{\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu - \mathit{\boldsymbol{v}}_{\varepsilon ,i - 1}^\nu }}{h} - {\Delta _N}\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu + \partial \gamma (\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu ) + [\nabla G](u_{\varepsilon ,i}^\nu ;\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu )\\ + |D\theta _{\varepsilon ,i - 1}^\nu |[\nabla \alpha ](\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu ) + {\nu ^2}|D\theta _{\varepsilon ,i - 1}^\nu {|^2}[\nabla \beta ](\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu ) \ni 0\;{\rm{in}}\;{L^2}{(\Omega )^2}, \end{array} (3.12)
    {\alpha _0}(\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu )\frac{{\theta _{\varepsilon ,i}^\nu - \theta _{\varepsilon ,i - 1}^\nu }}{h} + \partial \Phi _\varepsilon ^\nu (\mathit{\boldsymbol{v}}_{\varepsilon ,i}^\nu ;\theta _{\varepsilon ,i}^\nu ) \ni 0{\rm{ }}\;{\rm{in}}\;{L^2}(\Omega ), (3.13)

    for i=1, 2, 3, \dots , starting from the initial data:

    [u_{\varepsilon, 0}^\nu, v_{\varepsilon, 0}^\nu, \theta_{\varepsilon, 0}^\nu] \in D_M \mbox{ with } v_{\varepsilon, 0}^\nu = [w_{\varepsilon, 0}^\nu, \eta_{\varepsilon, 0}^\nu].

    Then, we can see that

    |D \theta_{\varepsilon, i -1}^{\nu}| \in L^{\infty}(\Omega)\ \mbox{ and } \nu^2 |D \theta_{\varepsilon, i -1}^{\nu}|^{2}[\nabla\beta](v_{\varepsilon, i}^{\nu}) \in L^{\infty}(\Omega)^{2}, ~ i = 1, 2, 3, \dots.

    It implies that the general theories of L^{2}-subdifferentials will be available for the relaxed system (RX)_{\varepsilon}.

    Thus, it will be needed to verify the following proposition, as the first task to proving the Main Theorem.

    Proposition 1. There exists a small constant h_0^\circ \in (0, 1] , such that if h \in (0, h_0^\circ] , then the system (RX)_\varepsilon admits a unique solution \{ [u_{\varepsilon, i}^\nu, v_{\varepsilon, i}^\nu, \theta_{\varepsilon, i}^\nu] \}_{i=1}^\infty \subset D_M with \{ v_{\varepsilon, i}^\nu \}_{i=1}^\infty= \{ [w_{\varepsilon, i}^\nu, \eta_{\varepsilon, i}]^\nu \}_{i=1}^\infty .

    In view of these, we set the demonstration scenario of the Main Theorem, by assigning the proofs of Proposition 1, Theorem 1 and Main Theorem to Sections 4, 5 and 6, respectively.


    4. Proof of Proposition 1

    Before we start the proof, we need to show some lemmas.

    Lemma 1. Let us put \Delta^\bullet :=[0, 1] \times [-1, 2] \subset \mathbb{R}^2 , and let us assume

    0 < h \le h_2^ \circ : = \frac{1}{{2(1 + |g{|_{{C^2}({\Delta ^ \circ })}} + 5|\lambda |_{{W^{2,\infty }}(0,1)}^2)}}. (4.1)

    Let us fix f_0^* \in V^*, [u_0^\circ, \eta_0^\circ, w_0^\circ, \theta_0^\circ] \in L^2(\Omega) \times H^1(\Omega)\times H^1(\Omega) \times W^{1, \infty}(\Omega) and w^\circ \in H^1(\Omega) , and let us assume that 0 \leq w_0^\circ, w^\circ \leq 1 a.e. in \Omega . Then, the following auxiliary system:

    \frac{{u - u_0^ \circ }}{h} - \lambda '({w^ \circ })\frac{{w - w_0^ \circ }}{h} + Fu = f_0^*{\rm{ }}\;in\;{V^*}, (4.2)
    \begin{array}{l} \frac{{w - w_0^ \circ }}{h} - {\Delta _N}w + \partial \gamma (w) + {g_w}(w,\eta )\\ + {\alpha _w}(w,\eta )|D\theta _0^ \circ | + {\nu ^2}{\beta _w}(w,\eta )|D\theta _0^ \circ {|^2} \ni - \lambda '({w^ \circ })u{\rm{ }}\;in\;{L^2}(\Omega ), \end{array} (4.3)
    \begin{array}{l} \frac{{\eta - \eta _0^ \circ }}{h} - {\Delta _N}\eta + \partial {I_{[ - 1,2]}}(\eta ) + {g_\eta }(w,\eta )\\ + {\alpha _\eta }(w,\eta )|D\theta _0^ \circ | + {\nu ^2}{\beta _\eta }(w,\eta )|D\theta _0^ \circ {|^2} = 0{\rm{ }}\Delta \;in\;{L^2}(\Omega ), \end{array} (4.4)

    admits a unique solution [u, w, \eta] \in V \times H^1(\Omega)^2 , where \partial I_{[-1.2]} is the subdifferential of the indicator function I_{[-1.2]} : \mathbb{R} \to \{ 0, \infty \} on the compact interval [-1, 2] , and this is an additional term to guarantee the boundedness of the range \eta (\Omega) for the component \eta.

    Proof. First, we put:

    \begin{align} & e:=u-{\lambda }'({{w}^{{}^\circ }})w, ~e_{0}^{{}^\circ }:=u_{0}^{{}^\circ }-{\lambda }'({{w}^{{}^\circ }})w_{0}^{{}^\circ }, and\ v_{0}^{{}^\circ }=[w_{0}^{{}^\circ }, \eta _{0}^{{}^\circ }], \\ & [\tilde{w}, \tilde{\eta }]\in \mathbb{R}\mapsto {{\gamma }^{\bullet }}(\tilde{w}, \tilde{\eta }):=\gamma (\tilde{w})+{{I}_{[-1,2]}}(\tilde{\eta }), \\ \end{align}

    and reformulate the system {(4.2)-(4.4)} as follows:

    \frac{{e - e_0^ \circ }}{h} + F(e + \lambda '({w^ \circ })w) = f_0^*{\rm{ }}\;in\;{V^*}, (4.5)
    \begin{array}{l} \frac{{\mathit{\boldsymbol{v}} - \mathit{\boldsymbol{v}}_0^ \circ }}{h} + \partial \Psi _{{\gamma ^ \bullet }}^2(\mathit{\boldsymbol{v}}) + [\nabla g](w,\eta )\\ + |D\theta _0^ \circ |[\nabla \alpha ](\mathit{\boldsymbol{v}}) + {\nu ^2}|D\theta _0^ \circ {|^2}[\nabla \beta ](\mathit{\boldsymbol{v}}) \ni \left[ {\begin{array}{*{20}{c}} { - \lambda '({w^ \circ })(e + \lambda '({w^ \circ })w)}\\ 0 \end{array}} \right]{\rm{ }}\;in\;{L^2}{(\Omega )^2}, \end{array} (4.6)

    where \Psi_{\gamma^{\bullet}}^2 is the functional \Psi_{\gamma_0}^d as in Remark 1 (Ex.2), in the case when d=2 and \gamma_0=\gamma^\bullet on \mathbb{R}^2 , and \partial \Psi_{\gamma^{\bullet}}^2 is the subdifferential of \Psi_{\gamma^{\bullet}}^2 in L^2(\Omega)^2 . Then, in the light of Remark 1, we can associate the auxiliary system {(4.2)-(4.4)} with a minimization problem for the following functional:

    \begin{array}{l} [e,\mathit{\boldsymbol{v}}] = [e,w,\eta ] \in {V^*} \times {L^2}{(\Omega )^2} \mapsto \Psi _0^ \bullet ({w^ \circ };e,\mathit{\boldsymbol{v}}) = \Psi _0^ \bullet ({w^ \circ };e,w,\eta )\\ : = \left\{ \begin{array}{l} \frac{1}{{2h}}|e - e_0^ \circ |_{{V^*}}^2 + \frac{1}{{2h}}|\mathit{\boldsymbol{v}} - \mathit{\boldsymbol{v}}_0^ \circ |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{2}|e + \lambda '({w^ \circ })w|_{{L^2}(\Omega )}^2\\ \;\;\;\; + \Psi _{{\gamma ^ \bullet }}^2(\mathit{\boldsymbol{v}}) + \int_\Omega ( \alpha (\mathit{\boldsymbol{v}})|D\theta _0^ \circ | + {\nu ^2}\beta (\mathit{\boldsymbol{v}})|D\theta _0^ \circ {|^2}){\mkern 1mu} dx\\ \;\;\;\; + \int_\Omega g (\mathit{\boldsymbol{v}}){\mkern 1mu} dx - {(f_0^*,e)_{{V^*}}},\\ \;\;\;\;{\rm{if}}\;[e,{\rm{ }}\mathit{\boldsymbol{v}}] = [e,w,\eta ] \in {L^2}(\Omega ) \times D(\Psi _{{\gamma ^ \bullet }}^2),\\ \infty ,{\rm{ otherwise,}} \end{array} \right. \end{array} (4.7)

    via its stationary system {(4.5)-(4.6)}. Then, taking into account (A2)-(A6), (4.1) and (4.7), we find a positive constant C_0^\circ , independent of the variables [e, v]=[e, w, \eta] and w^\circ , such that:

    \Psi _0^ \bullet ({w^ \circ };e,{\rm{ }}\mathit{\boldsymbol{v}}) \ge C_0^ \circ (|e|_{{L^2}(\Omega )}^2 + |\mathit{\boldsymbol{v}}|_{{H^1}{{(\Omega )}^2}}^2 - 1),{\rm{ }}\;{\rm{for}}\;{\rm{all}}[e,{\rm{ }}\mathit{\boldsymbol{v}}] \in D(\Psi _0^ \bullet ({w^ \circ }; \cdot {\mkern 1mu} )). (4.8)

    Now, the above coercivity enables us to apply the standard minimization argument to \Psi_0^\bullet (cf. [3,10]), and to obtain the solution [u, w, \eta]=[e +\lambda'(w^\circ) w, w, \eta] to {(4.2)-(4.4)}, via the minimizer [e, v]=[e, w, \eta] \in V \times H^1(\Omega)^2 of \Psi_0^\bullet (w^\circ; {}\cdot\, ) , with v=[w, \eta] \in D (\Psi_{\gamma^\bullet}^2).

    In the meantime, the uniqueness can be seen by using the standard method, i.e. by taking the difference of two solutions [e_k, v_k]=[e_k, w_k, \eta_k] \in V^* \times L^2(\Omega)^2 with v_k=[w_k, \eta_k] \in D (\Psi_\gamma^2) , k=1, 2 , to the stationary system {(4.5)-(4.6)}. In fact, multiplying the both sides of the subtraction of (4.5) by e_1 -e_2 in V^* , multiplying the both sides of the subtraction of (4.6) by v_1 -v_2 in L^2(\Omega)^2 , and using (A2)-(A5), (4.8) and Schwartz's inequality, we have:

    \begin{array}{l} \frac{1}{h}|{e_1} - {e_2}|_{{V^*}}^2 + \frac{1}{h}\left( {1 - h|[\nabla g]{|_{{W^{1,\infty }}{{({\Delta ^ \bullet })}^2}}}} \right)|{\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2}|_{{L^2}{{(\Omega )}^2}}^2\\ + |D({\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2})|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 + |({e_1} - {e_2}) + \lambda '({w^ \circ })({w_1} - {w_2})|_{{L^2}(\Omega )}^2 \le 0. \end{array} (4.9)

    Since the assumption (4.1) implies (1-h%(|[\nabla g]{{|}_{{{W}^{1,\infty }}{{({{\Delta }^{\bullet }})}^{2}}}})\ge \frac{1}{2}, we can deduce from (4.9) the uniqueness for the system {(4.2)-(4.4)}.

    Lemma 2. Let w^\circ \in H^1(\Omega) be the function as in Lemma 1, and let \Psi_0^\bullet (w^\circ; {}\cdot\, ) be the functional on V^* \times L^2(\Omega)^2 given in (4.7). Also, let us take a sequence \{ w_n^\circ \}_{n=1}^\infty \subset H^1(\Omega) such that 0 \leq w_n^\circ \leq 1 a.e. in \Omega , for n=1, 2, 3, \dots , and let us define a sequence \{ \Psi_0^\bullet (w_n^\circ; {}\cdot\, ) \}_{n=1}^\infty of functionals on V^* \times L^2(\Omega)^2 , by putting w^\circ=w_n^\circ in (4.7), for n=1, 2, 3, \dots . Besides, let us assume that:

    w_n^ \circ \to {w^ \circ }{\rm{ }}in\;the\;pointwi\;sesense\;a.e.\;in\;\Omega ,as\;n \to \infty . (4.10)

    Then, \Psi_0^\bullet (w_n^\circ; {}\cdot\, ) \to \Psi_0^\bullet (w^\circ; {}\cdot\, ) on V^* \times L^2(\Omega)^2 , in the sense of \Gamma -convergence, as n \to \infty .

    Proof. The condition of lower-bound will be seen, immediately, from the lower semi-continuity of the following functional (of 4-variables):

    [w^\circ, e, v] \in L^2(\Omega) \times V^* \times L^2(\Omega)^2 \mapsto \Psi_0^\bullet(w^\circ; e, v) \in (-\infty, \infty].

    The condition of optimality will be verified by taking the singleton \{ [e, v] \} for any [e, v] \in D (\Psi_0^\bullet (w^\circ; {}\cdot\, )) =D (\Psi_0^\bullet (w_n^\circ; {}\cdot\, )) for all n \ge 1 as the sequence corresponding to \{ z_n^\bullet \}_{n=1}^\infty in Definition 2.

    Lemma 3. Under the assumptions as in the previous Lemmas 1-2, let us take the solution [e, v]=[e, w, \eta] \in V \times H^1(\Omega)^{2} to the stationary system {(4.5)-(4.6)} with v=[w, \eta] , and for any n \in \mathbb{N} , let us denote by [e_n, v_n]=[e_n, w_n, \eta_n] \in V \times H^1(\Omega)^2 the solution to {(4.5)-(4.6)} with v_n=[w_n, \eta_n] , when w^\circ=w_n^\circ . Then, the assumption (4.10) implies that:

    \begin{array}{l} [{e_n},{\mathit{\boldsymbol{v}}_n}] = [{e_n},{w_n},{\eta _n}] \to [e,\mathit{\boldsymbol{v}}] = [e,w,\eta ]\;in\;{V^*} \times {L^2}{(\Omega )^2},\\ \mathit{and weakly in}\;{L^2}(\Omega ) \times {H^1}{(\Omega )^2},as\;n \to \infty \end{array} (4.11)

    Proof. In the light of Lemma 1 (including the proof), we can see that:

    \begin{array}{l} \Psi _0^ \bullet ({{\tilde w}^ \circ };\tilde e,\mathit{\boldsymbol{\widetilde v}}) = \Psi _0^ \bullet ({{\tilde w}^ \circ };\tilde e,\tilde w,\tilde \eta ) \le \Psi _0^ \bullet ({{\tilde w}^ \circ };0,0,0)\\ \le C_1^ \circ : = \frac{1}{{2h}}(|e_0^ \circ |_{{V^*}}^2 + |\mathit{\boldsymbol{v}}_0^ \circ |_{{L^2}{{(\Omega )}^2}}^2) + {{\cal L}^N}(\Omega )(|\gamma (0)| + |g(0,0)|)\\ + \alpha (0,0)|\theta _0^ \circ {|_{{W^{1,1}}(\Omega )}} + {\nu ^2}\beta (0,0)|\theta _0^ \circ |_{{H^1}(\Omega )}^2, \end{array} (4.12)

    for any \tilde{w}^\circ \in H^1(\Omega) with 0 \leq \tilde{w}^\circ \leq 1 a.e. in \Omega , and

    solution [\tilde{e}, \tilde{v}]=[\tilde{e}, \tilde{w}, \tilde{\eta}] to {(4.5)-(4.6)} with \tilde{v}=[\tilde{w}, \tilde{\eta}] when w^\circ=\tilde{w}^\circ .

    Since the constant C_1^\circ is independent of the choice of \tilde{w}^\circ , the convergence (4.11) will be observed by taking into account (4.8), (4.12) and the uniqueness for {(4.5)-(4.6)}, and by applying Lemma (cf. [3,11]), and the general theories of the compact embeddings (cf. [3,11]) and the \Gamma convergence (cf. [9]).

    Lemma 4. Let h_2^\circ be the constant as in (4.1). Let f_0^* \in V^* , u_0^\circ \in L^2(\Omega) , v_0^\circ=[w_0^\circ, \eta_0^\circ] \in H^1(\Omega)^2 and \theta_0^\circ \in W^{1, \infty}(\Omega) be the functions as in Lemma 1. Then, for any h \in (0, h_2^\circ] , the following system:

    \frac{{u - u_0^ \circ }}{h} - \lambda '(w)\frac{{w - w_0^ \circ }}{h} + Fu = f_0^*\;in\;{V^*}, (4.13)
    \begin{array}{l} \frac{{\mathit{\boldsymbol{v}} - \mathit{\boldsymbol{v}}_0^ \circ }}{h} - {\Delta _N}\mathit{\boldsymbol{v}} + \left[ {\begin{array}{*{20}{c}} {\partial \gamma (w)}\\ 0 \end{array}} \right] + [\nabla g](\mathit{\boldsymbol{v}})\\ + |D\theta _0^ \circ |[\nabla \alpha ](\mathit{\boldsymbol{v}}) + {\nu ^2}|D\theta _0^ \circ {|^2}[\nabla \beta ](\mathit{\boldsymbol{v}}) \ni \left[ {\begin{array}{*{20}{c}} { - \lambda '(w)u}\\ 0 \end{array}} \right]{\rm{ }}\;in\;{L^2}{(\Omega )^2}, \end{array} (4.14)

    admits at least one solution [u, v]=[u, w, \eta] \in V \times H^1(\Omega)^2 with v=[w, \eta] .

    Proof. Let us set a compact set K_1^\bullet in L^2(\Omega) , by letting:

    K_{1}^{\bullet }:=\left\{ \tilde{w}\in {{H}^{1}}(\Omega )\left| \begin{align} & 0\le \tilde{w}\le 1\ \text{a}\text{.e}\text{.}\ \text{in}\ \Omega, \text{and} \\ & \frac{1}{2h}|\tilde{w}-w_{0}^{{}^\circ }|_{{{L}^{2}}(\Omega )}^{2}+\frac{1}{2}|D\tilde{w}|_{{{L}^{2}}{{(\Omega )}^{N}}}^{2} \\ & \le C_{1}^{{}^\circ }+|{{c}_{*}}|{{\mathscr{L}}^{N}}(\Omega )+\frac{1}{2h}|e_{0}^{{}^\circ }|_{{{V}^{*}}}^{2}+h|f_{0}^{*}|_{{{V}^{*}}}^{2} \\ \end{align} \right. \right\},

    and let us consider an operator P_1^\bullet : K_1^\bullet \to L^2(\Omega) , which maps any w^\circ \in K_1^\bullet to the component w of the solution [u, w, \eta] \in V \times H^1(\Omega) \times H^1(\Omega) to {(4.2)-(4.4)}. Then, on account of (A3), (A6), Lemma 3, (4.7) and (4.12), it will be seen that P_1^\bullet K_1^\bullet \subset K_1^\bullet and P_1^\bullet is a continuous operator in the topology of L^2(\Omega) . So, applying Schauder's fixed point theorem, we find a fixed point w^\bullet \in K_1^\bullet for P_1^\bullet , i.e. w^\bullet=P_1^\bullet w^\bullet in L^2(\Omega) .

    Now, let us denote by [u^\bullet, w^\bullet, \eta^\bullet] \in V \times H^1(\Omega) \times H^1(\Omega) the solution to {(4.2)-(4.4)}, involved in the fixed point w^\bullet . Then, this triplet [u^\bullet, w^\bullet, \eta^\bullet] must be a special solution to {(4.2)-(4.4)} such that w^\bullet=w^\circ . Hence, our remaining task will be to show that

    0 \le {\eta ^ \bullet } \le 1{\rm{ }}\;{\rm{a}}{\rm{.e}}{\rm{.in}}\;\Omega , (4.15)

    namely, the subdifferential \partial I_{[-1, 2]} in (4.4) will not affect for \eta^\bullet .To this end, we check two inequalities:

    \frac{{0 - \eta _0^ \circ }}{h} + {g_\eta }({w^ \bullet },0) + |D\theta _0^ \circ |{\alpha _\eta }({w^ \bullet },0) + {\nu ^2}|D\theta _0^ \circ {|^2}{\beta _\eta }({w^ \bullet },0) \le 0{\rm{ }}\;in\;{L^2}(\Omega ), (4.16)
    \frac{{1 - \eta _0^ \circ }}{h} + {g_\eta }({w^ \bullet },1) + |D\theta _0^ \circ |{\alpha _\eta }({w^ \bullet },1) + {\nu ^2}|D\theta _0^ \circ {|^2}{\beta _\eta }({w^ \bullet },1) \le 0{\rm{ }}\;in\;{L^2}(\Omega ), (4.17)

    with use of the assumptions (A3), (A5) and 0 \leq \eta_0^\circ \leq 1 a.e. in \Omega .

    On this basis, let us take the difference from (4.16) to (4.4) when \eta=\eta^\bullet and w=w^\circ=w^\bullet (resp. from (4.4) to (4.17) when \eta=\eta^\bullet and w=w^\circ=w^\bullet ), and multiply the both sides by [-\eta^\bullet]^+ (resp. by [\eta^\bullet-1]^+ ). Then, with the assumptions (A3), (A5) and \partial I_{[-1, 2]}(0)=\{0\} (resp. \partial I_{[-1, 2]}(1)=\{0\} ) in mind, it is inferred that:

    \begin{array}{l} \frac{1}{h}\left( {1 - h|{g_{\eta \eta }}{|_{C({\Delta ^ \bullet })}}} \right)|{[ - {\eta ^ \bullet }]^ + }|_{{L^2}(\Omega )}^2 + |D{[ - {\eta ^ \bullet }]^ + }|_{{L^2}{{(\Omega )}^N}}^2 \le 0\\ \left( {{\rm{resp}}{\rm{. }}\frac{1}{h}\left( {1 - h|{g_{\eta \eta }}{|_{C({\Delta ^ \bullet })}}} \right)|{{[{\eta ^ \bullet } - 1]}^ + }|_{{L^2}(\Omega )}^2 + |D{{[{\eta ^ \bullet } - 1]}^ + }|_{{L^2}{{(\Omega )}^N}}^2 \le 0} \right). \end{array} (4.18)

    Since the assumption (4.1) implies 1 -h|g_{\eta \eta}|_{C (\Delta^\bullet)} \geq \frac{1}{2} , we can deduce (4.15) from (4.18), and conclude that the triplet [u^\bullet, v^\bullet]=[u^\bullet, \eta^\bullet, w^\bullet] with v^\bullet :=[w^\bullet, \eta^\bullet] solves the system {(4.13)-(4.14)}.

    Lemma 5. Let f_0^* \in V^* and \theta_{0}^{\circ} \in H^{M}(\Omega) be fixed functions, and let [u, v]=[u, w, \eta] \in V \times H^{1}(\Omega)^2 be a solution to the system {(4.13)-(4.14)} with v=[w, \eta] . Then, the inclusion

    {\alpha _0}(\mathit{\boldsymbol{v}})\frac{{\theta - \theta _0^ \circ }}{h} + \partial \Phi _\varepsilon ^\nu (\mathit{\boldsymbol{v}};\theta ) \ni 0{\rm{ in }}{L^2}(\Omega ) (4.19)

    admits a unique solution \theta \in H^{M}(\Omega).

    Proof. We omit the proof, because this lemma is obtained, immediately, just as a direct consequence of [31, Lemma 3.4].

    Lemma 6. Under the assumption (4.1), let us take a quartet [u, v, \theta]=[u, w, \eta, \theta] \in D_M with v=[w, \eta] \in H^1(\Omega)^2 , which solves the coupled system {(4.13)-(4.14), (4.19)}. Then, the following energy-inequality holds:

    \begin{array}{l} \frac{{{A_*}}}{{2h}}|u - u_0^ \circ |_{{V^*}}^2 + \frac{1}{{2h}}|\mathit{\boldsymbol{v}} - \mathit{\boldsymbol{v}}_0^ \circ |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{h}|\sqrt {{\alpha _0}(\mathit{\boldsymbol{v}})} (\theta - \theta _0^ \circ )|_{{L^2}(\Omega )}^2\\ + \frac{h}{2}|u|_V^2 + {\mathscr{F}}_\varepsilon ^\nu (u,{\rm{ }}\mathit{\boldsymbol{v}},\theta ) \le {\mathscr{F}}_\varepsilon ^\nu (u_0^ \circ ,{\rm{ }}\mathit{\boldsymbol{v}}_0^ \circ ,\theta _0^ \circ ) + h|f_0^*|_{{V^*}}^2, \end{array} (4.20)

    where A_* > 0 is the constant as in (A2), and \mathscr{F}_\varepsilon^\nu is the relaxed version of the functional \mathscr{F}_\nu , defined as:

    \begin{array}{l} [u,\mathit{\boldsymbol{v}},\theta ] = [u,w,\eta ,\theta ] \in {L^2}{(\Omega )^4} \mapsto {\mathscr{F}}_\varepsilon ^\nu (u,\mathit{\boldsymbol{v}},\theta ) = {\mathscr{F}}_\varepsilon ^\nu (u,w,\eta ,\theta )\\ = {B_*}|u|_{{L^2}(\Omega )}^2 + \Psi _\gamma ^2(\mathit{\boldsymbol{v}}) + \int_\Omega ( g(\mathit{\boldsymbol{v}}) - {c_*}){\mkern 1mu} dx + \Phi _\varepsilon ^\nu (\mathit{\boldsymbol{v}};\theta ), \end{array} (4.21)

    with the constant B_*=(1 +A_*)/2 as in (3.1).

    Proof. First, let us rewrite the equation (4.13) as follows:

    \begin{array}{l} {(u - u_0^ \circ ,z)_{{L^2}(\Omega )}} + h\langle Fu,z\rangle = h\langle f_0^*,z\rangle \\ + {(\lambda '(w)(w - w_0^ \circ ),z)_{{L^2}(\Omega )}},{\rm{ for}}\;{\rm{any}}\;z \in V, \end{array} (4.22)

    and let us put z=u . Then, by using Schwarz's inequality, we have:

    \frac{1}{2}|u|_{{L^2}(\Omega )}^2 + \frac{h}{2}|u|_V^2 \le \frac{1}{2}|u_0^ \circ |_{{L^2}(\Omega )}^2 + \frac{h}{2}|f_0^*|_{{V^*}}^2 + {(\lambda '(w)(w - w_0^ \circ ),u)_{{L^2}(\Omega )}}. (4.23)

    Alternatively, if we rewrite the equation (4.13) to:

    \frac{1}{h} (u -u_0^\circ, z^*)_{V^*} + \langle z^*, u \rangle = (f_0^*, z^*)_{V^*} +\frac{1}{h} (\lambda'(w)(w -w_0^\circ), z^*)_{V^*},

    for any z^* \in V^* ,

    and put z^{\ast}=A_*(u -u_0^\circ) \in V, then we also see that:

    \frac{{{A_*}}}{{2h}}|u - u_0^ \circ |_{{V^*}}^2 + \frac{{{A_*}}}{2}|u|_{{L^2}(\Omega )}^2 \le \frac{{{A_*}}}{2}|u_0^ \circ |_{{L^2}(\Omega )}^2 + {A_*}h|f_0^*|_{{V^*}}^2 + \frac{1}{{4h}}|w - w_0^ \circ |_{{L^2}(\Omega )}^2. (4.24)

    Next, let us multiply the both sides of the inclusion (4.14) by v -v_0^\circ . Then, in the light of (A2)-(A5) and Taylor's theorem, we infer that:

    \begin{array}{l} \frac{1}{h}\left( {1 - \frac{h}{2}|g{|_{{C^2}({{[0,1]}^2})}}} \right)|\mathit{\boldsymbol{v}} - \mathit{\boldsymbol{v}}_0^ \circ |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{2}|D\mathit{\boldsymbol{v}}|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 + \int_\Omega \gamma (w){\mkern 1mu} dx + \int_\Omega g (\mathit{\boldsymbol{v}}){\mkern 1mu} dx\\ + \int_\Omega \alpha (\mathit{\boldsymbol{v}})|D\theta _0^ \circ |{\mkern 1mu} dx + {\nu ^2}\int_\Omega \beta (\mathit{\boldsymbol{v}})|D\theta _0^ \circ {|^2}{\mkern 1mu} dx\\ \le \frac{1}{2}|D\mathit{\boldsymbol{v}}_0^ \circ |_{{L^2}{{(\Omega )}^{N \times 2}}}^2 + \int_\Omega \gamma (w_0^ \circ ){\mkern 1mu} dx + \int_\Omega g (\mathit{\boldsymbol{v}}_0^ \circ ){\mkern 1mu} dx.\\ + \int_\Omega \alpha (\mathit{\boldsymbol{v}}_0^ \circ )|D\theta _0^ \circ |{\mkern 1mu} dx + {\nu ^2}\int_\Omega \beta (\mathit{\boldsymbol{v}}_0^ \circ )|D\theta _0^ \circ {|^2}{\mkern 1mu} dx - {(\lambda '(w)(w - w_0^ \circ ),u)_{{L^2}(\Omega )}}. \end{array} (4.25)

    Furthermore, applying the both sides of (4.19) by \theta -\theta_0^\circ , it follows that:

    \frac{1}{h}|\sqrt {{\alpha _0}(\mathit{\boldsymbol{v}})} (\theta - \theta _0^ \circ )|_{{L^2}(\Omega )}^2 + \Phi _\varepsilon ^\nu (\mathit{\boldsymbol{v}};\theta ) \le \Phi _\varepsilon ^\nu (\mathit{\boldsymbol{v}};\theta _0^ \circ ). (4.26)

    Now, since (4.1) implies 1 -\frac{h}{2}|g|_{C^2([0, 1]^2)^2} \geq \frac{3}{4} , the energy-inequality (4.20) can be obtained by taking the sum of (4.23)-(4.26) with (A2) in mind.

    Lemma 7. By the restriction 1 \leq N \leq 3 of the spatial dimension, there exists a positive constant C_2^\circ , such that under the notations and assumptions as in Lemma 6, the condition:

    C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_0^ \circ ,{\rm{ }}\mathit{\boldsymbol{v}}_0^ \circ ,\theta _0^ \circ ) + h|f_0^*|_{{V^*}}^2)^{\frac{2}{3}}}) \le \frac{1}{2},{\rm{ and }}0 < h \le h_2^ \circ , (4.27)

    implies the uniqueness of the solution [u, v, \theta]=[u, w, \eta, \theta] \in D_M to the system {(4.13)-(4.14), (4.19)} with v=[w, \eta] .

    Proof. In the light of the uniqueness of \theta as in Lemma 5, it is enough to focus only on the uniqueness for the component [u, v]=[u, w, \eta] \in V \times H^1(\Omega)^2 with v=[w, \eta] . To this end, we take two triplets [u_k, v_k]=[u_k, w_k, \eta_k] \in D_M with v_k=[w_k, \eta_k] , k=1, 2 , that fulfill (4.13)-(4.14).

    First, with the equivalence of (4.13) and (4.22) in mind, we take the difference between two variational forms (4.22) for u_k , k=1, 2 , and put z=u_1 -u_2 in V . Then:

    \begin{align} & |{{u}_{1}}-{{u}_{2}}|_{{{L}^{2}}(\Omega )}^{2}+h|{{u}_{1}}-{{u}_{2}}|_{V}^{2}={{({\lambda }'({{w}_{1}}){{w}_{1}}-{\lambda }'({{w}_{2}}){{w}_{2}}, {{u}_{1}}-{{u}_{2}})}_{{{L}^{2}}(\Omega )}} \\ & -{{(({\lambda }'({{w}_{1}})-{\lambda }'({{w}_{2}}))w_{0}^{{}^\circ }, {{u}_{1}}-{{u}_{2}})}_{{{L}^{2}}(\Omega )}}, \\ \end{align}

    so that by using (A2) and Schwarz's inequality, we have:

    \frac{1}{4}|{u_1} - {u_2}|_{{L^2}(\Omega )}^2 + h|{u_1} - {u_2}|_V^2 \le 3|\lambda '|_{{W^{1,\infty }}(0,1)}^2|{w_1} - {w_2}|_{{L^2}(\Omega )}^2. (4.28)

    Secondly, let us take the difference between two inclusions (4.14) for v_k=[w_k, \eta_k] , k=1, 2 , and multiply the both sides by v_1 -v_2 in L^2(\Omega)^2 . Then, by using (A2)-(A5) and Schwarz's inequality, it is computed that:

    \begin{array}{l} \frac{1}{h}\left( {1 - h|[\nabla g]{|_{{C^1}{{({{[0,1]}^2})}^2}}}} \right)|{\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2}|_{{L^2}{{(\Omega )}^2}}^2 + |D({\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2})|_{{L^2}{{(\Omega )}^{N \times 2}}}^2\\ \le - {(\lambda '({w_1}){u_1} - \lambda '({w_2}){u_2},{w_1} - {w_2})_{{L^2}(\Omega )}}\\ \le |\lambda '{|_{{L^\infty }(0,1)}}|{u_1} - {u_2}{|_{{L^2}(\Omega )}}|{w_1} - {w_2}{|_{{L^2}(\Omega )}} + {({u_1}(\lambda '({w_1}) - \lambda '({w_2})),{w_1} - {w_2})_{{L^2}(\Omega )}}\\ \le \frac{1}{8}|{u_1} - {u_2}|_{{L^2}(\Omega )}^2 + 2|\lambda '|_{{L^\infty }(0,1)}^2|{w_1} - {w_2}|_{{L^2}(\Omega )}^2 + |\lambda ''{|_{{L^\infty }(0,1)}}\int_\Omega | {u_1}||{w_1} - {w_2}{|^2}{\mkern 1mu} dx. \end{array} (4.29)

    Here, the dimensional restriction 1 \leq N \leq 3 and the assumption (4.27) enable to apply the analytic technique as in [19, Lemma 3.1], and to find a constant C_2^\circ > 0 , independent of h and triplets [u_0^\circ, v_0^\circ] and [u_k, v_k] , k=1, 2 , such that:

    |\lambda ''{|_{{L^\infty }(0,1)}}\int_\Omega | {u_1}||{w_1} - {w_2}{|^2}dx \le \frac{1}{2}|D({w_1} - {w_2})|_{{L^2}(\Omega )}^2 + C_2^ \circ (1 + |{u_1}|_V^{\frac{4}{3}})|{w_1} - {w_2}|_{{L^2}(\Omega )}^2. (4.30)

    Furthermore, under (4.27), the inequality (4.20) enables to derive that:

    \begin{array}{l} C_2^ \circ (1 + |{u_1}|_V^{\frac{4}{3}})|{w_1} - {w_2}|_{{L^2}(\Omega )}^2 = C_2^ \circ {h^{\frac{1}{3}}}({h^{\frac{2}{3}}} + {(h|{u_1}|_V^2)^{\frac{2}{3}}}) \cdot \frac{1}{h}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2\\ \;\;\;\; \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_0^ \circ ,\mathit{\boldsymbol{v}}_0^ \circ ,\theta _0^ \circ ) + h|f_0^*|_{{V^*}}^2)^{\frac{2}{3}}}) \cdot \frac{1}{h}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2\\ \;\;\;\; \le \frac{1}{{2h}}|{w_1} - {w_2}|_{{L^2}(\Omega )}^2. \end{array} (4.31)

    Now, taking sum of (4.28)-(4.29) with (4.30)-(4.31) in mind, we obtain that:

    \begin{array}{l} \frac{1}{8}|{u_1} - {u_2}|_{{L^2}(\Omega )}^2 + h|{u_1} - {u_2}|_V^2\\ + \frac{1}{h}\left( {\frac{1}{2} - h\left( {|g{|_{{C^2}({{[0,1]}^2})}} + 5|\lambda |_{{W^{2,\infty }}(0,1)}^2} \right)} \right)|{\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2}|_{{L^2}{{(\Omega )}^2}}^2\\ + \frac{1}{2}|D({\mathit{\boldsymbol{v}}_1} - {\mathit{\boldsymbol{v}}_2})|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le 0. \end{array} (4.32)

    This implies the required uniqueness, because \frac{1}{2} -h (|g|_{C^2([0, 1]^2)^2} +5|\lambda|_{W^{2, \infty}(0, 1)}^2) > 0 follows from the assumption (4.1) and (4.27).

    Proof of Proposition 1. Let us take a positive constant h_{2}^{\circ} defined by (4.1). Let us set a positive constant h_0^\circ , so small to satisfy that:

    C_2^\circ (h_0^\circ)^{\frac{1}{3}} \bigl( 1 +2(F_\varepsilon^\nu(u_0^\circ, v_0^\circ, \theta_0^\circ) +h_0^\circ |[f^*]_0^{\rm ex}|_{L^2(0, T; V^*)}^2 )^{\frac{2}{3}} \bigr) \leq \frac{1}{2}, \mbox{ and } 0 < h_0^\circ \leq h_2^\circ.

    Then, from (4.20), it will be observed that:

    \begin{array}{l} C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,i - 1}^\nu ,\mathit{\boldsymbol{v}}_{\varepsilon ,i - 1}^\nu ,\theta _{\varepsilon ,i - 1}^\nu ) + h|{[f_i^*]^h}|_{{V^*}}^2)^{\frac{2}{3}}})\\ \;\;\;\; \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,i - 2}^\nu ,{\rm{ }}\mathit{\boldsymbol{v}}_{\varepsilon ,i - 2}^\nu ,\theta _{\varepsilon ,i - 2}^\nu ) + h(|{[f_i^*]^h}|_{{V^*}}^2 + |{[f_{i - 1}^*]^h}|_{{V^*}}^2))^{\frac{2}{3}}})\\ \;\;\;\; \le \cdots \le C_2^ \circ {h^{\frac{1}{3}}}(1 + 2{({\mathscr{F}}_\varepsilon ^\nu (u_{\varepsilon ,0}^\nu ,{\rm{ }}\mathit{\boldsymbol{v}}_{\varepsilon ,0}^\nu ,\theta _{\varepsilon ,0}^\nu ) + |[{f^*}]_0^{{\rm{ex}}}|_{{L^2}(0,T;{V^*})}^2)^{\frac{2}{3}}})\\ \;\;\;\; \le \frac{1}{2},{\rm{ }}\;{\rm{for}}\;{\rm{all}}\;0 < h \le h_2^ \circ \;( \le h_2^ \circ )\;{\rm{and}}\;i = 1,2,3, \ldots . \end{array} (4.33)

    In view of this, the Proposition 1 will be concluded by means of the following algorithm.

    (Step 0) Let h \in (0, h_0^\circ] , let i=1, and let [u_{\varepsilon, 0}^{\nu}, v_{\varepsilon, 0}^{\nu}, \theta_{\varepsilon, 0}^{\nu}] \in D_{M}.

    (Step 1) Obtain the quartet [u_{\varepsilon, i}^\nu, v_{\varepsilon, i}^\nu, \theta_{\varepsilon, i}^\nu] \in D_M as the unique solution to the system {(4.13)-(4.14), (4.19)}, by applying Lemmas 4-7 to the case when:

    \begin{align} & f_{0}^{*}={{[f_{i-1}^{*}]}^{h}}in\ {{V}^{*}}, u_{0}^{{}^\circ }=u_{\varepsilon, i-1}^{\nu }\ in\ {{L}^{2}}(\Omega ), \\ & v_{0}^{{}^\circ }=\text{ }v_{\varepsilon, i-1}^{\nu }\text{ }in\ {{H}^{1}}{{(\Omega )}^{2}}\ and\ \theta _{0}^{{}^\circ }=\theta _{\varepsilon, i-1}^{\nu }\ in\ {{H}^{M}}(\Omega ). \\ \end{align}

    (Step 2) Iterate the value of i and return to (Step 1).

    Note that (4.33) let the assumption h \in (0, h_0^\circ] be a uniform condition to make sense (Step 1), for all i=1, 2, 3, \dots


    5. Proof of Theorem 1

    Let us set h_1^\circ :=h_0^\circ i.e. the constant as in Proposition 1, and let us fix \nu > 0 , h \in (0, h_{1}^{\circ}] and the initial value [u_{0}^{\nu}, v_{0}^{\nu}, \theta_{0}^{\nu}]=[u_{0}^{\nu}, w_{0}^{\nu}, \eta_{0}^{\nu}, \theta_{0}^{\nu}] \in D_{1} with v_{0}^{\nu}=[w_{0}^{\nu}, \eta_{0}^{\nu}] . Besides, we recall the following lemmas obtained in [31].

    Lemma 8. (cf. [31, Lemma 4.1]) Assume v^\circ \in [H^1(\Omega) \cap L^\infty (\Omega)]^2 , \{ v_\varepsilon^\circ \}_{0 < \varepsilon \leq 1} \subset [H^1(\Omega) \cap L^\infty (\Omega)]^2 , and

    \left\{ \begin{align} & v_{\varepsilon }^{{}^\circ }\to {{v}^{{}^\circ }}in\ the\ pointwise\ sense\ a.e.\ in\ \Omega \ \varepsilon \downarrow 0, \\ & {{\{\text{ }v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\ is\ bounded\text{ }in\ {{L}^{\infty }}{{(\Omega )}^{2}}. \\ \end{align} \right.

    Then, for the sequence of convex functions \{ \Phi_{\varepsilon}^{\nu}(v_\varepsilon^\circ; \cdot\, ) \}_{0 < \varepsilon \leq 1} , it holds that \Phi_{\varepsilon}^{\nu}(v_\varepsilon^\circ; {}\cdot\, ) \to \Phi_\nu (v^\circ; \cdot\, ) on L^2(\Omega) , in the sense of Mosco, as \varepsilon \downarrow 0 .

    Lemma 9. (cf. [31, Lemma 4.2]) Assume that

    \left\{ \begin{align} & {{v}^{{}^\circ }}\in {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}}, {{\{v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\subset {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}}, \\ & {{\{v_{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\ is\text{ }bounded\text{ }in\ {{L}^{\infty }}{{(\Omega )}^{2}}, \\ & v_{\varepsilon }^{{}^\circ }\to {{v}^{{}^\circ }}\ in\text{ }the\text{ }po\operatorname{int}wise\text{ }sense, \text{ }a.e.\ in\text{ }\Omega \ as\ \varepsilon \downarrow 0, \\ \end{align} \right.

    and

    \left\{ \begin{align} & {{\theta }^{{}^\circ }}\in {{H}^{1}}(\Omega ), {{\{\theta _{\varepsilon }^{{}^\circ }\}}_{0<\varepsilon \le 1}}\subset {{H}^{1}}(\Omega ), \\ & \theta _{\varepsilon }^{{}^\circ }\to {{\theta }^{{}^\circ }}\ in\ {{L}^{2}}(\Omega )\ and\ \Phi _{\varepsilon }^{\nu }(v_{\varepsilon }^{{}^\circ };\theta _{\varepsilon }^{{}^\circ })\to {{\Phi }_{\nu }}({{v}^{{}^\circ }};{{\theta }^{{}^\circ }}), as\ \varepsilon \downarrow 0 \\ \end{align} \right.

    Then, \theta_\varepsilon^\circ \to \theta^\circ in H^1(\Omega) and {\varepsilon} \theta_\varepsilon^\circ \to 0 in H^M (\Omega) , as \varepsilon \downarrow 0 .

    Lemma 10. (cf. [31, Lemma 4.4]) Let v^{\circ} \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2} and \check{\theta}_{0}^{\circ}, \hat{\theta}_{0}^{\circ} \in H^{1}(\Omega) be fixed functions, and let [\check{\theta}, \check{\theta}^{\ast}], [\hat{\theta}, \hat{\theta}^{\ast}] \in L^{2}(\Omega)^{2} be pairs of functions such that

    \left\{ \begin{array}{l} [\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } ,{{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } }^ * }] \in \partial {\Phi _\nu }({\mathit{\boldsymbol{v}}^ \circ }; \cdot ){\rm{ in }}{L^2}{(\Omega )^2}{\rm{ and }}\frac{1}{h}{\alpha _0}({\mathit{\boldsymbol{v}}^ \circ })(\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } - \mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } _0^ \circ ) + {{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over \theta } }^ * } \le 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega ,\\ [\hat \theta ,{{\hat \theta }^ * }] \in \partial {\Phi _\nu }({\mathit{\boldsymbol{v}}^ \circ }; \cdot ){\rm{ in }}{L^2}{(\Omega )^2}{\rm{ and }}\frac{1}{h}{\alpha _0}({\mathit{\boldsymbol{v}}^ \circ })(\hat \theta - \hat \theta _0^ \circ ) + {{\hat \theta }^ * } \ge 0{\rm{ a}}{\rm{.e}}{\rm{. in }}\Omega , \end{array} \right. (5.1)

    respectively. Then, it follows that

    |\sqrt{\alpha_{0}(v^{\circ})}[\check{\theta}-\hat{\theta}]^{+}|_{L^{2}(\Omega)}^{2} \le |\sqrt{\alpha_{0}(v^{\circ})}[\check{\theta}_{0}^{\circ}-\hat{\theta}_{0}^{\circ}]^{+}|_{L^{2}(\Omega)}^{2},

    and therefore, if \check{\theta}_{0}^{\circ} \le \hat{\theta}_{0}^{\circ} in \Omega, then the inequality \check{\theta} \leq \hat{\theta} a.e. in \Omega also follows from (A3).

    Moreover, if the both inequalities in (5.1) hold as equalities, then:

    |\sqrt{\alpha_{0}(v^{\circ})}(\check{\theta}-\hat{\theta})|_{L^{2}(\Omega)}^{2} \le |\sqrt{\alpha_{0}(v^{\circ})}(\check{\theta}_{0}^{\circ}-\hat{\theta}_{0}^{\circ})|_{L^{2}(\Omega)}^{2},

    Based on these, we divide the proof of Theorem 1 in two parts: the part of existence; the part of uniqueness and energy inequality.

    The part of existence. Let \nu > 0 be a fixed constant. By Lemma 8, there exists a sequence \{\tilde{\theta}_{\varepsilon, 0}^{\nu} \}_{0 < \varepsilon \leq 1} \subset H^{M}(\Omega) such that

    \tilde{\theta}_{\varepsilon, 0}^{\nu} \to \theta_{0}^{\nu} \mbox{ in } H^{1}(\Omega) \mbox{ and } \Phi_{\varepsilon}^{\nu}(v_{0}^{\nu} ; \tilde{\theta}_{\varepsilon, 0}^{\nu}) \to \Phi_{\nu}(v_{0}^{\nu}; \theta_{0}^{\nu}) \mbox{ as } \varepsilon \downarrow 0.

    So, by virtue of Proposition 1 we can take a class \{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \, | \, i \in \mathbb{N}, ~\varepsilon \in (0, 1] \} consisting of solutions \{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \}_{i=1}^\infty=\{ [\tilde{u}_{\varepsilon, i}^\nu, \tilde{w}_{\varepsilon, i}^\nu, \tilde{\eta}_{\varepsilon, i}^\nu, \tilde{\theta}_{\varepsilon, i}^\nu] \}_{i=1}^\infty \subset {D_M} to (RX)_\varepsilon with \{ \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^\nu \}_{i=1}^\infty=\{ [\tilde{w}_{\varepsilon, i}^\nu, \tilde{\eta}_{\varepsilon, i}^\nu] \}_{i=1}^{\infty} , starting from the initial data [u_{\varepsilon, 0}^{\nu}, \mathit{\pmb{v}}_{\varepsilon, 0}^{\nu}, \theta_{\varepsilon, 0}^{\nu}]=[u_{0}^{\nu}, \mathit{\pmb{v}}_{0}^{\nu}, \tilde{\theta}_{\varepsilon, 0}^{\nu}] for 0 < \varepsilon \leq 1 . Then, with Lemma 6 and the algorithm (Step 0)-(Step 2) in mind, we remark the following energy-inequality:

    \begin{array}{l} \frac{{{A_*}}}{{2h}}|\tilde u_{\varepsilon ,i}^\nu - \tilde u_{\varepsilon ,i - 1}^\nu |_{{V^*}}^2 + \frac{1}{{2h}}|\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu - \mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i - 1}^\nu |_{{L^2}{{(\Omega )}^2}}^2 + \frac{1}{h}|\sqrt {{\alpha _0}(\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu )} (\tilde \theta _{\varepsilon ,i}^\nu - \tilde \theta _{\varepsilon ,i - 1}^\nu )|_{{L^2}(\Omega )}^2\\ + \frac{h}{2}|\tilde u_{\varepsilon ,i}^\nu |_V^2 + {\mathscr{F}}_\varepsilon ^\nu (\tilde u_{\varepsilon ,i}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i}^\nu ,\tilde \theta _{\varepsilon ,i}^\nu ) \le {\mathscr{F}}_\varepsilon ^\nu (\tilde u_{\varepsilon ,i - 1}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{\varepsilon ,i - 1}^\nu ,\tilde \theta _{\varepsilon ,i - 1}^\nu ) + h|{[\mathit{\boldsymbol{f}}_i^*]^h}|_{{V^*}}^2,\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{for all}}\;0 < \varepsilon \le 1\;{\rm{and}}\;i = 1,2,3, \ldots . \end{array} (5.2)

    In the light of (A3)-(A6), (4.21) and (5.2), the class \{ [\tilde{u}_{\varepsilon, i}^{\nu}, \tilde{\mathit{\pmb{v}}}_{\varepsilon, i}^{\nu}, \tilde{\theta}_{\varepsilon, i}^{\nu}]\ |\ i \in \mathbb{N}, ~\varepsilon \in (0, 1] \} is bounded in V \times H^{1}(\Omega)^{3}. Therefore, applying a diagonal argument and the general theories of compactness (cf. [3,11]), we find sequences \{\varepsilon_{n} \}_{n=1}^\infty \subset (0, 1] , \{[u_{i}^{\nu}, \mathit{\pmb{v}}_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty=\{ [u_{i}^{\nu}, w_{i}^{\nu}, \eta_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty \subset V \times H^{1}(\Omega)^{2} \times H^1(\Omega) , with \{ \mathit{\pmb{v}}_i^\nu \}_{i=1}^\infty=\{ [w_i^\nu, \eta_i^\nu] \}_{i=1}^\infty , such that

    \left\{ \begin{array}{l} 1 \ge {\varepsilon _1} > \cdots > {\varepsilon _n} \downarrow 0{\rm{ as }}n \to \infty ,\\ \tilde u_{i,n}^\nu : = \tilde u_{{\varepsilon _n},i}^\nu \to u_i^\nu {\rm{ in}}\;{L^2}(\Omega ),\;{\rm{ weakly}}\;{\rm{in}}\;\mathit{V}\;{\rm{as}}\;n \to \infty \\ \mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu : = \mathit{\boldsymbol{\widetilde v}}_{{\varepsilon _n},i}^\nu \to {\rm{ }}\mathit{\boldsymbol{v}}_i^\nu {\rm{ in}}\;{L^2}{(\Omega )^2},{\rm{ weakly}}\;{\rm{in }}{H^1}{(\Omega )^2},{\rm{ weakly - }} * {\rm{ in}}\;{L^\infty }{(\Omega )^2},\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{in}}\;{\rm{the}}\;{\rm{pointwise}}\;{\rm{sense}}\;{\rm{a}}{\rm{.e}}{\rm{. in}}\;\Omega {\rm{, as}}\;n \to \infty ,\\ \tilde \theta _{i,n}^\nu \equiv \tilde \theta _{{\varepsilon _n},i}^\nu \to \theta _i^\nu {\rm{ in }}{L^2}(\Omega ),{\rm{ weakly}}\;{\rm{in }}{H^1}(\Omega )\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{in}}\;{\rm{the}}\;{\rm{pointwise}}\;{\rm{sense}}\;{\rm{a}}{\rm{.e}}{\rm{. in }}\Omega {\rm{, as }}n \to \infty \\ \le w_i^\nu \le 1{\rm{ and }}0 \le \eta _i^\nu \le 1{\rm{ }}\;{\rm{a}}{\rm{.e}}{\rm{.in}}\;\Omega ;\;{\rm{for}}\;{\rm{all}}\;i = 0,1,2, \ldots . \end{array} \right. (5.3)

    Moreover, by (3.13), (5.3), Lemmas 8-9 and Remark 4 (Fact 6), we infer that

    \left\{ \begin{array}{l} [\theta _i^\nu , - \frac{1}{h}{\alpha _0}(\mathit{\boldsymbol{v}}_i^\nu )(\theta _i^\nu - \theta _{i - 1}^\nu )] \in \partial {\Phi _\nu }(\mathit{\boldsymbol{v}}_i^\nu ; \cdot ){\rm{ in}}\;{L^2}{(\Omega )^2},\\ \Phi _{{\varepsilon _n}}^\nu (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ;\tilde \theta _{i,n}^\nu ) \to {\Phi _\nu }(\mathit{\boldsymbol{v}}_i^\nu ;\theta _i^\nu ),\tilde \theta _{i,n}^\nu \to \theta _i^\nu {\rm{ in }}{H^1}(\Omega )\;\;\;\;\;for\;\mathit{i = }{\rm{0,1,2,}}\\ \;\;\;\;\;\;\;\;{\rm{and}}\;{\varepsilon _n}\tilde \theta _{i,n}^\nu \to 0\;{\rm{in}}\;{H^M}(\Omega ),{\rm{as}}\;n \to \infty \end{array} \right. \cdots (5.4)

    Also, since

    \begin{equation*} [c, 0] \in \partial\Phi_{\nu}(\mathit{\pmb{v}}_{i}^{\nu};\cdot) \ \ \mbox{ in } L^{2}(\Omega)^{2}, \mbox{ for all $c \in \mathbb{R}$ and $ i = 0, 1, 2, \dots $, } \end{equation*}

    it is observed that

    \begin{equation*} \theta_{i}^{\nu} \le |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)} \ (\mbox{resp. } \theta_{i}^{\nu} \ge - |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}) \mbox{ a.e. in } \Omega, \mbox{ for any $i \in \mathbb{N}$, } \end{equation*}

    by applying Lemma 10 as the case when

    \begin{equation*} \left\{ \begin{array}{l} \mathit{\pmb{v}}^{\circ} = \mathit{\pmb{v}}_{i}^{\nu}, \\ \check{\theta}_{0}^{\circ} = \theta_{i-1}^{\nu}, ~ \hat{\theta}_{0}^{\circ} = |\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)} \ (\mbox{resp. } \check{\theta}_{0}^{\circ} = -|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, ~\hat{\theta}_{0}^{\circ} = \theta_{i-1}^{\nu}), \\ [\check{\theta}, \check{\theta}^{\ast}] = [\theta_{i}^{\nu}, -\frac{1}{h}\alpha_{0}(\mathit{\pmb{v}}_{i}^{\nu})(\theta_{i}^{\nu}-\theta_{i-1}^{\nu})] \ (\mbox{resp. } [\check{\theta}, \check{\theta}^{\ast}] = [-|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, 0]), \\ [\hat{\theta}, \hat{\theta}^{\ast}] = [|\theta_{i-1}^{\nu}|_{L^{\infty}(\Omega)}, 0] \ \left(\mbox{resp. } [\hat{\theta}, \hat{\theta}^{\ast}] = \bigl[\theta_{i}^{\nu}, -\frac{1}{h}\alpha_{0}(\mathit{\pmb{v}}_{i}^{\nu})(\theta_{i}^{\nu}-\theta_{i-1}^{\nu}) \bigr] \right). \end{array} \right. \end{equation*}

    Having in mind (A2)-(A5), (3.11)-(3.12) and (5.3)-(5.4), we can see that

    \begin{equation*} \begin{array}{ll} \frac{1}{h}(u_{i}^{\nu} - u_{i-1}^{\nu}, z)_{L^{2}(\Omega)} - \frac{1}{h}(\lambda'(w_{i}^{\nu})(w_{i}^{\nu}-w_{i-1}^{\nu}), z)_{L^{2}(\Omega)} +(u_i^\nu, z)_V \\ = \lim_{n \to \infty} \left[\frac{1}{h}(\tilde{u}_{i, n}^{\nu}-\tilde{u}_{i-1, n}^{\nu}, z)_{L^{2}(\Omega)}-\frac{1}{h}(\lambda'(\tilde{w}_{i, n}^{\nu})(\tilde{w}_{i, n}^{\nu}-\tilde{w}_{i-1, n}^{\nu}), z)_{L^{2}(\Omega)} +(\tilde{u}_{i, n}^{\nu}, z)_{V} \right] \\ = \langle [{\mathit{\pmb{f}}}_{i}^*]^{h}, z \rangle, \mbox{ for any $z \in V$ and $ i = 1, 2, 3, \dots $, } \end{array} \end{equation*}

    and

    \begin{array}{l} {(D\mathit{\boldsymbol{v}}_i^\nu ,D(\mathit{\boldsymbol{v}}_i^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \int_\Omega \gamma (w_i^\nu ){\mkern 1mu} dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le \mathop {\lim \inf }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu )dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le \mathop {\lim \sup }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi ))_{{L^2}{{(\Omega )}^{N \times 2}}}} + \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu )dx - \int_\Omega \gamma (\varphi ){\mkern 1mu} dx\\ \le - \mathop {\lim }\limits_{n \to \infty } \left( {\frac{1}{h}{{(\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \mathit{\boldsymbol{\widetilde v}}_{i - 1,n}^\nu ,\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )}_{{L^2}{{(\Omega )}^2}}} + \int_\Omega {[\nabla G](\tilde u_{i,n}^\nu ;\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ) \cdot (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )dx} } \right)\\ - \mathop {\lim }\limits_{n \to \infty } \int_\Omega {([\nabla \alpha ](} \mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu )|D\tilde \theta _{i - 1,n}^\nu | + {\nu ^2}[\nabla \beta ](\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu )|D\tilde \theta _{i - 1,n}^\nu {|^2}) \cdot (\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu - \varpi )dx\\ \le - \frac{1}{h}{(\mathit{\boldsymbol{v}}_i^\nu - \mathit{\boldsymbol{v}}_{i - 1}^\nu ,\mathit{\boldsymbol{v}}_i^\nu - \varpi )_{{L^2}{{(\Omega )}^2}}} - \int_\Omega {[\nabla G](u_i^\nu ;\mathit{\boldsymbol{v}}_i^\nu ) \cdot (\mathit{\boldsymbol{v}}_i^\nu - \varpi )dx} \\ - \int_\Omega {([\nabla \alpha ](\mathit{\boldsymbol{v}}_i^\nu )|D\theta _{i - 1}^\nu | + {\nu ^2}[\nabla \beta ](\mathit{\boldsymbol{v}}_i^\nu )|D\theta _{i - 1}^\nu {|^2})} \cdot (\mathit{\boldsymbol{v}}_i^\nu - \varpi )dx,\\ {\rm{for}}\;{\rm{any}}\;\varpi = [\varphi ,\psi ] \in {[{H^1}(\Omega ) \cap {L^\infty }(\Omega )]^2},{\rm{and}}\;i = 1,2,3, \ldots . \end{array} (5.5)

    The above calculations imply that the limiting sequence \{[u_{i}^{\nu}, \mathit{\pmb{v}}_{i}^{\nu}, \theta_{i}^{\nu}] \}_{i=1}^\infty is a solution to the approximating system (AP)_{h}^{\nu} .

    The part of uniqueness and energy inequality. By putting {\varpi}=\mathit{\pmb{v}}_i^\nu in (5.5), for i \in \mathbb{N} , one can see from (5.3) that:

    \begin{array}{l} |D\mathit{\boldsymbol{v}}_i^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le \mathop {\lim \inf }\limits_{n \to \infty } |D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2 \le \mathop {\lim \sup }\limits_{n \to \infty } |D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2\\ \le \mathop {\lim }\limits_{n \to \infty } {(D\mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu ,D\mathit{\boldsymbol{v}}_i^\nu )_{{L^2}{{(\Omega )}^{N \times 2}}}} + \int_\Omega \gamma (w_i^\nu ){\mkern 1mu} dx - \mathop {\lim \inf }\limits_{n \to \infty } \int_\Omega \gamma (\tilde w_{i,n}^\nu ){\mkern 1mu} dx\\ \le |D{\rm{ }}\mathit{\boldsymbol{v}}_i^\nu |_{{L^2}{{(\Omega )}^{N \times 2}}}^2,\;{\rm{for}}\;i = 1,2,3, \ldots . \end{array} (5.6)

    By the convergences (5.3) and (5.6), the uniform convexity of L^2 -based topologies enable to say:

    \mathit{\boldsymbol{\widetilde v}}_{i,n}^\nu \to \mathit{\boldsymbol{v}}_i^\nu \;{\rm{in}}\;{H^1}{(\Omega )^2}\;{\rm{as}}\;n \to \infty ,{\rm{for}}\;i = 1,2,3, \ldots . (5.7)

    Hence, the energy-inequality (3.10) will be obtained, immediately, by putting \varepsilon=\varepsilon_n in (5.2), for n \in \mathbb{N} , and letting n \to \infty with (5.3) and (5.7) in mind.

    In the meantime, we note that the condition (4.33) is still available in the proof of Theorem 1. Also, the regularity \theta_0^\circ \in H^M (\Omega) will not necessary in the calculations (4.29)-(4.32), and the line of these calculations will work even if \theta_0^\circ \in H^1(\Omega) .

    In view of these, the verification part of the uniqueness for (AP)_h^\nu will be a slight modification of that as in (Step 1) in the previous section. Then, the principal modifications will be to replace the application parts of Lemma 5 and the energy-inequality (4.20), by those of Lemma 10 and (3.10), respectively.


    6. Proof of Main Theorem

    Let \nu \geq 0 be a fixed constant, and let h_{1}^\circ \in (0, 1] be the constant as in Theorem 1. Also, we refer to [31] to recall the following lemma.

    Lemma 11. (Γ-convergence; [31, Lemma 6.2]) Assume \mathit{\pmb{v}}^\bullet \in [H^1(\Omega) \cap L^\infty (\Omega)]^2 , \{ \mathit{\pmb{v}}_{\tilde{\nu}}^\bullet \}_{\tilde{\nu} > 0} \subset [H^1(\Omega) \cap L^\infty (\Omega)]^2 , and

    \left\{ \begin{align} & \mathit{\pmb{v}}_{{\tilde{\nu }}}^{\bullet }\to {{\mathit{\pmb{v}}}^{\bullet }}\ in\ the\ pointwise\ sense, \ a.e.\ in\ \Omega, as\ \tilde{\nu }\downarrow 0, \\ & {{\{\mathit{\pmb{v}}_{{\tilde{\nu }}}^{\bullet }\}}_{\tilde{\nu }>0}}\ is\ bounded\ in\ {{L}^{\infty }}{{(\Omega )}^{2}}. \\ \end{align} \right.

    Then, for the sequence of convex functions \{ \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_{\tilde{\nu}}^\bullet; {}\cdot\, ) \}_{\tilde{\nu} > 0} , it holds that \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_{\tilde{\nu}}^\bullet; \cdot\, ) \to \Phi_0(\mathit{\pmb{v}}^\bullet; {}\cdot\, ) on L^2(\Omega) , in the sense of {\mit \Gamma} -convergence, as \tilde{\nu} \downarrow 0 .

    Based on Lemma 11 and [31, Remark 6.1], we take a sequence \{ \vartheta_0^{\tilde{\nu}} \}_{\tilde{\nu} > 0} \subset H^1(\Omega) , such that:

    \begin{equation*} |\theta_0^{\tilde{\nu}}| \leq |\theta_0|_{L^\infty(\Omega)} \mbox{ a.e. in $ \Omega $, for any $ \tilde{\nu} > 0 $, } \end{equation*}

    and

    \begin{equation*} \left\{ \begin{array}{l} \vartheta_0^{\tilde{\nu}} \to \theta_0 \mbox{ in $ L^2(\Omega) $ and }\Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_0; \vartheta_0^{\tilde{\nu}}) \to \Phi_0(\mathit{\pmb{v}}_0; \theta_0), \mbox{ as $ \tilde{\nu} \downarrow 0 $, if $ \nu = 0 $, } \\[1ex] \vartheta_0^{\tilde{\nu}} = \theta_0 \mbox{ in $ H^1(\Omega) $ for $ \tilde{\nu} > 0 $, if $ \nu > 0 $, } \end{array} \right. \end{equation*}

    and for any h \in (0, h_1^\circ] and any \tilde{\nu} \in (0, \nu +1] , let us take the solution \{[u_{i}^{\tilde{\nu}}, \mathit{\pmb{v}}_{i}^{\tilde{\nu}}, \theta_{i}^{\tilde{\nu}}]\}_{i=0}^{\infty} to (AP)_{h}^{\tilde{\nu}} with \{ \mathit{\pmb{v}}_i^{\tilde{\nu}} \}_{i=1}^\infty=\{ [w_i^{\tilde{\nu}}, \eta_i^{\tilde{\nu}}] \}_{i=1}^\infty , under the initial condition [u_{0}^{\tilde{\nu}}, \mathit{\pmb{v}}_{0}^{\tilde{\nu}}, \theta_{0}^{\tilde{\nu}}]=[u_{0}, \mathit{\pmb{v}}_{0}, \vartheta_{0}^{\tilde{\nu}}] \in D_{1} with \mathit{\pmb{v}}_0^{\tilde{\nu}}=[w_0^{\tilde{\nu}}, \eta_0^{\tilde{\nu}}]=[w_0, \eta_0] . As is easily seen,

    \begin{equation*} F_0^\nu := \sup_{0 < \tilde{\nu} \leq \nu +1} \mathscr{F}_{\tilde{\nu}}(u_0, \mathit{\pmb{v}}_0, \vartheta_0^{\tilde{\nu}}) < \infty. \end{equation*}

    For any h \in (0, h_1^\circ] and any \tilde{\nu} \in (0, \nu +1] , we define the following time-interpolations:

    \begin{equation*} \begin{array}{l} {\mathit{\pmb{f}}}_h^*(t) = [f_h(t), {\mathit{\pmb{f}}}_{\Gamma, h}(t)] := [{f}_i^*]^h = [f_i^h, f_{\Gamma, i}^h] \mbox{ in $ V^* $ (in $ L^2(\Omega) \times L^2(\Gamma) $), } \\ \hspace{5mm}\mbox{ for all } t \ge 0 \mbox{ and } 0 \le i \in \mathbb{Z} \mbox{ satisfying } t \in ((i-1)h, ih], \end{array} \end{equation*}

    and

    \left\{ \begin{array}{l} [\bar u_h^{{\kern 1pt} \tilde \nu }(t),\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu }(t),\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)] = [\bar u_h^{{\kern 1pt} \tilde \nu }(t),\bar w_h^{{\kern 1pt} \tilde \nu }(t),\bar \eta _h^{{\kern 1pt} \tilde \nu }(t),\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)]: = [u_i^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_i^{\tilde \nu },\theta _i^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{for all}}\;t \ge 0\;{\rm{and}}\;0 \le i \in \mathbb{Z}\;{\rm{satisfying}}\;t \in ((i - 1)h,ih],\\ [\mathit{\underline u} _{{\kern 1pt} h}^{\tilde \nu }(t),\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \theta _{{\kern 1pt} h}^{\tilde \nu }(t)] = [\mathit{\underline u} _{{\kern 1pt} h}^{\tilde \nu }(t),\underline w _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \eta _{{\kern 1pt} h}^{\tilde \nu }(t),\underline \theta _{{\kern 1pt} h}^{\tilde \nu }(t)]: = [u_{i - 1}^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_{i - 1}^{\tilde \nu },\theta _{i - 1}^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{for all}}\;t \ge 0\;{\rm{and}}\;0 \le i \in \mathbb{Z}\;{\rm{satisfying}}\;t \in \left[ {(i - 1)h,ih} \right),\\ [\hat u_h^{{\kern 1pt} \tilde \nu }(t),\mathit{\boldsymbol{\widehat v}}_h^{{\kern 1pt} \tilde \nu }(t),\hat \theta _h^{{\kern 1pt} \tilde \nu }(t)] = [\hat u_h^{{\kern 1pt} \tilde \nu }(t),\hat w_h^{{\kern 1pt} \tilde \nu }(t),\hat \eta _h^{{\kern 1pt} \tilde \nu }(t),\hat \theta _h^{{\kern 1pt} \tilde \nu }(t)]\\ \;\;\;\;: = \frac{{ih - t}}{h}[u_{i - 1}^{\tilde \nu }(t),\mathit{\boldsymbol{v}}_{i - 1}^{\tilde \nu }(t),\theta _{i - 1}^{\tilde \nu }(t)] + \frac{{t - (i - 1)h}}{h}[u_i^{\tilde \nu },{\rm{ }}\mathit{\boldsymbol{v}}_i^{\tilde \nu },\theta _i^{\tilde \nu }]\;{\rm{in}}\;{L^2}{(\Omega )^4},\\ \;\;\;\;{\rm{ for all }}t \ge 0{\rm{ and }}0 \le i \in \mathbb{Z}{\rm{ satisfying }}t \in [(i - 1)h,ih).{\rm{ }} \end{array} \right. (6.1)

    Besides, we define:

    {{D}_{\nu }}({{\theta }_{0}}):=\left\{ \begin{align} & \left\{ [\tilde{u}, \widetilde{v}, \tilde{\theta }]\in {{D}_{0}}\left| |\tilde{\theta }{{|}_{{{L}^{\infty }}(\Omega )}}\le |{{\theta }_{0}}{{|}_{{{L}^{\infty }}(\Omega )}} \right. \right\}, \ \text{if}\ \ v=0, \\ & \left\{ [\tilde{u}, \widetilde{v}, \tilde{\theta }]\in {{D}_{1}}\left| |\tilde{\theta }{{|}_{{{L}^{\infty }}(\Omega )}}\le |{{\theta }_{0}}{{|}_{{{L}^{\infty }}(\Omega )}} \right. \right\}, \ \text{if}\ \ v>0, \\ \end{align} \right.\

    and we note that:

    \begin{equation*} \begin{array}{c} \bigl\{ [\overline{u}_{h}^{\, \tilde{\nu}}(t), \overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}(t), \overline{\theta}_{h}^{\, \tilde{\nu}}(t)], [\underline{u}_{\, h}^{\, \tilde{\nu}}(t), \underline{\mathit{\pmb{v}}}_{\, h}^{\, \tilde{\nu}}(t), \underline{\theta}_{\, h}^{\, \tilde{\nu}}(t)], [\widehat{u}_{h}^{\, \tilde{\nu}}(t), \widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}(t), \widehat{\theta}_{h}^{\, \tilde{\nu}}(t)] \bigr\} \\[1ex] \subset D_\nu(\theta_0), \mbox{ for all $ t \geq 0 $, $ 0 < h \leq h_1^\circ $ and $ 0 < \tilde{\nu} \leq \nu +1 $.} \end{array} \end{equation*}

    Then, from the energy-inequality (3.10) in Theorem 1, it is checked that

    \begin{equation*} \begin{array}{c} \frac{A_*}{2} \int_s^t |(\widehat{u}_{h}^{\, \tilde{\nu}})_t|_{V^*} \, d\tau +\frac{1}{2}\int_{s}^{t}|(\widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}})_t(\tau)|_{L^{2}(\Omega)^{2}}^{2}d\tau + \int_{s}^{t} |{\textstyle \sqrt{\alpha_{0}(\overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}})}}(\widehat{\theta}_{h}^{\, \tilde{\nu}})_t(\tau)|_{L^{2}(\Omega)}^{2}d\tau \\[2ex] + \frac{1}{2}\int_{s}^{t}|\overline{u}_{h}^{\, \tilde{\nu}}(\tau)|_{V}^{2}d\tau + \mathscr{F}_{\tilde{\nu}}(\overline{u}_{h}^{\, \tilde{\nu}}, \overline{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}}, \overline{\theta}_{h}^{\, \tilde{\nu}})(t) \le \mathscr{F}_{\tilde{\nu}}(\underline{u}_{\, h}^{\tilde{\nu}}, \underline{\mathit{\pmb{v}}}_{\, h}^{\tilde{\nu}}, \underline{\theta}_{\, h}^{\tilde{\nu}})(s) + \int_{s}^{t} |{f}_h^*(\tau)|_{V^{\ast}}^{2} d\tau \\[2ex] \mbox{for all $0 \le s \le t \le T$, $ 0 < h \leq h_1^\circ $ and $ 0 < \tilde{\nu} \leq \nu +1 $, } \end{array} \end{equation*}

    and additionally, from (A1)-(A6) and (3.2), it follows that

    \begin{array}{l} {B_*}|\bar u_h^{{\kern 1pt} \tilde \nu }(t)|_{{L^2}(\Omega )}^2 + \frac{1}{2}|D\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu }(t)|_{{L^2}{{(\Omega )}^{N \times 2}}}^2 + {\delta _*}(|D\bar \theta _h^{{\kern 1pt} \tilde \nu }(t)|(\Omega ) + |D(\tilde \nu \bar \theta _h^{{\kern 1pt} \tilde \nu })(t)|_{{L^2}{{(\Omega )}^{N \times 2}}}^2)\\ \;\;\;\;\;\; \le \mathscr{F}{_{\tilde \nu }}(\bar u_h^{{\kern 1pt} \tilde \nu },\mathit{\boldsymbol{\overline v}} _h^{{\kern 1pt} \tilde \nu },\bar \theta _h^{{\kern 1pt} \tilde \nu })(t) \vee \mathscr{F}{_{\tilde \nu }}(\underline u _{{\kern 1pt} h}^{\tilde \nu },\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} h}^{\tilde \nu },\underline \theta _{{\kern 1pt} h}^{\tilde \nu })(t)\\ \;\;\;\;\;\; \le F_ * ^\nu : = F_0^\nu + |{\mathit{\boldsymbol{f}}^*}|_{{L^2}(0,T;{V^*})}^2,\;{\rm{for}}\;{\rm{all}}\;0 \le t \le T\;{\rm{and}}\;0 < \tilde \nu \le \nu + 1. \end{array} (6.2)

    Based on these, one can see that:

    (\sharp 1) the class \{\widehat{u}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; V^{\ast}) \cap C ([0, T]; L^{2}(\Omega)) \cap L^{2}(0, T; V).

    (\sharp 2) the class \{ \widehat{\mathit{\pmb{v}}}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; L^{2}(\Omega)^{2}) \cap L^{\infty}(0, T; H^{1}(\Omega)^{2}) \cap L^\infty (Q)^2.

    (\sharp 3) the class \{ \widehat{\theta}_{h}^{\, \tilde{\nu}} \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in the space W^{1, 2}(0, T; L^2(\Omega)) \cap L^\infty (Q) , and \{ \Phi_{\tilde{\nu}}(\mathit{\pmb{v}}_h^{\, \tilde{\nu}}; \theta_h^{\, \tilde{\nu}}) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T) , i.e. \{ |D \overline{\theta}_h^{\, \tilde{\nu}}({}\cdot{})|(\Omega) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T) , and \{ D (\tilde{\nu} \overline{\theta}_h^{\, \tilde{\nu}}) \, | \, h \in (0, h_1^\circ], ~\tilde{\nu} \in (0, \nu +1] \} is bounded in L^\infty (0, T; L^2(\Omega)^N) .

    Hence, by applying the general theories of compactness, as in [2,3,11,33], we find a quartet of functions [u, \mathit{\pmb{v}}, \theta]=[u, w, \eta, \theta] \in L^{2}(0, T; L^{2}(\Omega)^{4}) with \mathit{\pmb{v}}=[w, \eta] and sequences \{h_{n}\}_{n=1}^{\infty} \subset (0, h_1^\circ] and \{ \nu_n \}_{n=1}^\infty \subset (0, \nu +1] , with the subsequences:

    \begin{equation*} \left \{ \begin{array}{l} \{[\overline{u}_{n}, \overline{\mathit{\pmb{v}}}_{n}, \overline{\theta}_{n}]\}_{n=1}^{\infty} = \{[\overline{u}_{n}, \overline{w}_{n}, \overline{\eta}_{n}, \overline{\theta}_{n}]\}_{n=1}^{\infty} := \{[\overline{u}_{h_n}^{\nu_n}, \overline{\mathit{\pmb{v}}}_{h_n}^{\nu_n}, \overline{\theta}_{h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \{[\underline{u}_{\, n}, \underline{\mathit{\pmb{v}}}_{\, n}, \underline{\theta}_{\, n}]\}_{n=1}^{\infty} = \{[\underline{u}_{\, n}, \underline{w}_{\, n}, \underline{\eta}_{\, n}, \underline{\theta}_{\, n}]\}_{n=1}^{\infty} := \{[\underline{u}_{\, h_n}^{\nu_n}, \underline{\mathit{\pmb{v}}}_{\, h_n}^{\nu_n}, \underline{\theta}_{\, h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \{[\widehat{u}_{n}, \widehat{\mathit{\pmb{v}}}_{n}, \widehat{\theta}_{n}]\}_{n=1}^{\infty} = \{[\widehat{u}_{n}, \widehat{w}_{n}, \widehat{\eta}_{n}, \widehat{\theta}_{n}]\}_{n=1}^{\infty} := \{[\widehat{u}_{h_n}^{\nu_n}, \widehat{\mathit{\pmb{v}}}_{h_n}^{\nu_n}, \widehat{\theta}_{h_n}^{\nu_n}]\}_{n=1}^{\infty}, \\ \end{array}\right. \end{equation*}

    such that:

    h_1^ \circ \ge {h_1} > {h_2} > \cdots > {h_n} \downarrow 0\;{\rm{and}}\;{\nu _n} \to \nu ,{\rm{as}}\;n \to \infty , (6.3)
    \left\{ \begin{array}{l} u \in {W^{1,2}}(0,T;{V^ * }) \cap {L^\infty }(0,T;{L^2}(\Omega )) \cap {L^2}(0,T;V) \subset C([0,T];{L^2}(\Omega )),\\ \mathit{\boldsymbol{v}} \in {W^{1,2}}(0,T;{L^2}{(\Omega )^2}) \cap {L^\infty }(0,T;{H^1}{(\Omega )^2}) \cap {L^\infty }{(Q)^2},\\ \theta \in {W^{1,2}}(0,T;{L^2}(\Omega )) \cap {L^\infty }(Q),{\Phi _\nu }(\mathit{\boldsymbol{v}};\theta ) \in {L^\infty }(0,T),\\ [u(t),\mathit{\boldsymbol{v}}(t),\theta (t)] \in {D_\nu }({\theta _0}){\rm{ for all }}t \ge 0,\\ [u(0),\mathit{\boldsymbol{v}}(0),\theta (0)] = [{u_0},{\mathit{\boldsymbol{v}}_0},{\theta _0}]{\rm{ in }}{L^2}{(\Omega )^4}, \end{array} \right. (6.4)
    \left\{ \begin{array}{l} {{\hat u}_n} \to u\;{\rm{in}}\;{L^2}(I;{L^2}(\Omega )),{\rm{ weakly}}\;{\rm{in }}{W^{1,2}}(I;{V^ * }),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }(I;V),\\ {\mathit{\boldsymbol{\widehat v}}_n} \to \mathit{\boldsymbol{v}}\;{\rm{in}}\;C(\bar I;{L^2}{(\Omega )^2}),{\rm{weakly}}\;{\rm{in}}\;{W^{1,2}}(I;{L^2}{(\Omega )^2}),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }(I;{H^1}{(\Omega )^2})\;{\rm{and}}\;{\rm{weakly}} - *{\rm{in}}\;{L^\infty }{(Q)^2},\\ {{\hat \theta }_n} \to \theta \;{\rm{in}}\;C(\bar I;{L^2}(\Omega )),{\rm{weakly}}\;{\rm{in}}\;{W^{1,2}}(I;{L^2}(\Omega )),\\ \;\;\;\;\;\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }\left( Q \right),\\ {\nu _n}{{\hat \theta }_n} \to \nu \theta {\rm{weakly}}\;{\rm{in}}\;{L^2}(I;{H^1}(\Omega )), \end{array} \right. (6.5)
    \mathit{\boldsymbol{f}}_{{h_n}}^* \to {\rm{ }}{\mathit{\boldsymbol{f}}^*}\;{\rm{in}}\;{L^2}(I;{V^*})([{f_{{h_n}}},{f_{\Gamma ,{h_n}}}] \to [f,{f_\Gamma }]\;{\rm{in}}\;{L^2}(I;{L^2}(\Omega ) \times {L^2}(\Gamma ))), (6.6)

    as n \to \infty , for any open interval I \subset (0, T) , and

    \left\{ \begin{array}{l} {{\bar u}_n}(t) \to u(t)\;{\rm{and}}\;{\underline u _{{\kern 1pt} n}}(t) \to u(t)\;{\rm{in}}\;{L^2}(\Omega ),{\rm{weakly}}\;{\rm{in}}\;V,\\ {\mathit{\boldsymbol{\overline v}} _n}(t) \to \mathit{\boldsymbol{v}}(t)\;{\rm{and}}\;{\mathit{\boldsymbol{\underline v}} _{{\kern 1pt} n}}(t) \to \mathit{\boldsymbol{v}}(t)\;{\rm{in}}\;{L^2}{(\Omega )^2},{\rm{weakly}}\;{\rm{in}}\;{H^1}{(\Omega )^2}\\ \;\;\;\;\;\;\;\;{\rm{and}}\;{\rm{weakly}} - *\;{\rm{in}}\;{L^\infty }{(\Omega )^2},\\ {{\bar \theta }_n}(t) \to \theta (t)\;{\rm{in}}\;{L^2}(\Omega ),{\rm{weakly}}\;{\rm{in}}\; - *\;{\rm{in}}\;BV(\Omega ),\\ {\nu _n}{{\bar \theta }_n}(t) \to \nu \theta (t){\rm{ weakly}}\;{\rm{in}}\;{H^1}(\Omega ), \end{array} \right. (6.7)

    as n \to \infty for a.e. t \in (0, T).

    Now, we recall some lemmas which will act key-roles in the proof of Main Theorem.

    Lemma 12. Let I \subset (0, T) be an open interval, and let \nu \geq 0 and \{ \nu_n \}_{n=1}^\infty be the sequence as in (6.3). Let \zeta \in L^2(I; L^2(\Omega)) be a function such that

    \begin{equation*} |D \zeta({}\cdot{})|(\Omega) \in L^1(I) \mbox{ and } \nu \zeta \in L^{2}(I; H^{1}(\Omega)). \end{equation*}

    Then, there exists a sequence \{ \tilde{\zeta}_n \}_{n=1}^\infty \subset C^\infty (\overline{Q}) , such that:

    \begin{matrix} {{{\tilde{\zeta }}}_{n}}\to \zeta \text{ }in\ {{L}^{2}}(I;{{L}^{2}}(\Omega )), \int_{I}{\left| \int_{\Omega }{|}D{{{\tilde{\zeta }}}_{n}}\left. \left( t \right) \right|dx-\int_{\Omega }{d}|D\zeta (t)| \right|}dt\to 0, \\ and\ \ {{\nu }_{n}}{{{\tilde{\zeta }}}_{n}}\to \nu \zeta \text{ }in\ {{L}^{2}}(I;{{H}^{1}}(\Omega )), \ as\ n\to \infty . \\ \end{matrix}

    Proof. When \nu > 0 , the standard C^\infty -approximation in L^2(I; H^1(\Omega)) will correspond to the required sequence. Meanwhile, when \nu=0 , this lemma is verified by taking the C^\infty -approximation as in [25, Lemma 5]{MS14} and [29, Remark 2], and by applying the diagonal argument as in [25, Lemma 8].

    Lemma 13.Let I \subset (0, T) be any open interval. Assume that

    \left\{ \begin{align} & \varrho\in C(\bar{I};{{L}^{2}}(\Omega ))\cap {{L}^{\infty }}(I;{{H}^{1}}(\Omega )), \ \log \varrho\in {{L}^{\infty }}(I\times \Omega ) \\ & {{\varrho}_{n}}\in C(\bar{I};{{L}^{2}}(\Omega ))\cap {{L}^{\infty }}(I;{{H}^{1}}(\Omega )), \ \log {{\varrho}_{n}}\in {{L}^{\infty }}(I\times \Omega ), \ for\ n=1, 2, 3, \ldots \\ & {{\varrho}_{n}}(t)\to \varrho(t)\ in\ {{L}^{2}}(\Omega )\ and\ weakly\ in\ {{H}^{1}}(\Omega )\ as\ n\to \infty, for\ a.e.\ t\in I, \\ \end{align} \right.

    and

    \left\{ \begin{align} & \zeta \in {{L}^{2}}(I;{{L}^{2}}(\Omega ))\ with\ |D\zeta (\cdot )|(\Omega )\in {{L}^{1}}(I), \\ & \{{{\zeta }_{n}}\}_{n=1}^{\infty }\subset {{L}^{2}}(I;{{L}^{2}}(\Omega ))\ with\ \{|D{{\zeta }_{n}}(\cdot )|(\Omega )\}_{n=1}^{\infty }\subset {{L}^{1}}(I), \\ & {{\zeta }_{n}}(t)\to \zeta (t)\ in\ {{L}^{2}}(\Omega )\ as\ n\to \infty, \ a.e.\ t\in I. \\ \end{align} \right.

    Then the following items hold.

    (Ⅰ) The functions:

    \begin{equation*} t \in I \mapsto \int_\Omega d[\varrho(t)|D\zeta(t)|] \, dt \mbox{ and } t \in I \mapsto \int_\Omega d[\varrho_n(t)|D \zeta_n(t)|] \, dt, \mbox{ for $ n = 1, 2, 3, \dots $, } \end{equation*}

    are integrable, and

    \begin{equation*} \liminf_{n \to \infty}\int_I \int_\Omega d[\varrho_n(t) |D \zeta_n(t)|] \, dt \geq \int_I \int_\Omega d[\varrho(t) |D \zeta(t)|] \, dt. \end{equation*}

    (Ⅱ) If:

    \begin{equation*} \int_I \int_\Omega d [\varrho_n(t) |D \zeta_n(t)|] \, dt \to \int_I \int_\Omega d[\varrho(t) |D \zeta(t)|] \, dt \mbox{ as $ n \to \infty $} \end{equation*}

    and

    \left\{ \begin{align} & \omega \in {{L}^{\infty }}(I;{{H}^{1}}(\Omega ))\cap {{L}^{\infty }}(I\times \Omega ), \{{{\omega }_{n}}\}_{n=1}^{\infty }\subset {{L}^{\infty }}(I;{{H}^{1}}(\Omega ))\cap {{L}^{\infty }}(I\times \Omega ) \\ & \{{{\omega }_{n}}\}_{n=1}^{\infty }is\ a\ bounded\ sequence\ in\ {{L}^{\infty }}(I\times \Omega ), \\ & {{\omega }_{n}}(t)\to \omega (t)in\ {{L}^{2}}(\Omega )\ and\ weakly\ in\ {{H}^{1}}(\Omega )\ as\ n\to \infty, a.e.\ t\in I, \\ \end{align} \right.

    then

    \int_{I}{\int_{\Omega }{{{\omega }_{n}}}}(t)|D{{\zeta }_{n}}(t)\left| dx \right.\ dt\to \int_{I}{\int_{\Omega }{d}}[\omega (t)|D\zeta (t)|]\ \ as\ n\to \infty .

    Proof.This lemma is verified, immediately, as a consequence of [26, Lemmas 4.2-4.4] (see also [25, Section 2]).

    Proof of Main Theorem.  We show that the quartet [u, \mathit{\pmb{v}}, \theta]=[u, w, \eta, \theta] \in L^2(0, T; L^2(\Omega)^4) as in (6.4) fulfills the conditions (S1)-(S6) in Definition 3. Then, since (6.4) directly guarantees the conditions (S1)-(S3), we focus on the verifications of remaining (S4)-(S6).

    To this end, let us fix arbitrary open interval I \subset (0, T) , and let us review (3.7)-(3.9) and (6.1), to check that:

    \begin{array}{l} \int_I {\langle (} {{\hat u}_n}{)_t}(t),z\rangle {\mkern 1mu} dt + \int_I {({{\bar u}_n}(} t),z{)_V}{\mkern 1mu} dt = \int_I {{{(\lambda '({{\bar w}_n}(t)){{({{\hat w}_n})}_t}(t),z)}_{{L^2}(\Omega )}}} {\mkern 1mu} dt\\ \;\;\;\; + \int_I {\langle {\rm{ }}\mathit{\boldsymbol{f}}_{{h_n}}^*(} t),z\rangle {\mkern 1mu} dt,\;{\rm{for}}\;{\rm{any}}\;z \in V\;{\rm{and}}\;n = 1,2,3, \ldots , \end{array} (6.8)
    \begin{equation}\label{14-13} \begin{array}{l} \int_{I}((\widehat{\mathit{\pmb{v}}}_{n})_t(t), \overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\ \qquad + \int_{I} (D\overline{\mathit{\pmb{v}}}_{n}(t), D(\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}))_{L^{2}(\Omega)^{N \times 2}} \, dt \\[2ex] \qquad + \int_{I} ([\nabla G](\overline{u}_{n};\overline{\mathit{\pmb{v}}}_{n})(t), \overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\[2ex] \qquad + \int_{I}\int_{\Omega} [\nabla\alpha](\overline{\mathit{\pmb{v}}}_{n}(t)) \cdot (\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}) |D\underline{\theta}_{\,n}(t)| dxdt \\[2ex] \qquad + \nu_n^2 \int_{I}\int_{\Omega} [\nabla\beta](\overline{\mathit{\pmb{v}}}_{n}(t)) \cdot (\overline{\mathit{\pmb{v}}}_{n}(t)-{\varpi}) |D\underline{\theta}_{\,n}(t)|^{2} dxdt \\[2ex] \qquad + \int_{I}\int_{\Omega} \gamma(\overline{w}_{n}(t)) dxdt \le \int_{I}\int_{\Omega} \gamma(\varphi) dxdt, \\[3ex] \mbox{for any ${\varpi}=[\varphi,\psi] \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$ and $ n = 1, 2, 3, \dots $,} \end{array} \end{equation} (6.9)

    and

    \begin{equation}\label{14-14} \begin{array}{l} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n}(t))(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\zeta(t))_{L^{2}(\Omega)} dt \\[2ex] \qquad +\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt +\nu_n^2 \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)|^2 \, dx dt \\[2ex] \leq \int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)| \, dx dt +\nu_n^2 \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)|^2 \, dx dt \\[2ex] \qquad \mbox{for any $\zeta \in L^{2}(I; H^{1}(\Omega))$ and $ n = 1, 2, 3, \dots $.} \end{array} \end{equation} (6.10)

    Now, let us first take the limit of (6.10) as n \to \infty . Then, from (A3), (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and Lemma 13 (I), it is seen that

    \begin{equation*} \begin{array}{l} \int_{I} (\alpha_{0}(\mathit{\pmb{v}}(t))\theta_{t}(t), \theta(t)-\zeta(t))_{L^{2}(\Omega)} dt + \int_I \Phi_{\nu}(\mathit{\pmb{v}}(t); \theta(t)) \, dt \\[2ex] \hspace{5mm} \le \lim_{n \to \infty} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n})(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\zeta(t))_{L^{2}(\Omega)} \, dt \\[2ex] \hspace{10mm} + \liminf_{n \to \infty} \left[\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \right] \\ \hspace{5mm} \le \lim_{n \to \infty} \left[\int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \zeta(t)| \, dx dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \zeta)(t)|^2 \, dx dt \right] \\[2ex] \hspace{5mm}= \int_I \Phi_{\nu}(\mathit{\pmb{v}}(t); \zeta(t)) \, dt, \mbox{ for any $\zeta \in L^{2}(I;H^{1}(\Omega))$.} \end{array} \end{equation*}

    Since the open interval I \subset (0, T) is arbitrary, the above inequality implies that

    \begin{equation*} \begin{array}{c} (\alpha_{0}(\mathit{\pmb{v}}(t))\theta_{t}(t), \theta(t) - \omega)_{L^{2}(\Omega)} + \Phi_{\nu}(\mathit{\pmb{v}}(t);\theta(t)) \le \Phi_{\nu}(\mathit{\pmb{v}}(t);\omega) \\[1ex] \mbox{for any $\omega \in H^{1}(\Omega)$ and a.e. $t \in (0, T)$.} \end{array} \end{equation*}

    Additionally, in the light of Remark 3 (Fact 4), we can say the above inequality holds for \omega \in BV (\Omega) \cap L^{2}(\Omega). Thus, (S6) is verified.

    Next, with (6.4) and Lemma 12 in mind, let us take a sequence \{ \tilde{\theta}_{n} \}_{n=1}^\infty \subset C^{\infty}(\overline{I \times \Omega}) such that

    \begin{equation*} \begin{array}{c} \tilde{\theta}_{n} \to \theta\ \ \mbox{ in } L^{2}(I; L^{2}(\Omega)), \ \ \int_I |D \tilde{\theta}_n| \, dx dt \to \int_I d|D \theta(t)| \, dt, \\[2ex] \nu_n \tilde{\theta}_n \to \nu \theta \mbox{ in $ L^2(I; H^1(\Omega)) $, as $ n \to \infty $.} \end{array} \end{equation*}

    Then, putting \zeta=\tilde{\theta}_{n} in (6.10) and letting n \to \infty , it is observed from (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and Lemma 13 that:

    \begin{equation*} \begin{array}{l} \int_I \int_\Omega d[\alpha({\mathit{\pmb{v}}}(t)) |D {\theta}(t)|] \, dt + \int_I \int_\Omega \beta({\mathit{\pmb{v}}}(t)) |D (\nu {\theta})(t)|^2 \, dx dt \\[2ex] \qquad \leq \liminf_{n \to \infty} \int_I \int_\Omega \alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)| \, dx dt + \liminf_{n \to \infty} \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \\[2ex] \qquad \leq \limsup_{n \to \infty} \left[\int_I \int_\Omega {\alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \overline{\theta}_n(t)|dx} \, dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \overline{\theta}_n)(t)|^2 \, dx dt \right] \\[2ex] \qquad \leq \lim_{n \to \infty} \left[\int_I \int_\Omega {\alpha(\overline{\mathit{\pmb{v}}}_n(t)) |D \tilde{\theta}_n(t)|dx} \, dt + \int_I \int_\Omega \beta(\overline{\mathit{\pmb{v}}}_n(t)) |D (\nu_n \tilde{\theta}_n)(t)|^2 \, dx dt \right] \\[2ex] \qquad \qquad - \lim_{n \to \infty} \int_{I} (\alpha_{0}(\overline{\mathit{\pmb{v}}}_{n})(\widehat{\theta}_{n})_{t}(t), \overline{\theta}_{n}(t)-\tilde{\theta}_{n}(t))_{L^{2}(\Omega)} \, dt \\[2ex] \qquad = \int_I \int_\Omega d[\alpha({\mathit{\pmb{v}}}(t)) |D {\theta}(t)|] \, dt + \int_I \int_\Omega \beta({\mathit{\pmb{v}}}(t)) |D (\nu {\theta})(t)|^2 \, dx dt. \end{array} \end{equation*}

    The above inequality implies that:

    \begin{equation}\label{14-18} \begin{matrix} \lim \\ n\to \infty \\ \end{matrix} \int_{I}\int_{\Omega} \alpha(\overline{\mathit{\pmb{v}}}_{n}(t))|D \overline{\theta}_{n}(t)| dxdt = \int_{I}\int_{\Omega} d[\alpha(\mathit{\pmb{v}}(t)) |D\theta(t)|]dt, \end{equation} (6.11)

    and

    \begin{equation}\label{14-18-1} \lim_{n \to \infty} \int_{I}\int_{\Omega} \beta(\overline{\mathit{\pmb{v}}}_{n}(t))|D (\nu_n \overline{\theta}_{n})(t)|^{2} dxdt = \int_{I}\int_{\Omega} \beta(\mathit{\pmb{v}}(t)) |D(\nu \theta)(t)|^2 \, dt. \end{equation} (6.12)

    By virtue of (\sharp 2)-(\sharp 3), (6.4)-(6.5), (6.7) and (6.11), we can apply Lemma 13 to see that:

    \begin{equation*} \int_{I}\int_{\Omega} |D \overline{\theta}_{n}(t)| dxdt \to \int_{I}\int_{\Omega} d|D \theta(t)| \, dt, \mbox{ as $n \to \infty$.} \end{equation*}

    Besides, (6.1)-(6.2) and (6.5) enable to check:

    \begin{equation*} \left| \int_{I}\int_{\Omega} |D \overline{\theta}_{n}| dxdt - \int_{I}\int_{\Omega} |D \underline{\theta}_{\, n}|dxdt \right| \le \frac{2F_{\ast}^{\nu}}{\delta_{\ast}}h_{n} \to 0, \mbox{ as $ n \to \infty $, } \end{equation*}

    and (6.5), (6.7) and the above convergence further enable to show that:

    \begin{equation}\label{14-19} \begin{array}{c} \begin{matrix} \lim \\ n\to \infty \\ \end{matrix} \int_{I}\int_{\Omega} (\overline{\mathit{\pmb{v}}}_n(t) -{\varpi}) \cdot [\nabla\alpha](\overline{\mathit{\pmb{v}}}_{n}(t))|D\underline{\theta}_{\,n}(t)| dxdt \\[2ex] = \int_{I}\int_{\Omega} d[ (\overline{\mathit{\pmb{v}}}_n(t) -{\varpi}) \cdot [\nabla\alpha](\mathit{\pmb{v}}(t))|D\theta(t)|]dt \mbox{ for any ${\varpi} \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$,} \end{array} \end{equation} (6.13)

    by applying Lemma (13) (Ⅱ).

    Similarly, from (6.12) and the uniform convexity of L^2 -based topology, one can see that

    \begin{equation*} \left\{ \begin{array}{l} \sqrt{\beta(\overline{\mathit{\pmb{v}}}_n)} D ({\nu_{n}}\overline{\theta}_n) \to \sqrt{\beta(\mathit{\pmb{v}})} D ({\nu} \theta) \mbox{ in $ L^2(I; L^2(\Omega)^N) $, and hence} \\[1ex] D (\nu_n \overline{\theta}_n) \to D (\nu \theta) \mbox{ in $ L^2(I; L^2(\Omega)^N) $, as $ n \to \infty $.} \end{array} \right. \end{equation*}

    Besides, (6.1)-(6.2) and (6.5) enable to check:

    \left| \int_{I}\int_{\Omega} |D (\nu_n \overline{\theta}_{n})|^2 dxdt - \int_{I}\int_{\Omega} |D (\nu_n \underline{\theta}_{\, n})|^2 \, dxdt \right| \le \frac{2F_{\ast}^\nu} {\delta_{\ast}}h_{n} \to 0, \mbox{ as $ n \to \infty $, }

    and the above convergence further enables to show that:

    \left\{ \begin{array}{*{35}{l}} D({{\nu }_{n}}{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\theta }}}_{n}})\to D(\nu \theta )\text{ }\ in\ {{L}^{2}}(I;{{L}^{2}}{{(\Omega )}^{N}}),\text{and}\ \text{hence} \\ [1ex]({{\overline{\mathit{\pmb{v}}}}_{n}}-\varpi )\cdot [\nabla \beta ]({{\overline{\mathit{\pmb{v}}}}_{n}})D({{\nu }_{n}}{{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\theta }}}_{n}}) \\ \ \ \ \ \ \to (\mathit{\pmb{v}}-\varpi )\cdot [\nabla \beta ](\mathit{\pmb{v}})D(\nu \theta )\text{ }in\ {{L}^{2}}(I;{{L}^{2}}{{(\Omega )}^{N}}), \\ \text{for}\ \text{any}\ \varpi \in {{[{{H}^{1}}(\Omega )\cap {{L}^{\infty }}(\Omega )]}^{2}},as\ n\to \infty . \\ \end{array} \right. (6.14)

    With (A2)-(A5), (\sharp 1)-(\sharp 3), (6.4)-(6.5), (6.7), (6.13)-(6.14) and lower semi-continuity of L^2-norm in mind, letting n \to \infty in (6.9) yields that:

    \begin{equation}\label{14-21} \begin{array}{l} \int_{I}(\mathit{\pmb{v}}_t(t), \mathit{\pmb{v}}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt + \int_{I} (D\mathit{\pmb{v}}(t), D(\mathit{\pmb{v}}(t)-{\varpi}))_{L^{2}(\Omega)^{N \times 2}} dt \\ \qquad + \int_{I}\int_{\Omega} \gamma(w(t)) dxdt + \int_{I} ([\nabla G](u(t);\mathit{\pmb{v}}(t)), \mathit{\pmb{v}}(t)-{\varpi})_{L^{2}(\Omega)^{2}} dt \\ \qquad + \int_{I}\int_{\Omega} d[(\mathit{\pmb{v}}(t)-{\varpi}) \cdot [\nabla\alpha](\mathit{\pmb{v}}(t))|D\theta(t)|] dt \\ \qquad + \int_{I}\int_{\Omega} [\nabla\beta](\mathit{\pmb{v}}(t)) \cdot (\mathit{\pmb{v}}(t)-{\varpi}) |\nabla(\nu \theta)|^{2} dxdt \\ \le \int_{I}\int_{\Omega} \gamma(\varphi) dxdt , \mbox{ for any $ {\varpi} = [\varphi,\psi] \in [H^{1}(\Omega) \cap L^{\infty}(\Omega)]^{2}$.} \end{array} \end{equation} (6.15)

    Finally, taking the limit of (6.8), and applying (6.5)-(6.7), one can see that:

    \begin{equation}\label{14-22} \begin{array}{c} \int_{I} \langle {u}_t(t), z \rangle \, dt + \int_{I} ({u}(t), z)_{V} \, dt = \int_I (\lambda'({w}(t)) {w}_t(t), z )_{L^2(\Omega)} \, dt \\[2ex] +\int_{I} \langle {\mathit{\pmb{f}}}^*(t), z \rangle \, dt, \mbox{ for any $z \in V$.} \end{array} \end{equation} (6.16)

    Since the open interval I \subset (0, T) is arbitrary, the conditions (S4)-(S5) will be verified by taking into account (6.4) and (6.15)-(6.16).


    Acknowledgments

    This research was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C), 16K05224, No. 26400138 and Young Scientists (B), No. 25800086. The authors express their gratitude to an anonymous referees for reviewing the original manuscript and for many valuable comments that helped clarify and refine this paper.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] [ M. Boulle, Khiops:A statistical discretization method of continuous attributes, Machine Learning, 55(2004), 53-69.
    [2] [ J. Catlett, On changing continuous attributes into ordered discrete attributes, In:Machine LearningEWSL-91, 482(1991), 164-178.
    [3] [ D. Chiu, B. Cheung and A. Wong, Information synthesis based on hierarchical maximum entropy discretization, Journal of Experimental and Theoretical Artificial Intelligence, 2(1989), 117-129.
    [4] [ M. Chmielewski and J. Grzymala-Busse, Global discretization of continuous attributes as preprocessing for machine learning, International Journal of Approximate Reasoning, 15(1996), 319-331.
    [5] [ J. Dougherty, R. Kohavi and M. Sahami, Supervised and unsupervised discretization of continuous features, In Machine learning-International Workshop. Morgan Kaufmann Publishers, 2(1995), 194-202.
    [6] [ U. Fayyad and K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, Proceedings of the International Joint Conference on Uncertainty in AI, 2(1993), 1022-1027.
    [7] [ G. Gan, C. Ma and J. Wu, Data clustering:Theory, algorithms, and applications(ASA-SIAM series on statistics and applied probability), Society for Industrial and Applied Mathematics, 20(2007), xxii+466 pp.
    [8] [ L. Goodman and W. Kruskal, Measures of association for cross classifications, Journal of the American Statistical Association, 49(1954), 732-764.
    [9] [ I. Guyon and A. Elisseeff, An Introduction to Variable and Feature Selection, Applied Physics Letters, 3(2002), 1157-1182.
    [10] [ R. Holte, Very sim1ple classification rules perform well on most commonly used datasets, Machine Learning, 11(1993), 63-90.
    [11] [ W. Huang and Y. Pan, On balalncing between optimal and proportional predictions, Big Data and Information Analytics, 1(2016), 129-137.
    [12] [ W. Huang, Y. Pan and J. Wu, Supervised discretization with GK-τ, In Procedia Computer Science, 17(2013), 114-120.
    [13] [ W. Huang, Y. Pan and J. Wu, Supervised discretization with GK-λ, Procedia Computer Science, 30(2014), 75-80.
    [14] [ W. Huang, Y. Shi and X. Wang, A nomminal association matrix with feature selection for categorical data, Communications in Statistics-Theory and Methods, to appear.
    [15] [ R. Kerber, Chimerge:Discretization of numeric attributes, In Proceedings of the tenth national conference on Artificial intelligence.AAAI Press, 1994, 123-128.
    [16] [ S. Kotsiantis and D. Kanellopoulos, Discretization techniques:A recent survey, GESTS International Transactions on Computer Science and Engineering, 32(2006), 47-58.
    [17] [ H. Liu and R. Setiono, Chi2:Feature selection and discretization of numeric attributes, In:Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, 55(1995), 388-391.
    [18] [ C. Lloyd, Statistical Analysis with Missing Data, John Wiley & Sons, Inc. 1987, New York, NY, USA.
    [19] [ J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(1967), 281-297.
    [20] [ D. Olson and Y. Shi, Introduction to business data mining, Knowledge and information systems, 2007, McGraw-Hill/Irwin.
    [21] [ I. Rish, An empirical study of the naive bayes classifier, IJCAI 2001 workshop on empirical methods in artificial intelligence, 2001, 41-46.
    [22] [ S. Safavian and D. Landgrebe, A survey of decision tree classifier methodology, IEEE Transactions on Systems, Man and Cybernetics, 21(1991), 660-674.
    [23] [ STATCAN, Survey of Family Expenditures-1996.
    [24] [ K. Ting, Discretization of Continuous-Valued Attributes and Instance-Based Learning, Basser Department of Computer Science,University of Sydney, 1994.
  • This article has been cited by:

    1. Ibrahim A. Alnaser, Mohammed Yunus, Rami Alfattani, Turki Alamro, Multiple-Output Fracture Characteristics Optimization of Bi-material Interfaces for Composite Pipe Repair Using Swarm Intelligence Technique, 2021, 1547-7029, 10.1007/s11668-020-01086-3
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2993) PDF downloads(498) Cited by(1)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog