Citation: Nathnael Bekele, Wondwossen Bogale. Parametric study of a diffuser for horizontal axis wind turbine power augmentation[J]. AIMS Energy, 2019, 7(6): 841-856. doi: 10.3934/energy.2019.6.841
[1] | Tong Li, Zhi-An Wang . Traveling wave solutions of a singular Keller-Segel system with logistic source. Mathematical Biosciences and Engineering, 2022, 19(8): 8107-8131. doi: 10.3934/mbe.2022379 |
[2] | Xiao-Min Huang, Xiang-ShengWang . Traveling waves of di usive disease models with time delay and degeneracy. Mathematical Biosciences and Engineering, 2019, 16(4): 2391-2410. doi: 10.3934/mbe.2019120 |
[3] | M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83 |
[4] | Danfeng Pang, Yanni Xiao . The SIS model with diffusion of virus in the environment. Mathematical Biosciences and Engineering, 2019, 16(4): 2852-2874. doi: 10.3934/mbe.2019141 |
[5] | Haiyan Wang, Shiliang Wu . Spatial dynamics for a model of epidermal wound healing. Mathematical Biosciences and Engineering, 2014, 11(5): 1215-1227. doi: 10.3934/mbe.2014.11.1215 |
[6] | Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41 |
[7] | Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020 |
[8] | Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079 |
[9] | Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008 |
[10] | José Luis Díaz Palencia, Abraham Otero . Modelling the interaction of invasive-invaded species based on the general Bramson dynamics and with a density dependant diffusion and advection. Mathematical Biosciences and Engineering, 2023, 20(7): 13200-13221. doi: 10.3934/mbe.2023589 |
[1] | Lighting Africa.org (2012) In collaboration with: energy sector overview 1-9. Available from: https://www.lightingafrica.org/wp-content/uploads/2016/07/26_Ethiopia-FINAL-August-2012_LM.pdf. |
[2] | Ma JT, Xu LS ZK et al. (2012) Master plan report of wind and solar energy in the federal democratic republic of Ethiopia. HydroChina Corp 236. |
[3] | Ministry of Foreign Affairs of Denmark (2016) Accelerating wind power generation in Ethiopia thematic programme document. 1-49. |
[4] | Barnes DF, Golumbeanu R, Diaw I (2016) Beyond electricity access: output-based aid and rural electrification in Ethiopia. 1: 1-148. |
[5] | Ani SO, Polinder H, Ferreira JA (2011) Energy yield of two generator systems for small wind turbine application. 2011 IEEE Int Electr Mach Drives Conf 735-740. |
[6] |
Dilimulati A, Stathopoulos T, Paraschivoiu M (2018) Wind turbine designs for urban applications: a case study of shrouded diffuser casing for turbines. J Wind Eng Ind Aerodyn 175: 179-192. doi: 10.1016/j.jweia.2018.01.003
![]() |
[7] |
Ledo L, Kosasih PB, Cooper P (2011) Roof mounting site analysis for micro-wind turbines. Renew Energy 36: 1379-1391. doi: 10.1016/j.renene.2010.10.030
![]() |
[8] |
Rafailidis S (1997) Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-Layer Meteorol 85: 255-271. doi: 10.1023/A:1000426316328
![]() |
[9] |
Sorribes-Palmer F, Sanz-Andres A, Ayuso L, et al. (2017) Mixed CFD-1D wind turbine diffuser design optimization. Renew Energy 105: 386-399. doi: 10.1016/j.renene.2016.12.065
![]() |
[10] |
Jafari SAH, Kosasih B (2014) Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations. J Wind Eng Ind Aerodyn 125: 102-110. doi: 10.1016/j.jweia.2013.12.001
![]() |
[11] |
Bontempo R, Manna M (2014) Performance analysis of open and ducted wind turbines. Appl Energy 136: 405-416. doi: 10.1016/j.apenergy.2014.09.036
![]() |
[12] |
Shonhiwa C, Makaka G (2016) Concentrator augmented wind turbines: a review. Renew Sustain Energy Rev 59: 1415-1418. doi: 10.1016/j.rser.2016.01.067
![]() |
[13] |
Khamlaj TA, Rumpfkeil MP (2018) Analysis and optimization of ducted wind turbines. Energy 162: 1234-1252. doi: 10.1016/j.energy.2018.08.106
![]() |
[14] |
Wong KH, Chong WT, Yap HT, et al. (2014) The design and flow simulation of a power-augmented shroud for urban wind turbine system. Energy Procedia 61: 1275-1278. doi: 10.1016/j.egypro.2014.11.1080
![]() |
[15] |
Nobile R, Vahdati M, Barlow JF, et al. (2014) Unsteady flow simulation of a vertical axis augmented wind turbine: A two-dimensional study. J Wind Eng Ind Aerodyn 125: 168-179. doi: 10.1016/j.jweia.2013.12.005
![]() |
[16] |
Liu Y, Yoshida S (2015) An extension of the generalized actuator disc theory for aerodynamic analysis of the diffuser-augmented wind turbines. Energy 93: 1852-1859. doi: 10.1016/j.energy.2015.09.114
![]() |
[17] |
Hansen MOL, Sørensen NN, Flay RGJ (2000) Effect of placing a diffuser around a wind turbine. Wind Energy 3: 207-213. doi: 10.1002/we.37
![]() |
[18] |
Van Bussel GJW (2007) The science of making more torque from wind: diffuser experiments and theory revisited. J Phys Conf Ser 75: 1-12. doi: 10.1088/0031-8949/75/1/001
![]() |
[19] |
Kosasih B, Saleh Hudin H (2016) Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model. Renew Energy 87: 154-167. doi: 10.1016/j.renene.2015.10.013
![]() |
[20] | Lubitz WD, Shomer A (2014) Wind loads and efficiency of a diffuser augmented wind turbine ( DAWT). Proc Can Soc Mech Eng Int Congr 2014: 1-5. |
[21] | Kesby JE, Bradney DR, Clausen PD (2016) Determining diffuser augmented wind turbine performance using a combined CFD/BEM method. J Phys Conf Ser 753. |
[22] |
Vaz JRP, Wood DH (2018) Effect of the diffuser efficiency on wind turbine performance. Renew Energy 126: 969-977. doi: 10.1016/j.renene.2018.04.013
![]() |
[23] | Kannan TS, Mutasher SA, Lau YHK (2013) Design and flow velocity simulation of diffuser augmented wind turbine using CFD. J Eng Sci Technol 8: 372-384. |
[24] |
Shikha S, Bhatti TS, Kothari DP (2005) Air concentrating nozzles: a promising option for wind turbines. Int J Energy Technol Policy 3: 394-412. doi: 10.1504/IJETP.2005.008403
![]() |
[25] | Sivasegaram S (1986) Power augmentation in wind rotors: a review. Wind Eng 10: 163-179. |
[26] |
Anzai A, Nemoto Y, Ushiyama I (2004) Wind tunnel analysis of concentrators for augmented wind turbines. Wind Eng 28: 605-614. doi: 10.1260/0309524043028082
![]() |
[27] | Rus LF (2012) Experimental study on the increase of the efficiency of vertical axis wind turbines by equipping them with wind concentrators. J Sustain Energy 3: 30-35. |
[28] | Michał L, MacIej K, Jakub M, et al. (2016) Numerical simulation methodologies for design and development of diffuser-augmented wind turbines-analysis and comparison. Open Eng 6: 235-240. |
[29] |
El-Zahaby AM, Kabeel AE, Elsayed SS, et al. (2017) CFD analysis of flow fields for shrouded wind turbine's diffuser model with different flange angles. Alexandria Eng J 56: 171-179. doi: 10.1016/j.aej.2016.08.036
![]() |
[30] |
Ohya Y, Karasudani T (2010) A shrouded wind turbine generating high output power with wind-lens technology. Energies 3: 634-649. doi: 10.3390/en3040634
![]() |
[31] |
Abe KI, Ohya Y (2004) An investigation of flow fields around flanged diffusers using CFD. J Wind Eng Ind Aerodyn 92: 315-330. doi: 10.1016/j.jweia.2003.12.003
![]() |
[32] |
Mansour K, Meskinkhoda P (2014) Computational analysis of flow fields around flanged diffusers. J Wind Eng Ind Aerodyn 124: 109-120. doi: 10.1016/j.jweia.2013.10.012
![]() |
[33] | Srikanth KS, Tushar (2016) Numerical analysis of wind lens. Int J Innov Res Sci Eng Technol 5: 759-764. |
[34] |
Wang W-Q, Song K, Yan Y (2019) Influence of interaction between the diffuser and rotor on energy harvesting performance of a micro-diffuser-augmented hydrokinetic turbine. Ocean Eng 189: 106293. doi: 10.1016/j.oceaneng.2019.106293
![]() |
[35] |
Göltenbott U, Ohya Y, Yoshida S, et al. (2017) Aerodynamic interaction of diffuser augmented wind turbines in multi-rotor systems. Renew Energy 112: 25-34. doi: 10.1016/j.renene.2017.05.014
![]() |
[36] | Yunus A (2010) Fluid mechanics fundamentals and applications, Boston, Tata McGraw Hill Education Private Limited. |
[37] | Owisa F, Badawyb MTS, Abedb KA, et al. (2015) Numerical investigation of loaded and unloaded diffuser equipped with a flange. Int J Sci Eng Res 6: 312-341. |
1. | Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Oscillatory multipulsons: Dissipative soliton trains in bistable reaction-diffusion systems with cross diffusion of attractive-repulsive type, 2020, 101, 2470-0045, 10.1103/PhysRevE.101.032208 | |
2. | Argha Mondal, Ranjit Kumar Upadhyay, Arnab Mondal, Sanjeev Kumar Sharma, Dynamics of a modified excitable neuron model: Diffusive instabilities and traveling wave solutions, 2018, 28, 1054-1500, 113104, 10.1063/1.5048119 | |
3. | Connie L. McNeely, Erika Camacho, Conceptualizing STEM Workforce Migration in the Modern World Polity, 2010, 1556-5068, 10.2139/ssrn.1593393 | |
4. | Tian Xiang, On a class of Keller–Segel chemotaxis systems with cross-diffusion, 2015, 259, 00220396, 4273, 10.1016/j.jde.2015.05.021 | |
5. | Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Multifront regime of a piecewise-linear FitzHugh-Nagumo model with cross diffusion, 2019, 99, 2470-0045, 10.1103/PhysRevE.99.062214 | |
6. | Evgeny P. Zemskov, Mikhail A. Tsyganov, Werner Horsthemke, Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion, 2018, 97, 2470-0045, 10.1103/PhysRevE.97.062206 | |
7. | B Z Essimbi, A Stöhr, I Jäger, D Jäger, Neuronlike impulses in a travelling wave structure loaded with resonant tunneling diodes and air bridges, 2019, 3, 2399-6528, 085010, 10.1088/2399-6528/ab2661 | |
8. | Faina Berezovskaya, 2016, Chapter 1, 978-3-319-31321-4, 1, 10.1007/978-3-319-31323-8_1 | |
9. | Evgeny P. Zemskov, Mikhail A. Tsyganov, Klaus Kassner, Werner Horsthemke, Nonlinear waves in a quintic FitzHugh–Nagumo model with cross diffusion: Fronts, pulses, and wave trains, 2021, 31, 1054-1500, 033141, 10.1063/5.0043919 | |
10. | Evgeny P. Zemskov, Mikhail A. Tsyganov, Genrich R. Ivanitsky, Werner Horsthemke, Solitary pulses and periodic wave trains in a bistable FitzHugh-Nagumo model with cross diffusion and cross advection, 2022, 105, 2470-0045, 10.1103/PhysRevE.105.014207 | |
11. | G. Gambino, M. C. Lombardo, R. Rizzo, M. Sammartino, Excitable FitzHugh-Nagumo model with cross-diffusion: long-range activation instabilities, 2023, 0035-5038, 10.1007/s11587-023-00814-9 | |
12. | Daniel Cebrián-Lacasa, Pedro Parra-Rivas, Daniel Ruiz-Reynés, Lendert Gelens, Six decades of the FitzHugh–Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines, 2024, 1096, 03701573, 1, 10.1016/j.physrep.2024.09.014 | |
13. | Burcu Gürbüz, Aytül Gökçe, Mahmut Modanlı, A comprehensive numerical investigation of a coupled mathematical model of neuronal excitability, 2025, 0020-7160, 1, 10.1080/00207160.2025.2462748 |