Processing math: 80%
Research article

An innovative extended Bayesian analysis of the relationship between returns and different risk measures in South Africa

  • Received: 23 September 2022 Revised: 18 November 2022 Accepted: 27 November 2022 Published: 05 December 2022
  • JEL Codes: C22, C58, G12, G32

  • This study investigated the All Share Index (ALSI) returns and six different risk measures of the South African market for the sample period from 17 March 2000 to 17 March 2022. The risk measures analyzed were standard deviation (SD), absolute deviation (AD), lower semi absolute deviation (LSAD), lower semivariance (LSV), realized variance (RV) and the bias-adjusted realized variance (ARV). This study made an innovative contribution on a methodological and practical level, by being the first study to extend from the novel Bayesian approach by Jensen and Maheu (2018) to methods by Karabatsos (2017)—density regression, quantile regression and survival analysis. The extensions provided a full representation of the return distribution in relation to risk, through graphical analysis, producing novel insight into the risk-return topic. The most novel and innovative contribution of this study was the application of survival analysis which analyzed the "life" and "death" of the risk-return relationship. From the density regression, this study found that the chance of investors earning a superior return was substantial and that the probability of excess returns increased over time. From quantile regression, results revealed that returns have a negative relationship with the majority of the risk measures—SD, AD, LSAD and RV. However, a positive risk-return relationship was found by LSV and the ARV, with the latter having the steepest slope. Results were the most pronounced for the ARV, especially for the survival analysis. While ARV earned the highest returns, it had the shortest lifespan, which can be attributed to the volatile nature of the South African market. Thus, investors that seek short-term high-earning returns would examine ARV followed by LSV, whereas the remaining risk measures can be used for other purposes, such as diversification purposes or short selling.

    Citation: Nitesha Dwarika. An innovative extended Bayesian analysis of the relationship between returns and different risk measures in South Africa[J]. Quantitative Finance and Economics, 2022, 6(4): 570-603. doi: 10.3934/QFE.2022025

    Related Papers:

    [1] Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen . Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024
    [2] Rrezart Prebreza, Bleona Beqiraj, Besart Prebreza, Arianit Krypa, Marigona Krypa . Factors influencing the lower number of women in STEM compared to men: A case study from Kosovo. STEM Education, 2025, 5(1): 19-40. doi: 10.3934/steme.2025002
    [3] Ibrahim Khalil, Amirah AL Zahrani, Bakri Awaji, Mohammed Mohsen . Teachers' perceptions of teaching mathematics topics based on STEM educational philosophy: A sequential explanatory design. STEM Education, 2024, 4(4): 421-444. doi: 10.3934/steme.2024023
    [4] Dragana Martinovic, Marina Milner-Bolotin . Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1(4): 279-298. doi: 10.3934/steme.2021018
    [5] Rommel AlAli, Wardat Yousef . Enhancing student motivation and achievement in science classrooms through STEM education. STEM Education, 2024, 4(3): 183-198. doi: 10.3934/steme.2024012
    [6] Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang . Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2(1): 37-46. doi: 10.3934/steme.2022002
    [7] Ping Chen, Aminuddin Bin Hassan, Firdaus Mohamad Hamzah, Sallar Salam Murad, Heng Wu . Impact of gender role stereotypes on STEM academic performance among high school girls: Mediating effects of educational aspirations. STEM Education, 2025, 5(4): 617-642. doi: 10.3934/steme.2025029
    [8] Usman Ghani, Xuesong Zhai, Riaz Ahmad . Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1(2): 104-113. doi: 10.3934/steme.2021008
    [9] Hyunkyung Kwon, Yujin Lee . A meta-analysis of STEM project-based learning on creativity. STEM Education, 2025, 5(2): 275-290. doi: 10.3934/steme.2025014
    [10] Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu . Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1(2): 114-126. doi: 10.3934/steme.2021009
  • This study investigated the All Share Index (ALSI) returns and six different risk measures of the South African market for the sample period from 17 March 2000 to 17 March 2022. The risk measures analyzed were standard deviation (SD), absolute deviation (AD), lower semi absolute deviation (LSAD), lower semivariance (LSV), realized variance (RV) and the bias-adjusted realized variance (ARV). This study made an innovative contribution on a methodological and practical level, by being the first study to extend from the novel Bayesian approach by Jensen and Maheu (2018) to methods by Karabatsos (2017)—density regression, quantile regression and survival analysis. The extensions provided a full representation of the return distribution in relation to risk, through graphical analysis, producing novel insight into the risk-return topic. The most novel and innovative contribution of this study was the application of survival analysis which analyzed the "life" and "death" of the risk-return relationship. From the density regression, this study found that the chance of investors earning a superior return was substantial and that the probability of excess returns increased over time. From quantile regression, results revealed that returns have a negative relationship with the majority of the risk measures—SD, AD, LSAD and RV. However, a positive risk-return relationship was found by LSV and the ARV, with the latter having the steepest slope. Results were the most pronounced for the ARV, especially for the survival analysis. While ARV earned the highest returns, it had the shortest lifespan, which can be attributed to the volatile nature of the South African market. Thus, investors that seek short-term high-earning returns would examine ARV followed by LSV, whereas the remaining risk measures can be used for other purposes, such as diversification purposes or short selling.



    The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.

    In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].

    On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.

    Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.

    This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].

    Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[,,]L) consisting of a vector space L and a skew-symmetric ternary operation [,,]L:3LL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, (2.1)

    for all liL,1i5.

    A homomorphism between two 3-Lie algebras (L1,[,,]L1) and (L2,[,,]L2) is a linear map f:L1L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3L1.

    Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[,,]L) on a vector space H is a skew-symmetric linear map ρ:2LEnd(H), such that

    ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), (2.2)
    ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), (2.3)

    for all l1,l2,l3,l4L. We also denote a representation of L on H by (H;ρ).

    2) A coherent action of a 3-Lie algebra (L,[,,]L) on another 3-Lie algebra (H,[,,]H) is defined by a skew-symmetric linear map ρ:2LDer(H) that satisfies Eqs (2.2) and (2.3), along with the condition that

    [ρ(l1,l2)h1,h2,h3]H=0, (2.4)

    for all l1,l2L and h1,h2,h3H. We denote a coherent action of L on H by (H,[,,]H;ρ).

    Note that Eq (2.4) and ρ(l1,l2)Der(H) imply that

    ρ(l1,l2)[h1,h2,h3]H=0. (2.5)

    Example 2.3. Let (H,[,,]H) be a 3-Lie algebra. Define ad:2HDer(H) by

    ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,hH.

    Then (H;ad) is a representation of (H,[,,]H), which is called the adjoint representation. Furthermore, if the ad satisfies

    [ad(h1,h2)h1,h2,h3]H=0, for allh1,h2,h3H,

    then (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H).

    Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [,,]L:LLLL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L,

    for all liL,1i5.

    Proposition 2.5. Let (L,[,,]L) and (H,[,,]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, LH is a 3-Leibniz algebra under the following map:

    [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H,

    for all l1,l2,l3L and h1,h2,h3H. This 3-Leibniz algebra (LH,[,,]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by LρH.

    Proof. For any l1,l2,l3,l4,l5L and h1,h2,h3,h4,h5H, by Eqs (2.1)–(2.5), we have

    [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H[[l1,l2,l3]L,l4,l5]Lρ([l1,l2,l3]L,l4)h5[ρ(l1,l2)h3,h4,h5]H[[h1,h2,h3]H,h4,h5]H[l3,[l1,l2,l4]L,l5]Lρ(l3,[l1,l2,l4]L)h5[h3,ρ(l1,l2)h4,h5]H[h3,[h1,h2,h4]H,h5]H[l3,l4,[l1,l2,l5]L]Lρ(l3,l4)ρ(l1,l2)h5ρ(l3,l4)[h1,h2,h5]H[h3,h4,ρ(l1,l2)h5]H[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]Hρ(l3,l4)[h1,h2,h5]H=0.

    Thus, (LH,[,,]ρ) is a 3-Leibniz algebra.

    Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ) is a linear map Λ:HL that satisfies the following equation:

    [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), (2.6)

    for all h1,h2,h3H.

    2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[,,]L), a coherent action (H,[,,]H;ρ) of L and a nonabelian embedding tensor Λ:HL. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛL.

    3) Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1L to HΛ2L consists of two 3-Lie algebras homomorphisms fL:LL and fH:HH, which satisfy the following equations:

    Λ2fH=fLΛ1, (2.7)
    fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), (2.8)

    for all l1,l2L and hH. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1L to HΛ2L.

    Remark 2.7. If (H,[,,]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.

    Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [,,]H:3HH by

    [α1,α2,α3]H=α4.

    Then (H,[,,]H) is a 3-Lie algebra. It is obvious that (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H). Moreover,

    Λ=(1000010000000000)

    is a nonabelian embedding tensor on (H,[,,]H).

    Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.

    Theorem 2.9. A linear map Λ:HL is a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ) if and only if the graph Gr(Λ)={Λh+h|hH} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH.

    Proof. Let Λ:HL be a linear map. Then, for any h1,h2,h3H, we have

    [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H,

    Thus, the graph Gr(Λ)={Λh+h|hH} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[,,]H;ρ).

    Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.

    Corollary 2.10. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. If a linear map [,,]Λ:3HH is given by

    [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, (2.9)

    for all h1,h2,h3H, then (H,[,,]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[,,]Λ) to the 3-Lie algebra (L,[,,]L). This 3-Leibniz algebra (H,[,,]Λ) is called the descendent 3-Leibniz algebra.

    Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[,,]Λ1) to (H,[,,]Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7)–(2.9), we have

    fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2.

    The proof is finished.

    In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.1. A 3-Leibniz-Lie algebra (H,[,,]H,{,,}H) encompasses a 3-Lie algebra (H,[,,]H) and a ternary operation {,,}H:3HH, which satisfies the following equations:

    {h1,h2,h3}H={h2,h1,h3}H, (3.1)
    {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, (3.2)
    {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, (3.3)

    for all h1,h2,h3,h4,h5H.

    A homomorphism between two 3-Leibniz-Lie algebras (H1,[,,]H1,{,,}H1) and (H2,[,,]H2,{,,}H2) is a 3-Lie algebra homomorphism f:(H1,[,,]H1)(H2,[,,]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3H1.

    Remark 3.2. A 3-Lie algebra (H,[,,]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3H.

    Example 3.3. Let (H,[,,]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {,,}H:3HH by

    {α1,α2,α3}H={α2,α1,α3}H=α4.

    Then (H,[,,]H,{,,}H) is a 3-Leibniz-Lie algebra.

    The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.

    Theorem 3.4. Let (H,[,,]H,{,,}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ,,H:3HH, defined as

    h1,h2,h3H:=[h1,h2,h3]H+{h1,h2,h3}H, (3.4)

    for all h1,h2,h3H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,,,H) and is referred to as the subadjacent 3-Leibniz algebra.

    Proof. For any h1,h2,h3,h4,h5H, according to (H,[,,]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have

    h1,h2,h3,h4,h5HHh1,h2,h3H,h4,h5Hh3,h1,h2,h4H,h5Hh3,h4,h1,h2,h5HH=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H[[h1,h2,h3]H,h4,h5]H[{h1,h2,h3}H,h4,h5]H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H[h3,[h1,h2,h4]H,h5]H[h3,{h1,h2,h4}H,h5]H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H[h3,h4,[h1,h2,h5]H]H[h3,h4,{h1,h2,h5}H]H{h3,h4,[h1,h2,h5]H}H{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H{h3,h4,{h1,h2,h5}H}H=0.

    Hence, (H,,,H) is a 3-Leibniz algebra.

    The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.

    Theorem 3.5. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra, where

    {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, (3.5)

    for all h1,h2,h3H.

    Proof. For any h1,h2,h3,h4,h5H, by Eqs (2.3), (2.6), and (3.5), we have

    {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=ρ(Λh2,Λh1)h3={h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]LΛρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]LΛρ(Λh1,Λh2)h4)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0.

    Furthermore, by Eqs (2.4), (2.5), and (3.5), we have

    [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0.

    Thus, (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra.

    Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[,,]H,{,,}Λ1) to (H,[,,]H,{,,}Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7), (2.8), and (3.5), we have

    fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2.

    The proof is finished.

    Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[,]H,) encompasses a Lie algebra (H,[,]H) and a binary operation ⊳:HHH, ensuring that

    h1(h2h3)=(h1h2)h3+h2(h1h3)+[h1,h2]Hh3,h1[h2,h3]H=[h1h2,h3]H=0,

    for all h1,h2,h3H.

    Theorem 3.8. Let (H,[,]H,) be a Leibniz-Lie algebra, and let ςH be a trace map, which is a linear map that satisfies the following conditions:

    ς([h1,h2]H)=0,ς(h1h2)=0,for allh1,h2H.

    Define two ternary operations by

    [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3,for allh1,h2,h3H.

    Then (H,[,,]Hς,{,,}Hς) is a 3-Leibniz-Lie algebra.

    Proof. First, we know from [17] that (H,[,,]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5H, we have

    {h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3=(ς(h2)h1h3ς(h1)h2h3)={h2,h1,h3}Hς

    and

    {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2h3)h4h5ς(h4)ς(h1)(h2h3)h5ς(h2)ς(h1h3)h4h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h1)ς(h2h4)h3h5ς(h3)ς(h2)(h1h4)h5+ς(h2)ς(h1h4)h3h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)+ς(h1)ς([h2,h3]H)h4h5ς(h4)ς(h1)[h2,h3]Hh5+ς(h2)ς([h3,h1]H)h4h5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς([h1,h2]H)h4h5ς(h4)ς(h3)[h1,h2]Hh5+ς(h3)ς(h1)[h2,h4]Hh5ς(h1)ς([h2,h4]H)h3h5+ς(h3)ς(h2)[h4,h1]Hh5ς(h2)ς([h4,h1]H)h3h5+ς(h3)ς(h4)[h1,h2]Hh5ς(h4)ς([h1,h2]H)h3h5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=ς(h4)ς(h1)(h2h3)h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h3)ς(h2)(h1h4)h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)ς(h4)ς(h1)[h2,h3]Hh5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς(h1)[h2,h4]Hh5+ς(h3)ς(h2)[h4,h1]Hh5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=0.

    Similarly, we obtain

    {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2[h4,h5]Hς(h2)ς(h3)h1[h4,h5]H+ς(h1)ς(h4)h2[h5,h3]Hς(h2)ς(h4)h1[h5,h3]H+ς(h1)ς(h5)h2[h3,h4]Hς(h2)ς(h5)h1[h3,h4]H=0

    and

    [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2h3]H+ς(h5)ς(h1)[h2h3,h4]Hς(h2)ς(h1h3)[h4,h5]Hς(h4)ς(h2)[h5,h1h3]Hς(h5)ς(h2)[h1h3,h4]H=0.

    Hence Eqs (3.1)–(3.3) hold and we complete the proof.

    In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[,,]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[,,]H) is a vector space V equipped with 3 actions

    l:HHVV,m:HVHV,r:VHHV,

    satisfying for any a1,a2,a3,a4,a5H and uV

    l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), (4.1)
    l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), (4.2)
    l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), (4.3)
    m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), (4.4)
    r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). (4.5)

    For n1, denote the n-cochains of 3-Leibniz algebra (H,[,,]H) with coefficients in a representation (V;l,m,r) by

    Cn3Leib(H,V)=Hom(n12H2HH,V).

    The coboundary map δ:Cn3Leib(H,V)Cn+13Leib(H,V), for Ai=aibi2H,1in and cH, as

    (δφ)(A1,A2,,An,c)=1j<kn(1)jφ(A1,,^Aj,,Ak1,ak[aj,bj,bk]H+[aj,bj,ak]Hbk,,An,c)+nj=1(1)jφ(A1,,^Aj,,An,[aj,bj,c]H)+nj=1(1)j+1l(Aj,φ(A1,,^Aj,,An,c))+(1)n+1(m(an,φ(A1,,An1,bn),c)+r(φ(A1,,An1,an),bn,c)).

    It was proved in [23,24] that δ2=0. Therefore, (+n=1Cn3Leib(H,V),δ) is a cochain complex.

    Let HΛL be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[,,]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[,,]Λ) on L.

    Lemma 4.2. With the above notations. Define 3 actions

    lΛ:HHLL,mΛ:HLHL,rΛ:LHHL,

    by

    lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]LΛρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]LΛρ(l,Λh1)h2,

    for all h1,h2H,lL. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[,,]Λ).

    Proof. For any h1,h2,h3,h4,h5H and lL, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have

    lΛ(h1,h2,lΛ(h3,h4,l))lΛ([h1,h2,h3]Λ,h4,l)lΛ(h3,[h1,h2,h4]Λ,l)lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L[[Λh1,Λh2,Λh3]L,Λh4,l]L[Λh3,[Λh1,Λh2,Λh4]L,l]L[Λh3,Λh4,[Λh1,Λh2,l]L]L=0

    and

    lΛ(h1,h2,mΛ(h3,l,h5))mΛ([h1,h2,h3]Λ,l,h5)mΛ(h3,lΛ(h1,h2,l),h5)mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L[Λh1,Λh2,Λρ(Λh3,l)h5]L[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0,

    which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.

    Proposition 4.3. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1L to HΛ2L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[,,]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[,,]Λ2) satisfying the following equations:

    fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), (4.6)
    fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), (4.7)
    fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), (4.8)

    for all h1,h2H,lL. In other words, the following diagrams commute:

    Proof. For any h1,h2H,lL, by Eqs (2.7) and (2.8), we have

    fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]LΛ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]LfL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)).

    And the other equation is similar to provable.

    For n1, let δΛ:Cn3Leib(H,L)Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[,,]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕCn3Leib(H,L),Hi=uivi2H,1in and wH, we have

    (δΛϕ)(H1,H2,,Hn,w)=1j<kn(1)jϕ(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ+[uj,vj,uk]Λvk,,Hn,w)+nj=1(1)jϕ(H1,,^Hj,,Hn,[uj,vj,w]Λ)+nj=1(1)j+1lΛ(Hj,ϕ(H1,,^Hj,,Hn,w))+(1)n+1(mΛ(un,ϕ(H1,,Hn1,vn),w)+rΛ(ϕ(H1,,Hn1,un),vn,w)).

    In particular, for ϕC13Leib(H,L):=Hom(H,L) and u1,v1,wH, we have

    (δΛϕ)(u1,v1,w)=ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]LΛρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]LΛρ(ϕ(u1),Λv1)w.

    For any (a1,a2)C03Leib(H,L):=2L, we define δΛ:C03Leib(H,L)C13Leib(H,L),(a1,a2)δΛ(a1,a2) by

    δΛ(a1,a2)u=Λρ(a1,a2)u[a1,a2,Λu]L,uH.

    Proposition 4.4. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛC13Leib(H,L)δΛC23Leib(H,L) is the zero map.

    Proof. For any u1,v1,wV, by Eqs (2.1)–(2.6) and (2.9) we have

    δΛ(δΛ(a1,a2))(u1,v1,w)=δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]LΛρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]LΛρ(δΛ(a1,a2)(u1),Λv1)w=Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L[Λu1,[a1,a2,Λv1]L,Λw]LΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L[[a1,a2,Λu1]L,Λv1,Λw]LΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)wΛρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]HΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]HΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)wΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)wΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0.

    Therefore, we deduce that δΛ(δΛ(a1,a2))=0.

    Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ).

    For n0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (\oplus_{n = 0}^{\infty}\mathcal{C}^n_\Lambda(H, L), \delta_\Lambda) is a cochain complex.

    For n\geq 1 , we denote the set of n -cocycles by {\bf Z}^n_\Lambda(H, L) , the set of n -coboundaries by {\bf B}^n_\Lambda(H, L) , and the n -th cohomology group of the nonabelian embedding tensor \Lambda by

    \mathrm{H}\mathrm{H}^n_\Lambda(H, L) = \frac{{\bf Z}^n_\Lambda(H, L)}{{\bf B}^n_\Lambda(H, L)}.

    Proposition 4.5. Let H\stackrel{\Lambda_1}{\longrightarrow}L and H\stackrel{\Lambda_2}{\longrightarrow}L be two nonabelian embedding tensor 3-Lie algebras and let (f_L, f_{H}) be a homomorphism from H\stackrel{\Lambda_1}{\longrightarrow}L to H\stackrel{\Lambda_2}{\longrightarrow}L in which f_H is invertible. We define a map \Psi:\mathcal{C}^{n}_{\Lambda_1}(H, L)\rightarrow \mathcal{C}^{n}_{\Lambda_2}(H, L) by

    \begin{align*} \Psi (\phi)(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_{n-1}, w) = f_L\big(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(w) )\big), \end{align*}

    for all \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n-1} , and w\in H . Then \Psi: (\mathcal{C}^{n+1}_{\mathrm{\Lambda_1}}(H, L), \delta_{\Lambda_1})\rightarrow (\mathcal{C}^{n+1}_{\mathrm{\Lambda_2}}(H, L), \delta_{\Lambda_2}) is a cochain map.

    That is, the following diagram commutes:

    Consequently, it induces a homomorphism \Psi^* from the cohomology group \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) to \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) .

    Proof. For any \phi\in \mathcal{C}^{n}_{\mathrm{\Lambda_1}}(H, L), \mathfrak{H}_i = u_i\wedge v_i\in \wedge^2 H, 1\leq i\leq {n} , and w\in H , by Eqs (4.6)–(4.8) and Proposition 2.11, we have

    \begin{align*} &(\delta_{\Lambda_2}\Psi(\phi))(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_n, w)\\ = &\sum\limits_{1\leq j < k\leq n}(-1)^j\Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{k-1}, u_k \wedge[u_j, v_j, v_k]_{\Lambda_2}+[u_j, v_j, u_k]_{\Lambda_2}\wedge v_k, \ldots, \mathfrak{H}_n, w)\\ &+\sum\limits_{j = 1}^n(-1)^j\Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{n}, [u_j, v_j, w]_{\Lambda_2})+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_2}(\mathfrak{H}_j, \Psi(\phi)(\mathfrak{H}_1, \ldots, \widehat{\mathfrak{H}_j}, \ldots, \mathfrak{H}_{n}, w))\\ &+(-1)^{n+1}\mathfrak{m}_{\Lambda_2}(u_n, \Psi(\phi)(\mathfrak{H}_1, \ldots, \mathfrak{H}_{n-1}, v_n), w)+(-1)^{n+1}\mathfrak{r}_{\Lambda_2}(\Psi(\phi)(\mathfrak{H}_1, \ldots, \mathfrak{H}_{n-1}, u_n), v_n, w) \\ = &\sum\limits_{1\leq j < k\leq n}(-1)^jf_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_{k-1})\wedge f_H^{-1}(v_{k-1}), \\ &f_H^{-1}(u_k) \wedge f_H^{-1}([u_j, v_j, v_k]_{\Lambda_2})+f_H^{-1}([u_j, v_j, u_k]_{\Lambda_2}) \wedge f_H^{-1}(v_k), \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w) ))\\ &+\sum\limits_{j = 1}^n(-1)^jf_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}([u_j, v_j, w]_{\Lambda_2})))\\ &+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_2}(\mathfrak{H}_j, f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w))))\\ &+(-1)^{n+1}\mathfrak{m}_{\Lambda_2}(u_n, f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(v_n))), w)\\ &+(-1)^{n+1}\mathfrak{r}_{\Lambda_2}(f_L(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(u_n))), v_n, w)\\ = &f_L\Big(\sum\limits_{1\leq j < k\leq n}(-1)^j\phi\big(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_{k-1})\wedge f_H^{-1}(v_{k-1}), \\ &f_H^{-1}(u_k) \wedge [f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(v_k)]_{\Lambda_1}+[f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(u_k)]_{\Lambda_1} \wedge f_H^{-1}(v_k), \ldots, \\ &f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w)\big)+\sum\limits_{j = 1}^n(-1)^j\phi\big(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), \\ &[f_H^{-1}(u_j), f_H^{-1}(v_j), f_H^{-1}(w)]_{\Lambda_1}\big)+\sum\limits_{j = 1}^n(-1)^{j+1}\mathfrak{l}_{\Lambda_1}(f_H^{-1}(u_j), f_H^{-1}(v_j), \phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \\ &\widehat{\mathfrak{H}_j}, \ldots, f_H^{-1}(u_n)\wedge f_H^{-1}(v_n), f_H^{-1}(w)))+(-1)^{n+1}\mathfrak{m}_{\Lambda_1}(f_H^{-1}(u_n), \phi(f_H^{-1}(u_1), f_H^{-1}(v_1), \ldots, \\ &f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(v_n)), f_H^{-1}(w))+(-1)^{n+1}\mathfrak{r}_{\Lambda_1}(\phi(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, \\ &f_H^{-1}(u_{n-1})\wedge f_H^{-1}(v_{n-1}), f_H^{-1}(u_n)), f_H^{-1}(v_n), f_H^{-1}(w))\Big)\\ = &f_L(\delta_{\Lambda_1}\phi)(f_H^{-1}(u_1)\wedge f_H^{-1}(v_1), \ldots, f_H^{-1}(u_{n})\wedge f_H^{-1}(v_{n}), f_H^{-1}(w))\\ = &\Psi(\delta_{\Lambda_1}\phi)(\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_n, w). \end{align*}

    Hence, \Psi is a cochain map and induces a cohomology group homomorphism \Psi^*: \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_1}}(H, L) \rightarrow \mathrm{H}\mathrm{H}^{n+1}_{\mathrm{\Lambda_2}}(H, L) .

    At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.

    Definition 4.6. Let \Lambda: H\rightarrow L be a nonabelian embedding tensor on a 3-Lie algebra (L, [−, −, −]_L) with respect to a coherent action (H, [−, −, −]_H; \rho^\dagger) . An infinitesimal deformation of \Lambda is a nonabelian embedding tensor of the form \Lambda_t = \Lambda+t\Lambda_1 , where t is a parameter with t^2 = 0.

    Let \Lambda_t = \Lambda+t\Lambda_1 be an infinitesimal deformation of \Lambda , then we have

    \begin{align*} [\Lambda_tu_1, \Lambda_tu_2, \Lambda_tu_3 ]_L = & \Lambda_t\rho(\Lambda_tu_1, \Lambda_tu_2)u_3+\Lambda_t[u_1, u_2, u_3]_H, \end{align*}

    for all u_1, u_2, u_3\in H. Therefore, we obtain the following equation:

    \begin{align} &[\Lambda_1u_1, \Lambda u_2, \Lambda u_3]_L+[\Lambda u_1, \Lambda_1 u_2, \Lambda u_3]_L+[\Lambda u_1, \Lambda u_2, \Lambda_1 u_3]_L \\ & = \Lambda_1\rho(\Lambda u_1, \Lambda u_2)u_3+\Lambda\rho(\Lambda_1 u_1, \Lambda u_2)u_3+\Lambda\rho(\Lambda u_1, \Lambda_1 u_2)u_3+\Lambda_1 [u_1, u_2, u_3]_H. \end{align} (4.9)

    It follows from Eq (4.9) that \Lambda_1\in \mathcal{C}_\Lambda^1(H, L) is a 1-cocycle in the cohomology complex of \Lambda . Thus the cohomology class of \Lambda_1 defines an element in \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    Let \Lambda_t = \Lambda+t\Lambda_1 and \Lambda'_t = \Lambda+t\Lambda'_1 be two infinitesimal deformations of \Lambda . They are said to be equivalent if there exists a_1\wedge a_2\in \wedge^2 L such that the pair (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) is a homomorphism from H\stackrel{\Lambda_t}{\longrightarrow}L to H\stackrel{\Lambda'_t}{\longrightarrow}L . That is, the following conditions must hold:

    1) The maps id_L+tad(a_1, a_2):L\rightarrow L and id_H+t\rho(a_1, a_2): H\rightarrow H are two 3-Lie algebra homomorphisms,

    2) The pair (id_L+tad(a_1, a_2), id_H+t\rho(a_1, a_2)) satisfies:

    \begin{array}{c} \big(id_H+t\rho(a_1, a_2)\big)\big(\rho(a, b)u\big) = \rho\big((id_L+tad(a_1, a_2))a, (id_L+tad(a_1, a_2))b\big)\big(id_H+t\rho(a_1, a_2)\big)(u), \\ (\Lambda+t\Lambda'_1)\big(id_H+t\rho(a_1, a_2)\big)(u) = \big(id_L+tad(a_1, a_2)\big)\big((\Lambda+t\Lambda_1)u\big), \end{array} (4.10)

    for all a, b\in L, u\in H. It is easy to see that Eq (4.10) gives rise to

    \Lambda_1 u-\Lambda'_1u = \Lambda\rho(a_1, a_2)u-[a_1, a_2, \Lambda u] = \delta_\Lambda(a_1, a_2)u\in \mathcal{C}_\Lambda^1(H, L).

    This shows that \Lambda_1 and \Lambda'_1 are cohomologous. Thus, their cohomology classes are the same in \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    Conversely, any 1-cocycle \Lambda_1 gives rise to the infinitesimal deformation \Lambda+t\Lambda_1 . Furthermore, we have arrived at the following result.

    Theorem 4.7. Let \Lambda: H\rightarrow L be a nonabelian embedding tensor on (L, [−, −, −]_L) with respect to (H, [−, −, −]_H; \rho^{\dagger}) . Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of \Lambda and the first cohomology group \mathrm{H}\mathrm{H}_\Lambda^1(H, L) .

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).

    The authors declare there is no conflicts of interest.



    [1] Alles L, Murray L (2017) Asset pricing and downside risk in the Australian share market. Appl Econ 49: 4336–4350. http://dx.doi.org/10.1080/00036846.2017.1282143 doi: 10.1080/00036846.2017.1282143
    [2] Basher SA, Sadorsky P (2006) Oil price risk and emerging stock markets. Glob Financ J 17: 224–251. http://dx.doi.org/10.1016/j.gfj.2006.04.001 doi: 10.1016/j.gfj.2006.04.001
    [3] Bayes T (1763) An Essay towards Solving a Problem in the Doctrine of Chances. by the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Phil Trans R Soc 53: 370–418. https://doi.org/10.1098/rstl.1763.0053 doi: 10.1098/rstl.1763.0053
    [4] Brooks C (2014) Introductory Econometrics for Finance. Cambridge University Press: New York.
    [5] Devore JL (2012) Probability and Statistics for Engineering and the Sciences. California Polytechnic State University: San Luis Obispo.
    [6] Emmert-Streib F, Dehmer M (2019) Introduction to Survival Analysis in Practice. Mach Learn Know Extr 1: 1013–1038. https://doi.org/10.3390/make1030058 doi: 10.3390/make1030058
    [7] Fassas AP, Siriopoulos C (2020) Implied volatility indices—A review. Q Rev Econ Financ 79: 303–329. https://doi.org/10.1016/j.qref.2020.07.004 doi: 10.1016/j.qref.2020.07.004
    [8] Floros C, Gkillas K, Konstantatos C, Tsagkanos A (2020) Realized Measures to Explain Volatility Changes over Time. J Risk Financ Manag 13: 1–19. https://doi.org/10.3390/jrfm13060125 doi: 10.3390/jrfm13060125
    [9] Gao G, Bu Z, Liu L, et al. (2019) A Survival Analysis Method for Stock Market Prediction. 2015 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC), 116–122. https://doi.org/10.1109/BESC.2015.7365968 doi: 10.1109/BESC.2015.7365968
    [10] Gepp A, Kumar, K (2015) Predicting Financial Distress: A Comparison of Survival Analysis and Decision Tree Technique. Procedia Comput Sci 54: 396–404. https://doi.org/10.1016/j.procs.2015.06.046 doi: 10.1016/j.procs.2015.06.046
    [11] Griffin JE, Kalli M, Steel M (2018) Discussion of "Nonparametric Bayesian Inference in Applications": Bayesian nonparametric methods in econometrics. Stat Method Appl 27: 207–218. https://doi.org/10.1007/s10260-017-0384-0 doi: 10.1007/s10260-017-0384-0
    [12] Hansen PR, Lunde A (2006) Realized variance and market microstructure noise. J Bus Econ Stat 24: 127–161. https://doi.org/10.1198/073500106000000071 doi: 10.1198/073500106000000071
    [13] Hoque ME, Low S (2020) Industry Risk Factors and Stock Returns of Malaysian Oil and Gas Industry: A New Look with Mean Semi-Variance Asset Pricing Framework. Mathematics 8: 1–28. https://doi.org/10.3390/math8101732 doi: 10.3390/math8101732
    [14] Jensen MJ, Maheu JM (2018) Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis. J Risk Financ Manag 11: 1–29. https://doi.org/10.3390/jrfm11030052 doi: 10.3390/jrfm11030052
    [15] Kalli M, Griffin J, Walker S (2011) Slice sampling mixture models. Stat Comput 21: 93–105. http://dx.doi.org/10.1007/s11222-009-9150-y doi: 10.1007/s11222-009-9150-y
    [16] Karabatsos G (2017) A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation. Behav Res Methods 49: 335–362. https://doi.org/10.3758/s13428-016-0711-7 doi: 10.3758/s13428-016-0711-7
    [17] Markowitz H (1952) Portfolio selection. T J Financ 7: 77–91. https://doi.org/10.2307/2975974 doi: 10.2307/2975974
    [18] Moghaddam MD, Liu J, Serota RA (2020) Implied and realized volatility: A study of distributions and the distribution of difference. Int J Financ Econ 26: 2581–2594. https://doi.org/10.1002/ijfe.1922 doi: 10.1002/ijfe.1922
    [19] National Treasury (2021) Economic Overview. In: Chapter 2. Budget Review. Republic of South Africa. Available from: http://www.treasury.gov.za/documents/National%20Budget/2021/review/Chapter%202.pdf.
    [20] Papaspiliopoulos O (2008) A note on posterior sampling from Dirichlet mixture models. Available from: http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/2008/08-20wv2.pdf.
    [21] Sehgal S, Pandey A (2018) Predicting Financial Crisis by Examining Risk-Return Relationship. Theor Econ Lett 8: 48–71. https://doi.org/10.4236/tel.2018.81003 doi: 10.4236/tel.2018.81003
    [22] Sharma S (2017) Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy. Annu Rev Astron Astrophys 55: 213–259. https://doi.org/10.48550/arXiv.1706.01629 doi: 10.48550/arXiv.1706.01629
    [23] Stankovic JZ, Petrocvic E, Dencic-Mihajlov K (2020) Effects of Applying Different Risk Measures on the Optimal Portfolio Selection: The Case of the Belgrade Stock Exchange. Facta Universitatis Series: Economics and Organization 17: 17–26. https://doi.org/10.22190/FUEO191016002S doi: 10.22190/FUEO191016002S
    [24] Steyn JP, Theart L (2019) Are South African equity investors rewarded for taking on more risk? J Econ Financ Sci 12: 1–10. https://doi.org/10.4102/jef.v12i1.448 doi: 10.4102/jef.v12i1.448
    [25] Trichilli Y, Abbes MB, Masmoudi A (2020) Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis. Res Int Bus Financ 51: 1–21. https://doi.org/10.1016/j.ribaf.2019.101071 doi: 10.1016/j.ribaf.2019.101071
    [26] van Ravenzwaaij D, Cassey P, Brown SD (2018) A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev 25: 143–154. https://doi.org/10.3758/s13423-016-1015-8 doi: 10.3758/s13423-016-1015-8
    [27] Walker SG (2007) Sampling the dirichlet mixture model with slices. Commun Stat-Simul C 36: 45–54. http://dx.doi.org/10.1080/03610910601096262 doi: 10.1080/03610910601096262
    [28] Yildiz ME, Erzurumlu YO, Kurtulus B (2022) Comparative analyses of mean-variance and mean-semivariance approaches on global and local single factor market model for developed and emerging markets. Int J Emerg Mark 17: 325–350. https://doi.org/10.1108/IJOEM-01-2020-0110 doi: 10.1108/IJOEM-01-2020-0110
  • This article has been cited by:

    1. Halyna V. Tkachuk, Pavlo V. Merzlykin, Ivan I. Donchev, STEM project design in computer microelectronics education, 2025, 2833-5473, 10.55056/cte.929
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1668) PDF downloads(110) Cited by(0)

Figures and Tables

Figures(38)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog