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Abstract: This study investigated the All Share Index (ALSI) returns and six different risk measures 

of the South African market for the sample period from 17 March 2000 to 17 March 2022. The risk 

measures analyzed were standard deviation (SD), absolute deviation (AD), lower semi absolute 

deviation (LSAD), lower semivariance (LSV), realized variance (RV) and the bias-adjusted realized 

variance (ARV). This study made an innovative contribution on a methodological and practical level, 

by being the first study to extend from the novel Bayesian approach by Jensen and Maheu (2018) to 

methods by Karabatsos (2017)—density regression, quantile regression and survival analysis. The 

extensions provided a full representation of the return distribution in relation to risk, through 

graphical analysis, producing novel insight into the risk-return topic. The most novel and innovative 

contribution of this study was the application of survival analysis which analyzed the “life” and 

“death” of the risk-return relationship. From the density regression, this study found that the chance 

of investors earning a superior return was substantial and that the probability of excess returns 

increased over time. From quantile regression, results revealed that returns have a negative 

relationship with the majority of the risk measures—SD, AD, LSAD and RV. However, a positive 

risk-return relationship was found by LSV and the ARV, with the latter having the steepest slope. 

Results were the most pronounced for the ARV, especially for the survival analysis. While ARV 

earned the highest returns, it had the shortest lifespan, which can be attributed to the volatile nature 

of the South African market. Thus, investors that seek short-term high-earning returns would 

examine ARV followed by LSV, whereas the remaining risk measures can be used for other purposes, 

such as diversification purposes or short selling. 

Keywords: risk-return relationship; Bayesian approach; parametric model; asymmetry; density 

regression; quantile regression; survival analysis 



571 

Quantitative Finance and Economics  Volume 6, Issue 4, 570–603. 

JEL Codes: C22, C58, G12, G32 

 

1. Introduction 

The financial markets of the world are vital drivers of economic progression, as they are 

responsible for the efficient allocation of resources. Over recent years, emerging markets have become 

increasingly more recognized due to integrating with the global economy. While emerging markets 

have been subject to positive developments, these markets are still subject to severe market volatility 

due to not having fully developed to advanced markets (Sehgal and Pandey, 2018). Developed markets 

are relatively more stable; therefore, trends may be easier to identify (Yildiz et al., 2022). However, 

such a market does not stimulate risk-seeking investors who want to optimize their chance of earning 

a superior return. 

Emerging markets are generally known to be more profitable than developed markets due to being 

volatile (Sehgal and Pandey, 2018). South Africa is an example of an emerging market, characterized 

by various sources of risk that contribute to the volatile nature of the market. According to the National 

Treasury (2021), such sources include electricity shortages, political and regulatory uncertainty and, 

most importantly, the fiscal deficit. The lack of fiscal availability has left South Africa susceptible after 

the external shocks associated with COVID-19. Gross debt is reported to have risen to 80.3% of GDP 

from 65.6% last year. If left unaddressed, interest costs will become one of the foremost payments of 

government, with tax payers’ money going to bondholders instead of education, health and welfare. 

More specifically, if the fiscal deficit is left unchecked, South Africa will head into a full-on “debt 

spiral.” Hence, the need to attract local and foreign investment in an emerging market such as South 

Africa cannot be stressed enough. 

By analyzing the market conditions, useful information can be derived, such as the level of risk 

present and growth prospects (Floros et al., 2020). A traditional method introduced by Markowitz 

(1952), and used over the years, is the risk-return relationship. The risk-return relationship has led to 

a number of asset pricing models as well as evaluation methods, contributing to the fields of corporate 

finance, risk management and portfolio management. For example, asset managers use asset pricing 

models as a forecast tool to ensure the growth of their client’s funds and limit risk exposure. Essentially, 

the goal of the risk-return relationship is to maximize return and minimize risk. 

The relationship between risk and return is assumed to be a positive and linear relationship - “the 

higher the risk, the higher the return.” An accurate prediction leads to the efficient allocation of 

resources, an increased probability of profitable investment strategies and overall superior returns. 

Yildiz et al. (2022) stated that the accurate forecast of the risk-return relationship is “vital for asset 

valuation” and “critical for both the economy and business world.” The challenge lies in the choice of 

the risk variables, as sufficed by the international studies by Stankovic et al. (2020), Fassas and 

Siriopoulus (2020) and Yildiz et al. (2022). 

In South African literature, only one study by Steyn and Theart (2019) is documented to 

investigate returns in relation to different risk measures, namely, the traditional beta and standard 

deviation. Investors are often attracted to volatile markets, such as the South African market, in the 

belief that they can earn superior returns. However, Steyn and Theart (2019) found a negative 

relationship between risk and return. More importantly, the study found beta to be insignificant, and 

the standard deviation was significant. This point highlighted that different risk measures have the 
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ability to impact the significance of the risk-return relationship. Such a finding is in line with 

international literature that investigated returns with different classes of risk, such as downside risk 

(Yildiz et al., 2022), realized risk (Floros et al., 2020) and implied risk (Fassas and Siriopoulus, 2020). 

Steyn and Theart (2019) is the only known South African study to investigate a different risk 

measure in the context of the traditional risk-return relationship. In international literature, there is no 

existing study that investigates all, or the most, different classes of risk in one collective study. Hence, 

this motivated the investigation of the relationship between returns and different risk measures. 

Therefore, this is the first South African study to investigate an optimal risk measure in the context of 

the risk-return relationship. 

This study employs the novel Bayesian approach by Jensen and Maheu (2018) and makes an 

innovative contribution by extending to the methods by Karabatsos (2017) - density regression, 

quantile regression and survival analysis. The Bayesian approach has gained popularity over the years 

in the fields of astronomy, psychology and medicine, highlighting its practical efficiency and reliability 

(Sharma, 2017; Karabatsos, 2017; van Ravenzwaaij et al., 2018). The extended Bayesian approach 

would be the first to be applied in the field of finance, to the best of the author’s knowledge, 

highlighting the novel insight that the model can provide on the risk-return topic. The Bayesian 

approach is based on Bayes’ (1763) theorem, which refers to the probability estimation of a relationship 

given prior information. In this case, the relationship is between risk and return, given that the inherent 

nature of the risk-return variables is taken into account. The prior takes into account the asymmetric, 

volatile and random properties of the financial data and results in an updated probability estimation 

known as the posterior. 

Jensen and Maheu (2018) and Karabatsos (2017) are the only two known studies, to the best of 

the author’s knowledge, that cover these specific Bayesian methods. The reason for the lack of 

application of this methodological approach is due to three limitations. First, “the relative lack of 

familiarity of econometricians and financial economists with Bayesian nonparametric methods and 

their computational complexity” (Griffin et al., 2018). Second, the prior information can be based 

on subjective information such as preconceived investor behavior or biases, in the context of this 

study (Trichilli et al., 2020; Brooks, 2014). Third, the lack of easy-to-use software to implement the 

model (Sharma, 2017; van Ravenzwaaij et al., 2018). These limitations are overcome as follows. 

First, by adding to literature on a popular topic of interest—the risk-return relationship. Second, by 

capturing the risk-return relationship without any predetermined assumptions such as investor 

behavior. Third, by following the only two known studies that describe these specific Bayesian 

methods and model implementation. 

This study employs a parametric Bayesian approach due to computational efficiency of the 

software by Karabatsos (2017). A parametric model investigates returns as a linear function of risk in 

the same way as conventional methods, such as regression analysis and the GARCH approach. 

However, in contrast to these conventional methods, the Bayesian approach allows for higher moment 

properties, such as skewness and kurtosis, by clustering analysis, which makes it a more robust choice. 

The Bayesian approach adjusts to modelling errors and accounts for uncertainty and stochasticity, thus 

ensuring valid results (Jensen and Maheu, 2018). Employing a more robust model will provide reliable 

and valuable information to encourage market participants to invest in the South African market. 

The layout of this study is as follows. The Introduction provides an overview of the aim of this 

study, to investigate returns in relation to different risk measures. The Literature Review covers 

international empirical studies that analyzed groups or different classes of risk and concludes with gaps 
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found in the literature. The Methodology outlines the data, model specifications of the extended 

Bayesian approach and the notes for interpretation of the graphical analysis. The Empirical Results are 

reported with explanations; thereafter, the results are discussed in summary. The Discussion and 

Conclusion section highlights the key findings of this study and their implications, followed by 

recommendations made for future research purposes. 

2. Literature review 

Steyn and Theart (2019) investigated the risk-return relationship for the sample period from July 

2004 to September 2018 using basic regression analysis to model the Capital Asset Pricing Model 

(CAPM). The study analyzed beta and an additional risk measure, standard deviation. It was noted that 

shares with high systematic risk (beta) resulted in negative returns but were statistically insignificant, 

whereas standard deviation was significant. This highlighted that different risk measures affected the 

significance and relationship with returns, especially since the study concluded that the CAPM is an 

inappropriate model to estimate returns in the South African market. 

Sehgal and Pandey (2018) used different risk measures to test the robustness of the risk-return 

relationship over the sample period June 2005 to June 2016. The study investigated the MSCI World 

index and MSCI indices of three market categories made up of twenty-one developed, twenty-two 

emerging and eleven frontier markets. The risk measures used were beta, standard deviation, semi 

deviation and downside risk. Standard deviation is based on the unrealistic assumption that the return 

distribution is normal. Downside risk refers to the risk associated with a security's price dropping due 

to changes in the market conditions. This measure adequately captures risk when the return distribution 

is asymmetric, according to Yildiz et al. (2022). To elaborate on this point, Hoque and Low (2020) 

stated that previous literature, from Basher and Sadorsky (2006) to Alles and Murray (2017), dealt 

with semi-asymmetric properties and did not provide a full representation of the return distribution. 

This is because the empirical return distribution is subject to asymmetric properties such as kurtosis 

and skewness. Therefore, other risk measures are considered more practical, such as semi deviation, 

because it consists of both standard deviation and skewness. 

Sehgal and Pandey (2018) estimated the risk-return relationship using a bivariate cross-sectional 

regression analysis with the Newey-West adjustment to account for autocorrelation and 

heteroscedasticity in the innovations. It was found that the impact of risk choice had an insignificant 

impact on the asset pricing analysis. Such a result was due to the use of cross-sectional regression 

analysis, which fails to account for the time-varying nature of the risk-return variables, according to 

Yildiz et al. (2022). Yildiz et al. (2022) used panel data analysis to compare the CAPM using beta and 

downside risk. Panel data analysis effectively accounts for the time-variant and stochastic nature of 

the risk-return variables. The study analyzed a total of sixteen risk measures from a dataset of twenty 

developed and twenty-five emerging markets. The study concluded that downside risk is a more 

optimal risk measure than beta on both a domestic and global level. 

Stankovic et al. (2020) tested the mean-variance model by algorithms consisting of quadratic 

programming, using different measures of downside risk to improve the forecast ability of the risk-

return relationship. The study investigated groups of shares from the Belgrade Stock Exchange (BSE), 

which were made up of the BELEXline and BELEX15 indices, over the sample period from 1 January 

2008 to 31 December 2018. The risk measures extended from portfolio variance (PV) and included 

absolute deviation (AD), lower semivariance (LSV), lower semi absolute deviation (LSAD) and Value 
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at Risk (VaR). In optimal order of the risk measures, it was found to be AD and LSAD with identical 

ratios (0.81), PV (0.21), VaR (0.17) and LSV (0.13). Thus, the AD and LSAD risk measures of the 

BSE had the highest rate of return. Therefore, by analyzing different risk proxies, investors can 

determine which measure optimizes their return. 

In contrast to the positive and linear risk-return relationship found by Stankovic et al. (2020), 

Fassas and Siriopoulus (2020) found a negative and asymmetric relationship. Fassas and Siriopoulus 

(2020) investigated the risk-return relationship using sixty-eight implied volatility indices and twenty-

five from academic literature. Implied volatility is known as a “forward looking” measure of risk. The 

authors used quantile regression due to its improved ability to account for outliers and asymmetry. This 

approach was especially suitable since the daily returns and implied volatility were time-varying and 

followed an asymmetric distribution. The study found that the implied volatility contained information 

about future volatility that exceeded historical volatility. 

However, Floros et al. (2020) stated that realized risk measures, constructed with high frequency 

(HF) data, provide more accurate parameter estimates of latent volatility. More information is 

contained in HF data with respect to intraday movements and microstructure noise in the market. The 

study analyzed the S&P500 and FTSE100 indices and thirteen realized risk measures over January 

2000 to June 2017. The risk-return relationship was estimated by regression analysis, where most of 

the realized risk measures were found to improve capturing the risk-return relationship. Floros et al. 

(2020) recommended investigating the forecast accuracy of the risk measure class of implied variance. 

Moghaddam et al. (2020) conducted a comparative analysis, where the authors found that realized 

volatility outperformed implied volatility, due to the latter being inconsistent in risk estimation. 

In addition, Jensen and Maheu (2018) investigated the risk-return relationship using realized 

variance (RV) and a bias-adjusted realized variance (ARV). RV is considered an appropriate risk 

measure in the context of Bayesian modelling. It was found that the ARV had a lower standard 

deviation because the bias-adjustment optimally captured the risk. More specifically, it accounted for 

the microstructure noise in the market, in line with Floros et al. (2020). 

In conclusion, the South African study by Steyn and Theart (2019) found that different risk 

measures affected the quantification of the risk-return relationship. Moreover, the authors used only 

one different risk measure to optimize the risk-return relationship. The first gap identified is that there 

is no existing study that investigates all, or rather, the greatest number of different classes of risk in 

one collective study. Standard deviation is considered an appropriate risk measure when the return 

distribution is normal (Sehgal and Pandey, 2018; Steyn and Theart, 2019). However, it is widely 

documented in empirical literature that returns follow an asymmetric distribution (Stankovic et al., 

2020; Yildiz et al., 2022; Fassas and Siriopoulus, 2020). 

The second gap is by Hoque and Low (2020), who stated that previous literature, from Basher 

and Sadorsky (2006) to Alles and Murray (2017), dealt with semi-asymmetric properties. Therefore, 

this study effectively accounts for asymmetry by employing the Bayesian approach and investigates 

different risk measures that are considered more empirically viable in estimating the risk-return 

relationship. The third gap is that the aforementioned literature did not provide a full representation of 

the return distribution. The extensions of the parametric Bayesian model employed in this study shall 

provide a full graphical representation of returns in relation to the different risk measures. This provides 

a strong motivation for the methodology employed in this study. 
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3. Methodology 

Figure 1 shows the methodological steps to investigate the optimal risk measure for the risk-

return relationship. 

 

Figure 1. Extended Bayesian approach to find the optimal risk measure for the risk-return relationship. 

The Bayesian approach consists of a prior and posterior (Bayes, 1763). The joint distribution 

between returns and the different risk measures are modelled by a parametric Bayesian model. The 

prior takes into account the inherent nature of the financial data—the asymmetric, volatile and random 

properties of the risk-return variables. The posterior is determined by the slice sampling technique by 

Walker (2007), Kalli et al. (2011) and Papaspiliopoulos (2008) as well as the Gibbs sampler. Thereafter, 

the extensions are made by density regression, quantile regression and survival analysis. 

3.1. Data 

Following standard South African literature, this study will obtain the secondary price data from 

the Integrated Real-time Equity System (IRESS) database and the risk-free rate proxy, the South 

African Treasury-bill (T-bill), from the South African Reserve Bank (SARB). According to Floros et 

al. (2020), HF data contains a high degree of information in terms of intraday movements and 

microstructure noise; therefore, this study will analyze the daily data of the Johannesburg Stock 

Exchange All Share Index (JSE ALSI). An updated sample period, from 16 March 2000 to 17 March 

2022, is used based on data availability and accessibility. The ALSI price data is converted to market 

returns by 𝑅𝑖 = ln(
𝑃𝑡

𝑃𝑡−1
) where 𝑅𝑖 = market returns, 𝑃𝑡 = share price for the current day 𝑡, and 𝑃𝑡−1 

= share price for the previous day 𝑡 − 1. The annual risk-free rate is converted to a daily value by 

DailyRf = (1 + yearlyRf)
(
1

365
) − 1 as given by Brooks (2014). Excess returns are computed as the 

difference between market returns and the risk-free rate. 

The risk measures are computed as follows. Let 𝑅𝑖 = returns, �̅� = average returns and 𝑇 = number 

of observations. 

Standard deviation is a measure of total risk which comprises systematic and unsystematic risk, 

following Steyn and Theart (2019) and Sehgal and Pandey (2018): 

 𝑆𝐷 = √
∑ (𝑅𝑖 − �̅�)2𝑇
𝑖=1

𝑇
 (1) 

The downside risk measures follow Stankovic et al. (2020) and Sehgal and Pandey (2018). 

Absolute deviation is given as: 
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 𝐴𝐷 =
1

𝑇
∑|𝑅𝑖 − �̅�|

𝑇

𝑡=1

 (2) 

Lower semivariance: 

 𝐿𝑆𝑉 =
1

𝑇
∑∑(�̅� − 𝑅𝑖), �̅� > 𝑅𝑖

𝑁

𝑡=1

𝑇

𝑖=1

 (3) 

Lower semi absolute deviation: 

 𝐿𝑆𝐴𝐷 =
1

𝑇
∑|∑�̅� − 𝑅𝑖

𝑁

𝑖=1

|

𝑇

𝑡=1

, �̅� > 𝑅𝑖  (4) 

Following Floros et al. (2020) and Jensen and Maheu (2018), realized variance is given as: 

 𝑅𝑉 = ∑ 𝑅𝑡,𝑖𝑅𝑡,𝑖+𝑗

𝑁𝑡−𝑗

𝑡=1

 (5) 

The bias-adjusted realized variance is given by Jensen and Maheu (2018): 

 𝐴𝑅𝑉𝑡
𝑞 = 𝛾0 + 2∑(

1 − 𝑗

(𝑞 + 1)
)

𝑞

𝑗=1

𝛾𝑗 , 𝑤ℎ𝑒𝑟𝑒𝛾𝑗 = ∑ 𝑅𝑡,𝑖𝑅𝑡,𝑖+𝑗

𝑁𝑡−𝑗

𝑡=1

 (6) 

where 𝐴𝑅𝑉t
q
 = bias-adjusted realized variance, 𝑞 = bias-adjustment and is set to one by Hansen and 

Lunde (2006). 

From the right-hand side, γ̂0 = first order of autocorrelation, the second term is the product of γ̂𝑗 

= bias-adjustment and γ̂𝑗  = realized variance by definition. The addition of Bartlett weights is not 

shown in the equation but is added to ensure a positive bias-adjusted realized variance (Hansen and 

Lunde, 2006; Jensen and Maheu, 2018). 

3.2 Model specifications of the Bayesian Approach  

The model specifications are given by Jensen and Maheu (2018), the only known study to the 

best of the author’s knowledge. First, the joint distribution of the return and risk variables is modelled 

and given as: 

 𝑃(𝑟𝑡, 𝑥|𝐼𝑡−1, 𝛺, 𝛩) =∑𝑤𝑗𝑓(𝑟𝑡, 𝑥|𝜃𝑗 , 𝐼𝑡−1)

∞

𝑗=1

 (7) 

where 𝑟𝑡 = excess returns, 𝑥 = risk, 𝐼𝑡−1 = information set that contains the risk and return variables, 

Ω  = {wj}  set of probability weights, and Θ  = {𝜃𝑗}  set of parameters, for 𝑗  = mixture clusters. To 

simplify the model, Ω and Θ are dropped. The joint distribution is equal to the product of the marginal 

and conditional distribution by the law of total probability. 
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 𝑃(𝑟𝑡, 𝑥|𝜃𝑗 , 𝐼𝑡−1) = 𝑓(𝑟𝑡|𝜃𝑗 , 𝐼𝑡−1) ∗ 𝑓(𝑥|𝜃𝑗 , 𝐼𝑡−1) (8) 

Thereafter, the posterior is determined using the slice sampler by Walker (2007), Kalli et al. (2011) 

and Papaspiliopoulos (2008) as well as the Gibbs sampling technique. 

 𝑃(𝑟𝑡, 𝑥, 𝑢𝑡|𝜃𝑗 , 𝐼𝑡−1) = ∑1(𝑢𝑡 <𝑤𝑗) ∗ 𝑓(𝑟𝑡, 𝑥)|𝜃𝑗 , 𝐼𝑡−1)

∞

𝑗=1

 (9) 

The slice sampler ensures the elimination of all masses of zero by the auxiliary variable 𝑢𝑡. The 

Gibbs sampling technique allows the sharing of properties between the initial and updated probability 

estimation, such as the higher moment properties of skewness and kurtosis. 

The extensions are made from the above given parametric Bayesian model. The given Bayesian 

model is denoted as 𝑚. The model specifications of the extensions are given by Karabatsos (2017), the 

only known study to the best of the author’s knowledge. 

In the context of this study, let 𝑦  = excess returns, 𝑥  = the risk measures, 𝑛  = number of 

observations and 𝑚 = the given Bayesian model. Note that the returns 𝑦 are conditional on the prior 

information, which are the risk measures 𝑥  and given Bayesian model 𝑚 , as well as the inherent 

asymmetric nature of the risk-return variables. 

The density regression consists of two types of functions, namely, a probability density function 

(pdf) and cumulative distribution function (cdf). Drawn from Devore (2012), both functions provide a 

probability estimation or likelihood of the risk-return relationship. The pdf and cdf are given as 

Equations 10 and 11, respectively: 

 𝑓𝑛(𝑦|𝑥) = ∫ 𝑓(𝑦|𝑥,𝑚)
𝑏

𝑎

 (10) 

The pdf 𝑓𝑛(𝑦|𝑥) estimates the likelihood of the risk-return relationship, which can take on values 

in the interval from 𝑎 to 𝑏. Figure 2 shows the pdf. 

 

Figure 2. Probability Density Function. 

From Figure 2, the pdf is represented as the area under the curve with the interval ranging from a to b. 

 𝐹𝑛(𝑦|𝑥) = ∫ 𝐹𝑛(𝑦|𝑥,𝑚)
𝑦

−∞

= ∫ 𝑓𝑛(𝑌 ≤ 𝑦|𝑥,𝑚)
𝑦

−∞

 (11) 

The cdf 𝐹𝑛(𝑦|𝑥) estimates the cumulative probability estimation of the risk-return relationship 

defined as the random variable 𝑦, of which the real value variable 𝑌 is less than or equal to 𝑦. 
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Quantile regression (QR) is used as it has an improved ability to capture asymmetric properties 

and outliers, as noted by Fassas and Siriopoulus (2020). 

 𝑄𝑅 = 𝐹𝑛
−1(𝑢|𝑥,𝑚)𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑐ℎ𝑜𝑠𝑒𝑛𝑢𝜖[0,1] (12) 

By Karabatsos (2017), 𝑄𝑅 is equal to the 𝑢th quantile, which is an element of the bounded values 

from zero to one, given the entire sample space of the variables and model denoted by 𝑥 and 𝑚. For 

example, the median is shown by 𝑄𝑅 = 𝐹𝑛
−1(0.5|𝑥,𝑚). 

According to Gao et al. (2019), survival analysis, also known as time-to-event analysis, is a 

branch of statistics that focuses on how long it takes before a certain event occurs. The application of 

survival analysis is common in the field of medicine, according to Emmert-Streib and Dehmer (2019). 

Its application in finance is relatively limited, with early studies mainly focusing on forecasting 

financial distress and stock market pricing, as sufficed by Gao et al. (2019) and Gepp and Kumar 

(2015). Moreover, there is no study yet to extend the Bayesian approach by Jensen and Maheu (2018) 

to survival analysis to investigate the risk-return relationship. 

While the survival function focuses on the “life” of the risk-return relationship, the hazard 

function focuses on its “death.” The survival curve 𝑆𝑛(𝑦|𝑥) is given by Karabatsos (2017): 

 𝑆𝑛(𝑦|𝑥) = 1 − 𝐹𝑛(𝑦|𝑥,𝑚) (13) 

The survival function shows the probability estimation of how long the event of interest would 

survive before a specified period of time (Emmert-Streib and Dehmer, 2019). From Equation 13, it is 

equivalent to the difference between one and the cdf, by Karabatsos (2017). Related to the survival 

function is the hazard function, known as the hazard rate or risk function, given as: 

 𝐻𝑛(𝑦|𝑥) =
𝑓𝑛(𝑦|𝑥,𝑚)

𝑆𝑛(𝑦|𝑥,𝑚)
 (14) 

In this case, the hazard function is shown as a ratio of the pdf and survival function. The hazard 

function 𝐻𝑛(𝑦|𝑥) gives the probability estimation of how long the event of interest would fail for a 

duration of time, according to Emmert-Streib and Dehmer (2019). More specifically, the hazard rate 

estimates an instantaneous failure rate at time 𝑡, assuming survival up until 𝑡. The cumulative (CML) 

hazard rate gives the probability estimation of accumulated risk of how long the event of interest would 

fail for a duration of time. It is given as: 

 𝐻(𝑡) = ∫ ℎ(𝜏)𝑑(𝜏)
𝑡

0

 (15) 

The CML hazard rate 𝐻(𝑡)  is given as an integral, which provides the total amount of risk 

exposure ℎ(𝜏) over the interval from 0 to 𝑡. 

3.3. Notes for the Bayesian approach 

The numerical analysis, not shown in this study for the extensions, consists of selecting optimal 

model specifications and model diagnostics to ensure robust Bayesian test results. The Monte Carlo (MC) 

mixing values are shown for the preliminary Bayesian model. An approximate value of 0.5 indicates 

optimal parameter estimates, according to Karabatsos (2017). The original parametric Bayesian model 

is investigated by normality tests to ensure that the model has adequately captured asymmetry. The 
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normality tests employed are the Kolmogorov-Smirnov (KS) test and quantile-quantile (QQ) plots. If 

asymmetry is adequately captured, this would confirm accurate and reliable Bayesian test results. 

This study focuses on the graphical analysis to provide conclusive evidence on the risk-return 

relationship. The graphical analysis consists of 3-D plots of returns with the different risk measures. 

In the Bayesian approach, the mean value is the probability estimation that is analyzed. Any measure 

of central tendency can be used—mean, mode or median—but this study used the mean, in line with 

standard literature. With respect to the graphical analysis, the point estimate can be easily read off the 

peak of the pdf. The peak of the density represents the measure of central tendency—the mean value. 

The probability estimation of the cdf is read off as the average of the density. In this case, it is not read 

off as the peak of the density because the highest point is one for all the densities. That is because a 

cdf accumulates to one. The quantile regression plot consists of the mean value (on the y-axis), slope 

and 95% confidence intervals (dotted lines). The direction of the slope indicates the nature of the 

relationship between risk and return. A downward slope indicates a negative risk-return relationship 

and an upward slope indicates a positive relationship. The survival analysis functions are interpreted 

in the same way as the cdf. The probability estimation of the survival functions is read off as the 

average of the density. 

Although not shown in this study, the trellis chart by Karabatsos (2017) can also be used to 

determine the probability estimations. The trellis chart is a consolidation of multiple charts. In the 

context of this study, it organizes the 3-D plots into a 2-D diagram, making it an additional convenient 

method to determine and read off the approximate probability estimations. To determine the probability 

estimation, trace a line from zero (average midpoint) on the x-axis of RT (excess returns 𝑟𝑡) to the 

respective curve, then trace a line from that point (of the curve) to the probability on the y-axis. The 

curves are estimated for the minimum and maximum values of the risk measures. Thus, the point 

estimate average is taken as the overall value, in line with Bayesian literature. 

4. Empirical results and discussion 

4.1. Data exploration 

The daily closing price data of the JSE ALSI are obtained from IRESS for the sample period 

from 16 March 2000 to 17 March 2022. The ALSI price data is converted to market returns by taking 

the natural log form of the difference between the current and previous day's closing prices. The 

annual T-bill obtained from the SARB is converted to a daily value. Excess returns are calculated as 

the difference between the ALSI market returns and risk-free rate. The risk measures are calculated, 

using the specified formulas, following literature. Before analysis, the (excess) ALSI return data and 

risk measures are confirmed to be stationary to avoid a spurious regression and ensure a valid time 

series. The statistical properties of the ALSI returns are confirmed to be asymmetric, volatile and 

stochastic. Thus, justifying the application of the Bayesian approach to take into account the inherent 

nature of the risk-return variables. 

Although not within the scope of this paper, the model specifications for the parametric Bayesian 

model are as follows. The prior variance of the slope parameters is 1000000 and the prior inverse 

gamma distribution of the error variance is 0.0001. The model specification values of the Bayesian 

approach are selected in accordance with the model diagnostics to ensure an optimal model. 
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The posterior parameter estimates are determined by 20 000 MCMC sampling iterations, a burn-in 

period of 5000 and a thin number of 5. The MCMC sampling iterations and burn-in period values follow 

Jensen and Maheu (2018), while the thin number is based on the default value by Karabatsos (2017). 

The MCMC sampling iterations refer to the repetitive resampling process used to determine the posterior 

parameter estimates. The burn-in period refers to samples from the initial stages that are discarded due 

to no longer being able to accurately represent the required distribution. The thin number of 5 means that 

every fifth sampling iterate of the 20 000 MCMC sampling iterations is collected to determine the 

posterior estimates. 

4.2. Bayesian approach 

Table 1 shows the test results of the original Bayesian approach. 

Table 1. Posterior parameter estimates of the given Bayesian model. 

 Mean 75% Bayesian Interval 97.5% Bayesian Interval MC Mixing Value 

SD −0.020 (−0.060, 0.020) (−0.132, 0.097) 0.506 

AD −0.036 (−0.077, 0.008) (−0.166, 0.090) 0.501 

LSAD −0.000 (−0.000, 0.000) (−0.000, 0.000) 0.514 

LSV 0.000 (−0.000, 0.000) (−0.000, 0.000) 0.498 

RV −0.000 (−0.001, 0.000) (−0.002, 0.001) 0.484 

ARV 0.309 (−0.330, −0.303) (−0.354, −0.278) 0.508 

From Table 1, in the 75% Bayesian interval, only the ARV is significant, whereas, in the 97.5% 

interval, all the risk measures are significant, with the exception of ARV. The MC mixing values 

indicate optimal posterior estimates since the values are all approximately 0.5. Normality tests are 

employed to the posterior parameter estimates, where asymmetry is adequately captured by the KS test 

and QQ plots, confirming the robustness of the parametric Bayesian model. The extended Bayesian 

approach will provide more insight into returns in relation to the different risk measures. 

4.3. Extended Bayesian approach 

4.3.1. Density regression 

Figures 3 to 8 show the pdf of returns with the different risk measures. 

From Figures 3 to 8, the probability estimation is a consistent value of 30 for the risk-return 

relationship in the South African market, which is a relatively low value. This is in contrast to Sehgal 

and Pandey (2018), who stated that given the volatile nature of emerging markets, it is expected that 

investors earn superior returns for taking on a high level of risk in their investments. However, this is 

in line with Steyn and Theart (2019), who found the low-risk anomaly (low risk-return relationship) in 

South Africa. Figures 9 to 14 show the cdf of returns with the different risk measures. 



581 

Quantitative Finance and Economics  Volume 6, Issue 4, 570–603. 

 

Figure 3. Pdf of returns and SD. 

 

Figure 4. Pdf of returns and AD. 
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Figure 5. Pdf of returns and LSAD. 

 

Figure 6. Pdf of returns and LSV. 
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Figure 7. Pdf of returns and RV. 

 

Figure 8. Pdf of returns and ARV. 
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Figure 9. Cdf of returns and SD. 

 

Figure 10. Cdf of returns and AD. 
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Figure 11. Cdf of returns and LSAD. 

 

Figure 12. Cdf of returns and LSV. 
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Figure 13. Cdf of returns and RV. 

 

Figure 14. Cdf of returns and ARV. 
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earning a superior return is substantial, the probability of abnormal returns does increase over time 

in the South African market. 

4.3.2. Quantile regression 

Figures 15 to 20 show the quantile regression plots of returns with the different risk measures. 

From Figures 15 to 20, a common observation is that the mean is negative for the risk-return 

relationship, suggesting a low level of returns in the South African market. This finding is in line with 

Steyn and Theart (2019). However, it is interesting to note varying shapes for the risk-return 

relationship, confirming the impact different measures of risk have on returns, in line with Stankovic 

et al. (2020) and Steyn and Theart (2019). The risk measures SD, AD, LSAD and RV have a negative 

relationship with returns. In contrast, only LSV and the ARV have a positive risk-return relationship, 

with the latter showing the steepest slope of all the risk measures. Thus, investors should incline to 

ARV followed by LSV to optimize their portfolio returns and opt to use the remaining risk measures 

for diversification purposes or to short sell those stocks. 

 

Figure 15. QR of returns and SD. 
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Figure 16. QR of returns and AD. 

 

Figure 17. QR of returns and LSAD. 
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Figure 18. QR of returns and LSV. 

 

Figure 19. QR of returns and RV. 
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Figure 20. QR of returns and ARV. 

4.3.3. Survival analysis 

Figures 21 to 26 show the survival function of returns with the different risk measures. 

 

Figure 21. Survival function of returns and SD. 
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Figure 22. Survival function of returns and AD. 

 

Figure 23. Survival function of returns and LSAD. 
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Figure 24. Survival function of returns and LSV. 

 

Figure 25. Survival function of returns and RV. 
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Figure 26. Survival function of returns and ARV. 
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Figures 27 to 32 show the hazard function of returns with the different risk measures. 

 

Figure 27. Hazard function of returns and SD. 
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Figure 28. Hazard function of returns and AD. 

 

Figure 29. Hazard function of returns and LSAD. 
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Figure 30. Hazard function of returns and LSV. 

 

Figure 31. Hazard function of returns and RV. 
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Figure 32. Hazard function of returns and ARV. 
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Figure 33. CML hazard function of returns and SD. 
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Figure 34. CML hazard function of returns and AD. 

 

Figure 35. CML hazard function of returns and LSAD. 
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Figure 36. CML hazard function of returns and LSV. 

 

Figure 37. CML hazard function of returns and RV. 
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Figure 38. CML hazard function of returns and ARV. 
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and ARV contrasts with Floros et al. (2020), who found no relationship, and Jensen and Maheu (2018), 

who found a positive and nonlinear relationship. The implications of these results are discussed and 

concluded in the next section. 

5. Discussion and conclusions 

Steyn and Theart (2019) is the only known South African study to investigate a different risk 

measure in the context of the risk-return relationship. In international literature, there is no existing study 

that investigates different classes of risk in one collective study. This motivated the investigation of the 

relationship between returns and different risk measures stemming from international literature. The risk 

measures analyzed in this study were standard deviation (SD), absolute deviation (AD), lower semi 

absolute deviation (LSAD), lower semivariance (LSV), realized variance (RV) and the bias-adjusted 

realized variance (ARV). This study made an innovative contribution on a methodological and practical 

level, by being the first study to extend from the novel Bayesian approach by Jensen and Maheu (2018) 

to methods by Karabatsos (2017)—density regression, quantile regression and survival analysis. 

The results of this study confirmed that different risk measures impact the significance and 

relationship with returns, in line with literature, with the exception of Sehgal and Pandey (2018). 

Sehgal and Pandey (2018) found that different risk measures had an insignificant impact on returns. 

This was due to the modelling approach employed by the authors, as explained by Yildiz et al. (2022) 

and Hoque and Low (2020). More specifically, Hoque and Low (2020) stated that previous literature 

dealt with semi-asymmetric properties and did not provide a full representation of returns. The 

limitations highlighted by Hoque and Low (2020), provided a gap in literature which this study 

addressed in three ways. 

First, this study took into account different risk measures that were more appropriate in capturing 

the risk-return relationship. For example, downside risk measures are adequate when the return 

distribution is asymmetric and the realized variance measures provide accurate measures of latent 

volatility (Yildiz et al., 2022; Floros et al., 2020, Moghaddam et al., 2020, Jensen and Maheu, 2018). 

Second, this study employed the original parametric Bayesian approach by Jensen and Maheu (2018), 

which can effectively account for asymmetric higher moment properties. Third, the extensions by 

Karabatsos (2017) employed in this study, provided a full graphical representation of returns in relation 

to the different risk measures. 

The most novel and innovative contribution of this study was the application of survival analysis. 

This is especially relevant given that over the years, there has been increasing popularity in HF trading 

and data analysis, as sufficed by Floros et al. (2020). Investors are always on the lookout for an 

arbitrage opportunity to capitalize on and “make a quick profit.” By looking at the “life” and “death” 

of the relationship between returns and the different risk measures, this provided novel insight for 

investors to take into account when structuring their investment strategies. More specifically, it can 

assist investors in determining when to hold their stock, go long or short and ultimately optimize their 

chance of earning a superior return. 

Based on traditional theory, the relationship between risk and return is assumed to be positive and 

linear (Markowitz, 1952). Following Jensen and Maheu (2018) and Karabatsos (2017), the application 

of the parametric Bayesian approach is more robust than conventional parametric models such as 

regression analysis and the GARCH approach. This is because the model has a greater ability to capture 

higher moment asymmetric properties. As confirmed by normality tests, asymmetry was adequately 
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captured by the parametric Bayesian model. Hence, the results were considered valid and reliable. The 

majority of risk measures in this study found a negative relationship with returns, in contrast to 

theoretical expectations. However, this finding was in line with Steyn and Theart (2019), who found 

the existence of the low-risk anomaly in the South African market. Hence, investors that structure their 

investment on the “high risk, high return” strategy would find themselves disappointed as the 

additional risk would lead to potential losses rather than gains. Such stock would be used for other 

purposes, such as diversification purposes or short selling. 

While this study could build on the low-risk anomaly in South African literature, following Steyn 

and Theart (2019), this study highlights the remaining two risk measures that found a positive risk-

return relationship, namely, LSV and ARV. To recap, Floros et al. (2020) stated that realized risk 

measures, constructed with HF data, provide more accurate parameter estimates of latent volatility. 

More information is contained in HF data with respect to intraday movements and microstructure noise 

in the market. This was confirmed in the study by Jensen and Maheu (2018), who found that the ARV 

captured risk more adequately than RV. In this study, the results were most pronounced for the ARV 

risk measure because it is a well-suited metric in Bayesian analysis, as noted by Jensen and Maheu 

(2018). LSV was found to be the most robust downside risk measure. Therefore, these measures of 

risk should be analyzed by investors that wish to optimize their returns. 

All the risk measures had a high probability of dissipation, so investors should avoid seeking 

long-term investment strategies in the South African market. The fluctuant nature of the risk-return 

relationship can be attributed to the volatile nature of the South African market. Thus, South Africa 

can be considered ideal for short-term high-earning returns by market participants. 

Asset managers and portfolio managers are often pressured to demonstrate quick profits to attract 

and retain clients. Investors are always on the lookout for a “quick profit.” Given that all the risk 

measures had a high probability of dissipation, the aforementioned market participants can earn 

potential short-term superior returns in the South African market. However, care should be taken in the 

development of long-term investment strategies to maintain a superior or positive rate of return. In 

other words, strategies should be put in place to ensure that a quick return does not come at the expense 

of shareholders and clients over the long term. Examples include observing corporate control, setting 

up incentives and having organizational owners. 

Supported by the literature of Jensen and Maheu (2018) and Karabatsos (2017), this study 

concludes as follows. Models that produce a positive and linear relationship between risk and return 

are generally considered robust. Models that have the ability to capture asymmetric properties 

effectively are considered optimal. While the parametric Bayesian approach has the ability to capture 

asymmetric higher moment properties effectively, it is still a parametric model which is subject to a 

finite sample space. The nonparametric approach overcomes this limitation as it is subject to an infinite 

sample space and would have a greater capacity to account for asymmetry. 

Therefore, a model that has the ability to effectively account for asymmetry is more likely to 

estimate a nonlinear risk-return relationship, regardless of theoretical expectations. For example, 

Jensen and Maheu (2018) was the first study to employ the novel nonparametric Bayesian approach 

and found a positive nonlinear risk-return relationship. Given the magnitude of conflicting results 

found in literature on the empirical risk-return relationship, a model that has the ability to effectively 

capture asymmetry, is of greater significance than a model that produces a theoretically expected result. 

This study recommends an extended nonparametric Bayesian approach as the nonparametric 

approach has a greater capacity to account for asymmetry. In line with Jensen and Maheu (2018), this 
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study found that the ARV risk measure is optimal in the field of Bayesian modelling. Thus, the second 

recommendation is to research the existence of other traditional robust risk measures in the Bayesian 

context, or otherwise, and to extend this research to such risk measures. 

Data 

The secondary price dataset used in this study can be obtained from the IRESS database. 

Conflict of interest 

The author declares no conflict of interest. 

References 

Alles L, Murray L (2017) Asset pricing and downside risk in the Australian share market. Appl Econ 

49: 4336–4350. http://dx.doi.org/10.1080/00036846.2017.1282143 

Basher SA, Sadorsky P (2006) Oil price risk and emerging stock markets. Glob Financ J 17: 224–251. 

http://dx.doi.org/10.1016/j.gfj.2006.04.001 

Bayes T (1763) An Essay towards Solving a Problem in the Doctrine of Chances. by the Late Rev. Mr. 

Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Phil Trans 

R Soc 53: 370–418. https://doi.org/10.1098/rstl.1763.0053 

Brooks C (2014) Introductory Econometrics for Finance. Cambridge University Press: New York. 

Devore JL (2012) Probability and Statistics for Engineering and the Sciences. California Polytechnic 

State University: San Luis Obispo. 

Emmert-Streib F, Dehmer M (2019) Introduction to Survival Analysis in Practice. Mach Learn Know 

Extr 1: 1013–1038. https://doi.org/10.3390/make1030058 

Fassas AP, Siriopoulos C (2020) Implied volatility indices—A review. Q Rev Econ Financ 79: 303–

329. https://doi.org/10.1016/j.qref.2020.07.004 

Floros C, Gkillas K, Konstantatos C, Tsagkanos A (2020) Realized Measures to Explain Volatility 

Changes over Time. J Risk Financ Manag 13: 1–19. https://doi.org/10.3390/jrfm13060125 

Gao G, Bu Z, Liu L, et al. (2019) A Survival Analysis Method for Stock Market Prediction. 2015 

International Conference on Behavioral, Economic and Socio-cultural Computing (BESC), 116–

122. https://doi.org/10.1109/BESC.2015.7365968 

Gepp A, Kumar, K (2015) Predicting Financial Distress: A Comparison of Survival Analysis and 

Decision Tree Technique. Procedia Comput Sci 54: 396–404. 

https://doi.org/10.1016/j.procs.2015.06.046 

Griffin JE, Kalli M, Steel M (2018) Discussion of “Nonparametric Bayesian Inference in Applications”: 

Bayesian nonparametric methods in econometrics. Stat Method Appl 27: 207–218. 

https://doi.org/10.1007/s10260-017-0384-0 

Hansen PR, Lunde A (2006) Realized variance and market microstructure noise. J Bus Econ Stat 24: 

127–161. https://doi.org/10.1198/073500106000000071 

Hoque ME, Low S (2020) Industry Risk Factors and Stock Returns of Malaysian Oil and Gas Industry: 

A New Look with Mean Semi-Variance Asset Pricing Framework. Mathematics 8: 1–28. 

https://doi.org/10.3390/math8101732  

http://dx.doi.org/10.1080/00036846.2017.1282143
http://dx.doi.org/10.1016/j.gfj.2006.04.001
https://doi.org/10.3390/make1030058
https://doi.org/10.1016/j.qref.2020.07.004
https://doi.org/10.3390/jrfm13060125
https://doi.org/10.1109/BESC.2015.7365968
https://doi.org/10.1016/j.procs.2015.06.046
https://doi.org/10.1007/s10260-017-0384-0
https://doi.org/10.3390/math8101732


603 

Quantitative Finance and Economics  Volume 6, Issue 4, 570–603. 

Jensen MJ, Maheu JM (2018) Risk, Return and Volatility Feedback: A Bayesian Nonparametric 

Analysis. J Risk Financ Manag 11: 1–29. https://doi.org/10.3390/jrfm11030052 

Kalli M, Griffin J, Walker S (2011) Slice sampling mixture models. Stat Comput 21: 93–105. 

http://dx.doi.org/10.1007/s11222-009-9150-y 

Karabatsos G (2017) A menu-driven software package of Bayesian nonparametric (and parametric) 

mixed models for regression analysis and density estimation. Behav Res Methods 49: 335–362. 

https://doi.org/10.3758/s13428-016-0711-7 

Markowitz H (1952) Portfolio selection. T J Financ 7: 77–91. https://doi.org/10.2307/2975974 

Moghaddam MD, Liu J, Serota RA (2020) Implied and realized volatility: A study of distributions and 

the distribution of difference. Int J Financ Econ 26: 2581–2594. https://doi.org/10.1002/ijfe.1922 

National Treasury (2021) Economic Overview. In: Chapter 2. Budget Review. Republic of South 

Africa. Available from: 

http://www.treasury.gov.za/documents/National%20Budget/2021/review/Chapter%202.pdf. 

Papaspiliopoulos O (2008) A note on posterior sampling from Dirichlet mixture models. Available 

from: http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/2008/08-20wv2.pdf. 

Sehgal S, Pandey A (2018) Predicting Financial Crisis by Examining Risk-Return Relationship. Theor 

Econ Lett 8: 48–71. https://doi.org/10.4236/tel.2018.81003 

Sharma S (2017) Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy. 

Annu Rev Astron Astrophys 55: 213–259. https://doi.org/10.48550/arXiv.1706.01629 

Stankovic JZ, Petrocvic E, Dencic-Mihajlov K (2020) Effects of Applying Different Risk Measures 

on the Optimal Portfolio Selection: The Case of the Belgrade Stock Exchange. Facta Universitatis 

Series: Economics and Organization 17: 17–26. https://doi.org/10.22190/FUEO191016002S 

Steyn JP, Theart L (2019) Are South African equity investors rewarded for taking on more risk? J 

Econ Financ Sci 12: 1–10. https://doi.org/10.4102/jef.v12i1.448 

Trichilli Y, Abbes MB, Masmoudi A (2020) Islamic and conventional portfolios optimization under 

investor sentiment states: Bayesian vs Markowitz portfolio analysis. Res Int Bus Financ 51: 1–21. 

https://doi.org/10.1016/j.ribaf.2019.101071 

van Ravenzwaaij D, Cassey P, Brown SD (2018) A simple introduction to Markov Chain Monte-Carlo 

sampling. Psychon Bull Rev 25: 143–154. https://doi.org/10.3758/s13423-016-1015-8 

Walker SG (2007) Sampling the dirichlet mixture model with slices. Commun Stat-Simul C 36: 45–54. 

http://dx.doi.org/10.1080/03610910601096262 

Yildiz ME, Erzurumlu YO, Kurtulus B (2022) Comparative analyses of mean-variance and mean-

semivariance approaches on global and local single factor market model for developed and 

emerging markets. Int J Emerg Mark 17: 325–350. https://doi.org/10.1108/IJOEM-01-2020-0110 

© 2022 the Author, licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.3390/jrfm11030052
https://doi.org/10.3758/s13428-016-0711-7
https://doi.org/10.1002/ijfe.1922
http://www.treasury.gov.za/documents/National%20Budget/2021/review/Chapter%202.pdf
http://www2.warwick.ac.uk/fac/sci/statistics/crism/research/2008/08-20wv2.pdf
https://doi.org/10.4236/tel.2018.81003
https://doi.org/10.48550/arXiv.1706.01629
https://doi.org/10.22190/FUEO191016002S
https://doi.org/10.4102/jef.v12i1.448
https://doi.org/10.1016/j.ribaf.2019.101071
https://doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/10.1080/03610910601096262
https://doi.org/10.1108/IJOEM-01-2020-0110

