Citation: Ngo Thai Hung. Equity market integration of China and Southeast Asian countries: further evidence from MGARCH-ADCC and wavelet coherence analysis[J]. Quantitative Finance and Economics, 2019, 3(2): 201-220. doi: 10.3934/QFE.2019.2.201
[1] | Lirong Huang, Jianqing Chen . Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28(1): 383-404. doi: 10.3934/era.2020022 |
[2] | Senli Liu, Haibo Chen . Existence and asymptotic behaviour of positive ground state solution for critical Schrödinger-Bopp-Podolsky system. Electronic Research Archive, 2022, 30(6): 2138-2164. doi: 10.3934/era.2022108 |
[3] | Xiaoyong Qian, Jun Wang, Maochun Zhu . Existence of solutions for a coupled Schrödinger equations with critical exponent. Electronic Research Archive, 2022, 30(7): 2730-2747. doi: 10.3934/era.2022140 |
[4] | Jun Wang, Yanni Zhu, Kun Wang . Existence and asymptotical behavior of the ground state solution for the Choquard equation on lattice graphs. Electronic Research Archive, 2023, 31(2): 812-839. doi: 10.3934/era.2023041 |
[5] | Yixuan Wang, Xianjiu Huang . Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction. Electronic Research Archive, 2023, 31(4): 2071-2094. doi: 10.3934/era.2023106 |
[6] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[7] | Zhiyan Ding, Hichem Hajaiej . On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29(5): 3449-3469. doi: 10.3934/era.2021047 |
[8] | Li Cai, Fubao Zhang . The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29(3): 2475-2488. doi: 10.3934/era.2020125 |
[9] | Hui Guo, Tao Wang . A note on sign-changing solutions for the Schrödinger Poisson system. Electronic Research Archive, 2020, 28(1): 195-203. doi: 10.3934/era.2020013 |
[10] | Qihong Shi, Yaqian Jia, Xunyang Wang . Global solution in a weak energy class for Klein-Gordon-Schrödinger system. Electronic Research Archive, 2022, 30(2): 633-643. doi: 10.3934/era.2022033 |
In this paper, we study a class of Schrödinger-Poisson system with the following version
{−Δu+u+K(x)ϕu=|u|p−1u+μh(x)u in R3,−Δϕ=K(x)u2 in R3, | (1) |
where
{−Δu+u+ϕu=f(u) in R3,−Δϕ=u2 in R3, | (2) |
which has been derived from finding standing waves of the Schrödinger-Poisson system
{iψt−Δψ+ϕψ=f(ψ) in R3,−Δϕ=|ψ|2 in R3. |
A starting point of studying system (1) is the following fact. For any
ϕu(x)=14π∫R3K(y)|u(y)|2|x−y|dy |
such that
−Δu+u+K(x)ϕuu=|u|p−1u+μh(x)u,u∈H1(R3). | (3) |
Problem (3) can be also looked on as a usual semilinear elliptic equation with an additional nonlocal perturbation
From Lemma 2.1, we know that under the condition (A1), the following eigenvalue problem
−Δu+u=μh(x)u,u∈ H1(R3) |
has a first eigenvalue
F(u):=∫R3K(x)ϕu(x)|u(x)|2dx |
and introduce the energy functional
Iμ(u)=12‖u‖2+14F(u)−∫R3(1p+1|u|p+1+μ2h(x)u2)dx, |
where
⟨I′μ(u),v⟩=∫R3(∇u∇v+uv+K(x)ϕuuv−|u|p−1uv+μh(x)uv)dx. |
It is known that there is a one to one correspondence between solutions of (3) and critical points of
Theorem 1.1. Suppose that the assumptions of
The second result is about
Theorem 1.2. Under the assumptions of
The proofs of Theorem 1.1 and Theorem 1.2 are based on critical point theory. There are several difficulties in the road of getting critical points of
While for nonautonomous version of Schrödinger-Poisson system, only a few results are known in the literature. Jiang et.al.[21] have studied the following Schrödinger-Poisson system with non constant coefficient
{−Δu+(1+λg(x))u+θϕ(x)u=|u|p−2u in R3,−Δϕ=u2in R3,lim |
in which the authors prove the existence of ground state solution and its asymptotic behavior depending on
\left\{ \begin{array}{ll} -\Delta u +u + \phi u = V(x)|u|^4u + \mu P(x)|u|^{q-2}u \quad \hbox{in}\ \mathbb{R}^3,& \\ -\Delta \phi = u^2 \quad \hbox{in} \ \mathbb{R}^3, \quad 2 < q < 6, \mu > 0& \end{array} \right. |
has been studied by Zhao et al. [31]. Besides some other conditions, Zhao et. al. [31] assume that
\begin{equation} \left\{ \begin{array}{ll} -\Delta u +u+L(x)\phi u = g(x, u) \quad & \ \hbox{in}\ \mathbb{R}^3,\\ -\Delta \phi = L(x)u^2\quad & \ \hbox{in} \ \mathbb{R}^3. \end{array} \right. \end{equation} | (4) |
Besides some other conditions and the assumption
\begin{equation} -\Delta u = a(x)|u|^{p-2}u + \tilde{\mu}k(x)u, \quad \ \hbox{in}\ \mathbb{R}^N, \end{equation} | (5) |
Costa et.al.[14] have proven the mountain pass geometry for the related functional of (5) when
This paper is organized as follows. In Section 2, we give some preliminaries. Special attentions are focused on several lemmas analyzing the Palais-Smale conditions of the functional
Notations. Throughout this paper,
S_{p+1} = {\inf\limits_{u\in H^1(\mathbb{R}^3)\setminus\{0\}}}\frac{\int_{\mathbb{R}^3}\left(|\nabla u|^2 + |u|^2\right)dx}{\left(\int_{\mathbb{R}^3}| u|^{p+1}dx\right)^{\frac2{p+1}}}. |
For any
In this section, we give some preliminary lemmas, which will be helpful to analyze the (PS) conditions for the functional
L_u(v) = \int_{{\mathbb{R}}^3} K(x)u^2vdx,\qquad v\in D^{1, 2}(\mathbb{R}^3), |
one may deduce from the Hölder and the Sobolev inequalities that
\begin{equation} |L_u(v)|\leq C\|u\|_{L^{\frac{12}{5}}}^2\|v\|_{L^6}\leq C \|u\|_{L^{\frac{12}{5}}}^2\|v\|_{D^{1, 2}}. \end{equation} | (6) |
Hence, for any
\phi_u(x) = \frac{1}{4\pi}\int_{\mathbb{R}^3}\frac{K(y)u^2(y)}{|x-y|}dy. |
Clearly
\begin{equation} \|\phi_u\|_{D^{1, 2}}^2 = \int_{\mathbb{R}^3}|\nabla \phi_u|^2dx = \int_{\mathbb{R}^3}K(x)\phi_uu^2dx. \end{equation} | (7) |
Using (6) and (7), we obtain that
\begin{equation} \|\phi_{u}\|_{L^6} \leq C\|\phi_u\|_{D^{1, 2}}\leq C\|u\|_{L^{\frac{12}{5}}}^2\leq C\|u\|^2. \end{equation} | (8) |
Then we deduce that
\begin{equation} \int_{\mathbb{R}^3} K(x)\phi_u(x)u^2(x)dx\leq C \|u\|^4. \end{equation} | (9) |
Hence on
\begin{equation} F(u) = \int_{\mathbb{R}^3} K(x)\phi_u(x)u^2(x)dx \end{equation} | (10) |
and
\begin{equation} I_\mu(u) = \frac{1}{2}\|u\|^2+\frac{1}{4}F(u)-\int_{\mathbb{R}^3}\left({\frac{1}{p+1}} |u|^{p+1} + \frac{\mu}{2} h(x)u^2\right)dx \end{equation} | (11) |
are well defined and
\langle I'_\mu(u), v\rangle = \int_{\mathbb{R}^3}\left( \nabla u\nabla v+uv + K(x) \phi_uuv - |u|^{p-1}uv - \mu h(x)uv\right)dx. |
The following Lemma 2.1 is a direct consequence of [28,Lemma 2.13].
Lemma 2.1. Assume that the hypothesis
Using the spectral theory of compact symmetric operators on Hilbert space, the above lemma implies the existence of a sequence of eigenvalues
-\Delta u+u = \mu h(x)u, \; \hbox{in}\; H^1(\mathbb{R}^3) |
with
\mu_1 = {\inf\limits_{u\in {H^1(\mathbb{R}^3)}\setminus \{0\}}}\frac{\|u\|^2}{ \int_{\mathbb{R}^3} h(x)u^2dx}, \quad \mu_n = {\inf\limits_{u\in {S_{n-1}^\perp}\setminus \{0\}}}\frac{\|u\|^2}{ \int_{\mathbb{R}^3} h(x)u^2dx}, |
where
Next we analyze the
Definition 2.2. For
Lemma 2.3. Let
Proof. For
\begin{eqnarray} &d& + 1 + o(1)\|u_n\| = I_\mu(u_n) -\frac14 \langle I_\mu'(u_n),u_n \rangle \\ & = & \frac{1}{4}\|u_n\|^2 - \frac{\mu}{4}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{p-3}{4(p+1)}\int_{\mathbb{R}^3}|u_n|^{p+1} dx. \end{eqnarray} | (12) |
Note that
\begin{array}{rl} \int_{\mathbb{R}^3}h(x)u_n^2dx &\leq \left(\int_{\mathbb{R}^3}|u_n|^{p+1}dx\right)^{\frac2{p+1}} \left(\int_{\mathbb{R}^3}|h(x)|^{\frac{p+1}{p-1}}dx\right)^{\frac{p-1}{p+1}} \\ & \leq \frac{2\vartheta}{p+1} \int_{\mathbb{R}^3}|u_n|^{p+1}dx + \frac{p-1}{p+1} \vartheta^{-\frac2{p-1}}\int_{\mathbb{R}^3}|h(x)|^{\frac{p+1}{p-1}}dx. \end{array} |
Choosing
\begin{equation} d + 1 + o(1)\|u_n\| \geq \frac{1}{4}\|u_n\|^2 - D(p, h) \mu^{\frac{p+1}{p-1}}, \end{equation} | (13) |
where
The following lemma is a variant of Brezis-Lieb lemma. One may find the proof in [20].
Lemma 2.4. [20] If a sequence
\lim\limits_{n\to\infty}F(u_n) = F(u_0) + \lim\limits_{n\to\infty}F(u_n-u_0). |
Lemma 2.5. There is a
I_\mu(u) > - \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
Proof. Since
\begin{array}{rl} I_\mu(u) & = \frac12 \left(\|u\|^2 - \mu\int_{\mathbb{R}^3} h(x)u^2 dx\right) + \frac14 F(u) - \frac1{p+1}\int_{\mathbb{R}^3} |u|^{p+1} dx\\ & = \frac{p-1}{2(p+1)} \left(\|u\|^2 - \mu\int_{\mathbb{R}^3} h(x)u^2 dx\right) +\frac{p-3}{4(p+1)}F(u). \end{array} |
Noticing that
I_{\mu_1}(u) \geq \frac{p-3}{4(p+1)}F(u) > 0. |
Next, we claim: there is a
I_\mu(u) > - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. |
Suppose this claim is not true, then there is a sequence
I_{\mu^{(n)}}(u_{\mu^{(n)}}) \leq - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. |
Note that
\begin{eqnarray} I_{\mu^{(n)}}(u_{\mu^{(n)}}) + o(1)\|u_{\mu^{(n)}}\|&\geq & I_{\mu^{(n)}}(u_{\mu^{(n)}}) -\frac14 \langle I'_{\mu^{(n)}}(u_{\mu^{(n)}}), u_{\mu^{(n)}} \rangle \\ &\geq & \frac{1}{4}\|u_{\mu^{(n)}}\|^2 - D(p,h) \left(\mu^{(n)}\right)^{\frac{p+1}{p-1}}. \end{eqnarray} |
This implies that
\|u_{\mu^{(n)}}\|^2 - \mu^{(n)} \int_{\mathbb{R}^3} h(x)(u_{\mu^{(n)}})^2 dx \geq \left(1-\frac{\mu^{(n)}}{\mu_1}\right)\|u_{\mu^{(n)}}\|^2\to 0 |
because
\begin{array}{rl} I_{\mu^{(n)}}(u_{\mu^{(n)}}) & = \frac{p-1}{2(p+1)} \left(\|u_{\mu^{(n)}}\|^2 - \mu^{(n)} \int_{\mathbb{R}^3} h(x)(u_{\mu^{(n)}})^2 dx\right) \\ &\qquad + \frac{p-3}{4(p+1)}F(u_{\mu^{(n)}}), \end{array} |
we deduce that
\liminf\limits_{n\to\infty}I_{\mu^{(n)}}(u_{\mu^{(n)}}) \geq \frac{p-3}{4(p+1)}\liminf\limits_{n\to\infty} F(u_{\mu^{(n)}}) \geq 0, |
which contradicts to the
I_{\mu^{(n)}}(u_{\mu^{(n)}}) \leq - \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
This proves the claim and the proof of Lemma 2.5 is complete.
Lemma 2.6. If
Proof. Let
d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx |
and
\langle I'_\mu (u_n), u_n\rangle = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Then we can prove that
\|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1), |
F(u_n) = F(u_0) + F(w_n) +o(1) |
and
\|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). |
Using Lemma 2.1, we also have that
\begin{eqnarray} d + o(1)& = & I_\mu(u_n) = I_\mu(u_0) + \frac{1}{2}\| w_n\|^2\\ &+& \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{eqnarray} | (14) |
Noticing
\begin{equation} \|u_0\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_0^2dx + F(u_0) = \int_{\mathbb{R}^3}|u_0|^{p+1}dx. \end{equation} | (15) |
Since
o(1) = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Combining this with (15) as well as Lemma 2.1, we obtain that
\begin{equation} o(1) = \|w_n\|^2 + F(w_n) -\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{equation} | (16) |
Recalling the definition of
Suppose that the case (ⅰ) occurs. We may obtain from (16) that
\|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. |
Hence we get that for
\begin{equation} \|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). \end{equation} | (17) |
Therefore using (14), (16) and (17), we deduce that for
\begin{eqnarray} & d& + o(1) = I_\mu(u_n) \\ & = & I_\mu(u_0) + \frac{1}{2}\|w_n\|^2 + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \\ & = & I_\mu(u_0) + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & - \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & 0, \end{eqnarray} | (18) |
which contradicts to the condition
Next we give a mountain pass geometry for the functional
Lemma 2.7. There exist
Proof. For any
\begin{equation} u = te_1+v, \; \hbox{where}\; \int_{\mathbb{R}^3} \left(\nabla v \nabla e_1 + ve_1\right)dx = 0. \end{equation} | (19) |
Hence we deduce that
\begin{equation} \|u\|^2 = \|\nabla (te_1+v)\|_{L^2}^2 + \|te_1+v\|_{L^2}^2 = t^2+\|v\|^2, \end{equation} | (20) |
\begin{equation} \mu_2\int_{\mathbb{R}^3} h(x)v^2dx\leq \|v\|^2, \; \; \mu_1\int_{\mathbb{R}^3} h(x)e_1^2dx = \|e_1\|^2 = 1 \end{equation} | (21) |
and
\begin{equation} \mu_1\int_{\mathbb{R}^3} h(x)e_1 v dx = \int_{\mathbb{R}^3} \left(\nabla v \nabla e_1+ve_1\right)dx = 0. \end{equation} | (22) |
We first consider the case of
\begin{array}{rl} I_{\mu_1}(u)& = \frac{1}{2} \|u\|^2+\frac{1}{4}F(u)- \frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)u^2dx - \frac{1}{p+1}\int_{\mathbb{R}^3} |u|^{p+1}dx\\ & = \frac{1}{2} \|t e_1 + v\|^2 +\frac{1}{4} F(te_1+v)\\ & \quad -\frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)(te_1+v)^2dx-\frac{1}{p+1}\int_{\mathbb{R}^3} |te_1 + v|^{p+1}dx\\ & \geq\frac{1}{2}\left(1-\frac{\mu_1}{\mu_2}\right) \|v\|^2 +\frac{1}{4} F(te_1+v)-\frac{1}{p+1}\int_{\mathbb{R}^3} |te_1 + v|^{p+1}dx\\ & \geq \theta_1\|v\|^2 +\frac{1}{4} F(te_1+v) - C_1|t|^{p+1} - C_2\|v\|^{p+1}. \end{array} |
Next we estimate the term
F(te_1+v) = \frac{1}{4\pi}\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)(te_1(y)+v(y))^2(te_1(x)+v(x))^2}{|x-y|}dydx. |
Since
\begin{array}{rl} & \left(te_1(y)+v(y)\right)^2\left(te_1(x)+v(x)\right)^2 = t^4 (e_1(y))^2(e_1(x))^2 + (v(y))^2(v(x))^2\\ & \qquad + 2t^3\left(e_1(y)(e_1(x))^2v(y) + e_1(x)(e_1(y))^2v(x)\right)\\ & \qquad + 2t\left(e_1(x)v(x)(v(y))^2 + e_1(y)v(y)(v(x))^2\right)\\ & \qquad +t^2\left((e_1(x))^2(v(y))^2 + 4e_1(y)e_1(x)v(y)v(x) + (e_1(y))^2(v(x))^2\right), \end{array} |
we know that
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(e_1(y)(e_1(x))^2v(y) + e_1(x)(e_1(y))^2v(x)\right)}{|x-y|}dydx\right|\leq C\|v\|; \end{equation} | (23) |
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(2(e_1(x))^2(v(y))^2 + 4e_1(y)e_1(x)v(y)v(x)\right)}{|x-y|}dydx\right|\leq C\|v\|^2 \end{equation} | (24) |
and
\begin{equation} \left|\int_{\mathbb{R}^3\times \mathbb{R}^3}\frac{K(x)K(y)\left(e_1(x)v(x)(v(y))^2 + e_1(y)v(y)(v(x))^2\right)}{|x-y|}dydx\right|\leq C\|v\|^3. \end{equation} | (25) |
Hence
\begin{array}{rl} I_{\mu_1}(u)& \geq \theta_1\|v\|^2 + \theta_2|t|^4 - C_1|t|^{p+1} - C_2\|v\|^{p+1} \\ & \qquad -C_3|t|^3\|v\| - C_4|t|^2\|v\|^2 - C_5|t|\|v\|^3+\frac{1}{4}F(v), \end{array} |
where
t^2\|v\|^2 \leq \frac2{p+1} |t|^{p+1} + \frac{p-1}{p+1} \|v\|^{\frac{2(p+1)}{p-1}}, |
|t|\|v\|^3 \leq \frac1{p+1} |t|^{p+1} + \frac{p}{p+1}\|v\|^{\frac{3(p+1)}{p}} |
and for some
|t|^3\|v\| \leq \frac{1}{q_0} \|v\|^{q_0} + \frac{q_0 - 1}{q_0} |t|^{\frac{3q_0}{q_0 - 1}}. |
Therefore we deduce that
\begin{equation} \begin{array}{rl} & I_{\mu_1}(u) \geq \theta_1 \|v\|^2 + \theta_2 |t|^4 - \frac{C_3}{q_0} \|v\|^{q_0} - \frac{C_3(q_0 - 1)}{q_0} |t|^{\frac{3q_0}{q_0 - 1}}\\ & \quad -\frac{2C_4}{p+1} |t|^{p+1} - \frac{(p-1)C_4}{p+1}\|v\|^{\frac{2(p+1)}{p-1}} - \frac{C_5}{p+1} |t|^{p+1} \\ & \quad - \frac{pC_5}{p+1}\|v\|^{\frac{3(p+1)}{p}} - C|t|^{p+1} - C\|v\|^{p+1}. \end{array} \end{equation} | (26) |
From
I_{\mu_1}(u) \geq \theta_3 \|v\|^2 + \theta_4 |t|^4 |
provided that
\begin{equation} I_{\mu_1}(u) \geq \theta_5 \|u\|^4\qquad \hbox{for}\quad \|u\|^2 \leq \tilde{\theta}_5^2. \end{equation} | (27) |
Set
\begin{array}{rl} I_\mu (u) & = I_{\mu_1}(u) + \frac{1}{2}(\mu_1 - \mu)\int_{\mathbb{R}}h(x)u^2dx\\ & \geq \theta_5 \|u\|^4 - \frac{\mu - \mu_1}{2\mu_1}\|u\|^2\\ & = \|u\|^2 \left(\theta_5 \|u\|^2 - \frac{\mu - \mu_1}{2\mu_1}\right)\\ & \geq \|u\|^2\left(\frac{1}{2} \theta_5 \tilde{\theta}^2_5 - \frac{1}{4}\theta_5\tilde{\theta}^2_5\right) = \frac{1}{4}\theta_5\tilde{\theta}^2_5\|u\|^2 \end{array} |
for
In this section, our aim is to prove Theorem 1.1. For
Proposition 3.1. Let the assumptions
d_{\mu_1} = \inf\limits_{\gamma \in \Gamma_1}\sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) |
with
\Gamma_1 = \left\{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = 0,\ I_{\mu_1}(\gamma(1)) < 0 \right\}. |
Then
Before proving Proposition 3.1, we analyze the
Lemma 3.2. If the assumptions
Proof. It suffices to find a path
\sup\limits_{t\in [0,1]}I_{\mu_1}(\gamma(t)) < \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
Define
\|U_R\|^2 -\mu_1\int h(x)U_R^2 dx+ T_R^2F(U_R) - T_R^{p-1}\int U_R^{p+1} dx = 0. |
If
\frac{1}{T_R^2}\left(\|U_R\|^2 -\mu_1\int h(x)U_R^2dx\right)+F(U_R) = T_R^{p-3}\int U_R^{p+1}dx \to \infty, |
which is impossible either. Hence we only need to estimate
I_{\mu_1}(tU_R) \leq g(t) + CF(U_R), |
where
g(t) = \frac{t^2}{2}\left(\|U_R\|^2 - \mu_1 \int_{\mathbb{R}^3} h(x) U_R^2 dx\right) - \frac{|t|^{p+1}}{p+1}\int_{\mathbb{R}^3} U_R^{p+1} dx. |
Noting that under the assumptions
\begin{equation} \begin{array}{rl} F(U_R) & \leq \left(\int_{\mathbb{R}^3}K(x)^{\frac65}U_R^{\frac{12}{5}}dx\right)^{\frac56} \left(\int_{\mathbb{R}^3} \phi_{U_R}^6dx\right)^{\frac16}\\ & \leq C\left(\int_{\mathbb{R}^3} e^{-\frac65 a|x+R\theta|}(U(x))^{\frac{12}{5}} dx\right)^{\frac56}\\ & \leq C\left(\int_{\mathbb{R}^3} e^{-{\frac65}aR}e^{({\frac65}a-{\frac{12}5}(1-\varepsilon))|x|} dx\right)^{\frac56} \leq C e^{-aR} \end{array} \end{equation} | (28) |
since
\begin{equation} \begin{array}{rl} & \int_{\mathbb{R}^3}h(x)U_R^2dx = \int_{\mathbb{R}^3}h(x+R\theta)U^2(x)dx\\ & \geq C\int_{\mathbb{R}^3} e^{-b|x+R\theta|}U^2(x) dx \geq C\int_{\mathbb{R}^3} e^{-b|x| -bR } U^2(x) dx\\ & \geq C e^{-bR} \int_{\mathbb{R}^3} e^{-b|x|} U^2(x)dx \geq C e^{-bR}. \end{array} \end{equation} | (29) |
It is now deduced from (28) and (29) that
\begin{array}{rl} & \sup\limits_{t > 0} I_{\mu_1}(tU_R) \leq \sup\limits_{t > 0} g(t) + C e^{-aR} \\ &\leq \frac{p-1}{2(p+1)} \left(\|U_R\|^2 - \mu_1 \int_{\mathbb{R}^3} h(x) U_R^2 dx\right)^{\frac{p+1}{p-1}}(\|U_R\|_{L^{p+1}}^{-2})^{\frac{p+1}{p-1}} + C e^{-aR} \\ &\leq \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}} - Ce^{-bR} + o(e^{-bR}) + C e^{-aR} \\ & < \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}} \end{array} |
for
Lemma 3.3. Under the assumptions
Proof. Let
d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu_1}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx |
and
\langle I'_{\mu_1} (u_n), u_n\rangle = \|u_n\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Hence we can deduce that
\|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1),\quad F(u_n) = F(u_0) + F(w_n) +o(1) |
and
\|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). |
Since
\begin{eqnarray} & & d + o(1) = I_{\mu_1}(u_n) = I_{\mu_1}(u_0) + \frac{1}{2}\| w_n\|^2\\ & & \qquad \quad + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{eqnarray} | (30) |
From
\|u_0\|^2 - \mu_1\int_{\mathbb{R}^3}h(x)u_0^2dx + F(u_0) = \int_{\mathbb{R}^3}|u_0|^{p+1}dx |
and then
I_{\mu_1}(u_0) \geq \frac{p-1}{2(p+1)}\left(\|u_0\|^2 - \mu_1 \int_{\mathbb{R}^3}h(x)u_0^2dx\right) + \frac{p-3}{4(p+1)}F(u_0) \geq 0. |
Now using an argument similar to the proof of (16), we obtain that
\begin{equation} o(1) = \|w_n\|^2 + F(w_n) - \int_{\mathbb{R}^3}|w_n|^{P+1}dx. \end{equation} | (31) |
By the relation
Suppose that the case (I) occurs. Then up to a sbusequence, we may obtain from (31) that
\|w_n\|^2 \geq S_{p+1} \left(\| w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}, |
which implies that for
\|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). |
It is deduced from this and (30) that
Proof of Proposition 3.1. Since
Proof of Theorem 1.1. By Proposition 3.1, the
\begin{equation} d_{\mu_1} \leq \max\limits_{t\in [0, 1]} I_{\mu_1}(\gamma_n(t)) < d_{\mu_1} + \frac{1}{n}. \end{equation} | (32) |
By Ekeland's variational principle [5], there exists
\begin{equation} \left\{ \begin{array}{ll} d_{\mu_1} \leq \max\limits_{t\in [0, 1]} I_{\mu_1} (\gamma_n^*(t))\leq \max\limits_{t\in [0, 1]} I_{\mu_1} (\gamma_n(t)) < d_{\mu_1} +\frac{1}{n};\\ \max\limits_{t\in [0, 1]}\|\gamma_n(t)-\gamma_n^*(t)\| < \frac{1}{\sqrt{n}}; \\ \hbox{ there exists} \; t_n\in [0, 1]\; \hbox{such that}\; z_n = \gamma_n^*(t_n) \hbox{ satisfies}: \\ I_{\mu_1}(z_n) = \max\limits_{t\in [0, 1]} I_{\mu_1}(\gamma_n^*(t)), \;\hbox{and}\; \|I'_{\mu_1}(z_n)\|\leq\frac{1}{\sqrt{n}}. \end{array} \right. \end{equation} | (33) |
By Lemma 3.2 and Lemma 3.3 we get a convergent subsequence (still denoted by
In this section, we always assume the conditions
\inf\{ I_\mu(u)\ : \ u\in \mathcal{M}\},\quad \mathcal{M} = \{u\in H^1(\mathbb{R}^3)\ :\ \langle I'_\mu(u), u\rangle = 0\} |
to get a ground state solution. But for
\mathcal{N} = \{u\in H^1(\mathbb{R}^3)\backslash\{0\}:I_\mu'(u) = 0\}. |
And then we consider the following minimization problem
\begin{equation} c_{0,\mu} = \inf\{I_\mu(u):u\in\mathcal{N}\}. \end{equation} | (34) |
Lemma 4.1. Let
d_{0, \mu} = \inf\limits_{\|u\| < \rho} I_\mu (u). |
Then the
Proof. Firstly, we prove that
\begin{eqnarray} I_\mu(u) & = &\frac12 \|u\|^2-\frac{\mu}{2}\int_{\mathbb{R}^3} h(x)u^2dx + \frac14 F(u) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u|^{p+1}dx \\ &\geq& \frac12 \|u\|^2-\frac{\mu}{2\mu_1}\|u\|^2 - C\|u\|^{p+1} > -\infty \end{eqnarray} |
as
I_\mu(te_1) = \frac{t^2}2 \|e_1\|^2-\frac{\mu t^2}{2}\int_{\mathbb{R}^3} h(x)e_1^2dx + \frac{t^4}4 F(e_1) - \frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. |
It is now deduced from
I_\mu(te_1) = \frac{t^2}2\left(1-\frac{\mu}{\mu_1}\right)\|e_1\|^2 + \frac{t^4}4 F(e_1) -\frac{t^{p+1}}{p+1}\int_{\mathbb{R}^3}|e_1|^{p+1}dx. |
Since
Secondly, let
I_\mu(u_n) \to d_{0, \mu}\qquad \hbox{and}\qquad I'_\mu(u_n) \to 0. |
Then we can prove that
We emphasize that the above lemma does NOT mean that
Lemma 4.2. For
Proof. By Lemma 4.1, we know that
For any
I_\mu(u) = I_\mu(u) - \frac{1}{4}\langle I'_\mu(u), u\rangle \geq \frac{1}{4}\|u\|^2 - D(p,h) \mu^{\frac{p+1}{p-1}}. |
Therefore the
Now let
I_\mu(u_n) \to c_{0,\mu}\qquad \hbox{and}\qquad I'_\mu(u_n) = 0. |
Since
Next, to analyze further the
Lemma 4.3. There exists
Proof. The proof is divided into two steps. In the first place, for
\|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx + F(u) = \int_{\mathbb{R}^3} |u|^{p+1}dx |
and hence
I_{\mu_1}(u) = \frac{p-1}{2(p+1)} \left(\|u\|^2 - \mu_1\int_{\mathbb{R}^3} h(x)u^2dx\right) + \frac{p-3}{4(p+1)}F(u). |
Since
I_{\mu_1}(u) \geq \frac{p-3}{4(p+1)}F(u) > 0. |
In the second place, denoted by
I'_{\mu^{(n)}}(u_{0,\mu^{(n)}}) = 0 |
and we also have that
c_{0, \mu^{(n)}} = I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) < 0. |
Hence we deduce that
\begin{array}{rl} I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) & = \frac{p-1}{2(p+1)} \left(\|u_{0,\mu^{(n)}}\|^2 - \mu^{(n)}\int_{\mathbb{R}^3} h(x)(u_{0,\mu^{(n)}})^2dx\right)\\ & \qquad \quad + \frac{p-3}{4(p+1)}F(u_{0,\mu^{(n)}}). \end{array} |
Using the definition of
\|u_{0,\mu^{(n)}}\|^2 - \mu^{(n)}\int_{\mathbb{R}^3} h(x)(u_{0,\mu^{(n)}})^2dx \geq \left(1-\frac{\mu^{(n)}}{\mu_1}\right)\|u_{0,\mu^{(n)}}\|^2\to 0 |
because
Claim. As
Proof of the Claim. From
\begin{eqnarray} o(1) + I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) & = & I_{\mu^{(n)}}(\tilde{u}_0) + \frac{1}{2}\|\tilde{w}_n\|^2 \\ & & + \frac{1}{4}F(\tilde{w}_n) - \frac{1}{p+1}\int_{\mathbb{R}^3}|\tilde{w}_n|^{p+1}dx, \end{eqnarray} | (35) |
where
Now we distinguish two cases:
Suppose that the case (ⅰ) occurs. We may deduce from a proof similar to Lemma 2.6 that
I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) + o(1) \geq I_{\mu_1}(\tilde{u}_0) + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}, |
which is a contradiction because
Next we prove that
\liminf\limits_{n\to\infty} I_{\mu^{(n)}}(u_{0,\mu^{(n)}}) \geq \frac{p-3}{4(p+1)} F(\tilde{u}_0) > 0, |
which is also a contradiction since
Hence there is
Remark 4.4. The proof of Lemma 4.3 implies that (1) of Theorem 1.2 holds.
In the following, we are going to prove the existence of another nonnegative bound state solution of (3). To obtain this goal, we have to analyze further the
Lemma 4.5. Under the assumptions of
Proof. Let
d + o(1) = \frac{1}{2}\|u_n\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)u_n^2dx + \frac{1}{4}F(u_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|u_n|^{p+1}dx |
and
\langle I'_\mu (u_n), u_n\rangle = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx. |
Similar to the proof in Lemma 2.3, we can deduce that
\|u_n\|^2 = \|u_0\|^2 + \|w_n\|^2 +o(1), |
F(u_n) = F(u_0) + F(w_n) +o(1) |
and
\|u_n\|^{p+1}_{L^{p+1}} = \|u_0\|^{p+1}_{L^{p+1}} + \|w_n\|^{p+1}_{L^{p+1}} +o(1). |
Using Lemma 2.1, we also have that
\begin{eqnarray} & & d + o(1) = I_\mu(u_n) = I_\mu(u_0) + \frac{1}{2}\| w_n\|^2\\ & & \qquad \quad + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{eqnarray} | (36) |
Since
I_\mu(u_0) \geq c_{0,\mu} |
and
\|u_0\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_0^2dx + \int_{\mathbb{R}^3}\phi_{u_0}u_0^2 = \int_{\mathbb{R}^3}|u_0|^{p+1}dx. |
Note that
o(1) = \|u_n\|^2 - \mu\int_{\mathbb{R}^3}h(x)u_n^2dx + F(u_n) - \int_{\mathbb{R}^3}|u_n|^{p+1}dx |
imply that
\begin{equation} o(1) = \| w_n\|^2 + F(w_n) -\int_{\mathbb{R}^3}|w_n|^{p+1}dx. \end{equation} | (37) |
Using
Suppose (I) occurs. Up to a subsequence, we may obtain from (37) that
\|w_n\|^2 \geq S_{p+1} \left(\|w_n\|^2 + F(w_n) - o(1)\right)^{\frac2{p+1}}. |
Hence we get that for
\begin{equation} \|w_n\|^2 \geq S_{p+1}^{\frac{p+1}{p-1}} + o(1). \end{equation} | (38) |
Therefore using (36) and (38), we deduce that for
\begin{eqnarray} & d & + o(1) = I_\mu(u_n) \\ & = & I_\mu(u_0) + \frac{1}{2}\|w_n\|^2 + \frac{1}{4}F(w_n) -\frac{1}{p+1}\int_{\mathbb{R}^3}|w_n|^{p+1}dx \\ & = & I_\mu(u_0) + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & \geq & c_{0,\mu} + \frac{p-1}{2(p+1)}\|w_n\|^2 + \frac{p-3}{4(p+1)}F(w_n) \\ & > & c_{0,\mu} + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}, \end{eqnarray} | (39) |
which contradicts to the assumption
Next, for the
d_{2, \mu} = \inf\limits_{\gamma \in \Gamma_2}\sup\limits_{t\in [0,1]}I_\mu(\gamma(t)) |
with
\Gamma_2 = \{ \gamma \in C([0,1], H^1(\mathbb{R}^3))\ : \ \gamma(0) = w_{0, \mu},\ I_\mu(\gamma(1)) < c_{0,\mu} \}. |
Lemma 4.6. Suppose that the conditions
d_{2, \mu} < c_{0,\mu} + \frac{p-1}{2(p+1)} S_{p+1}^{\frac{p+1}{p-1}}. |
Proof. It suffices to find a path starting from
\begin{array}{rl} I_\mu(w_0 + tU_R) & = \frac{1}{2}\left(\left\|w_0 + tU_R\right\|^2 - \mu \int_{\mathbb{R}^3} h(x)|w_0 + t U_R|^2dx\right) \\ & \quad + \frac{1}{4}F(w_0 + tU_R) - \frac1{p+1} \int_{\mathbb{R}^3}|w_0 + t U_R|^{p+1}dx \\ & = I_\mu(w_0) + A_1 + A_2 + A_3 +\frac{t^2}{2}\|U_R\|^2 - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)U_R^2dx, \end{array} |
where
A_1 = \langle w_0, tU_R\rangle - \mu t\int_{\mathbb{R}^3} h(x)w_0 U_R dx, |
A_2 = \frac{1}{4}\left(F(w_0 + tU_R) - F(w_0)\right) |
and
A_3 = \frac1{p+1} \int_{\mathbb{R}^3}\left(|w_0|^{p+1} - |w_0 + t U_R|^{p+1}\right)dx. |
Since
A_1 = \int_{\mathbb{R}^3}(w_0)^p t U_R dx - \int_{\mathbb{R}^3} K(x)\phi_{w_0}w_0 t U_R dx. |
From an elementary inequality:
(a+b)^q - a^q \geq b^q + q a^{q-1}b,\qquad q > 1,\ \ a > 0, b > 0, |
we deduce that
|A_3| \leq - \frac1{p+1}\int_{\mathbb{R}^3} |t U_R|^{p+1}dx - \int_{\mathbb{R}^3} |w_0|^p tU_Rdx. |
For the estimate of
\begin{array}{rl} |A_2| &\leq t\int_{\mathbb{R}^3}K(x)\phi_{w_0}w_0 U_R dx + \frac{t^2}{2}\int_{\mathbb{R}^3}K(x)\phi_{w_0} (U_R)^2 dx \\ & \qquad \quad + \frac{t^4}{4}\int_{\mathbb{R}^3} K(x)\phi_{U_R}(U_R)^2 dx + t^3\int_{\mathbb{R}^3} K(x)\phi_{U_R}w_0 U_R dx \\ & \qquad \qquad \quad + t^2\int_{\mathbb{R}^3\times\mathbb{R}^3}\frac{K(x)K(y)w_0(x)w_0(y)U_R(x)U_R(y)}{|x-y|}dxdy. \end{array} |
Since
\begin{array}{rl} & \int_{\mathbb{R}^3\times\mathbb{R}^3}\frac{K(x)K(y)w_0(x)w_0(y)U_R(x)U_R(y)}{|x-y|}dxdy \\ & = \int_{\mathbb{R}^3}K(x)\phi_{\sqrt{w_0 U_R}}w_0 U_R dx\\ & \leq \|\phi_{\sqrt{w_0 U_R}}\|_{L^6} \left(\int_{\mathbb{R}^3} K(x)^{\frac65}(w_0U_R)^{\frac65} dx\right)^{\frac56} \\ & \leq C \left(\int_{\mathbb{R}^3} e^{-\frac65 aR} e^{\left(\frac65 a - \frac65(1-\delta)\right)|x|} dx\right)^{\frac56}\\ & \leq C e^{-a R}\quad \hbox{since}\quad 0 < a < 1. \end{array} |
Similarly we can deduce that for
\int_{\mathbb{R}^3}K(x)\phi_{w_0}w_0 U_R dx \leq C e^{-a R}, \ \ \int_{\mathbb{R}^3}K(x)\phi_{w_0} (U_R)^2 dx \leq C e^{-a R}, |
\int_{\mathbb{R}^3} K(x)\phi_{U_R}(U_R)^2 dx \leq C e^{-a R}\ \ \hbox{and}\ \ \int_{\mathbb{R}^3} K(x)\phi_{U_R}w_0 U_R dx \leq C e^{-a R}. |
Since
\begin{array}{rl} & I_\mu(w_0 + tU_R) \leq I_\mu(w_0) +\frac{t^2}{2}\|U_R\|^2dx - \frac{\mu}{2}\int_{\mathbb{R}^3}h(x)U_R^2dx\\ & \qquad \qquad - \frac1{p+1}\int_{\mathbb{R}^3} |t U_R|^{p+1}dx+C e^{-a R}\\ & \leq I_\mu(w_0) + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} +C e^{-a R} - C e^{-b R} + o(e^{-b R})\\ & < c_{0,\mu} + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} \end{array} |
for
Proposition 4.7. Under the conditions (A1)-(A4), if
Proof. Since for
Proof of Theorem 1.2. The conclusion (1) of Theorem 1.2 follows from Lemma 4.3 and Remark 4.4. It remains to prove (2) of Theorem 1.2. By Proposition 4.7, the
\begin{equation} d_{2, \mu} \leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n(t)) < d_{2, \mu} + \frac{1}{n}. \end{equation} | (40) |
By Ekeland's variational principle, there exists
\begin{equation} \left\{ \begin{array}{ll} d_{2, \mu} \leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n^*(t))\leq \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n(t)) < d_{2, \mu} +\frac{1}{n};\\ \max\limits_{t\in [0, 1]}\|\gamma_n(t)-\gamma_n^*(t)\| < \frac{1}{\sqrt{n}}; \\ \hbox{ there exists} \; t_n\in [0, 1]\; \hbox{such that}\; z_n : = \gamma_n^*(t_n) \hbox{ satisfies}: \\ I_{\mu}(z_n) = \max\limits_{t\in [0, 1]} I_{\mu} (\gamma_n^*(t)), \;\hbox{and}\; \|I'_{\mu}(z_n)\|\leq\frac{1}{\sqrt{n}}. \end{array} \right. \end{equation} | (41) |
By Lemma 4.6 we get a convergent subsequence (still denoted by
Next, let
0 < \alpha \leq d_{2, \mu^{(n)}}\leq \max\limits_{s > 0}I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) |
and
I_{\mu^{(n)}}(w_{0,\mu^{(n)}} + sU_R) \leq \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}} +C e^{-a R} - C e^{-b R} + o(e^{-b R}), |
\begin{equation} \limsup\limits_{n\to\infty} d_{2, \mu^{(n)}} \leq \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}. \end{equation} | (42) |
Next, similar to the proof in Lemma 2.3, we can deduce that
I_{\mu^{(n)}}(u_{2,\mu^{(n)}}) \geq I_{\mu_1}(\tilde{u}_2) + \frac{p-1}{2(p+1)}S_{p+1}^{\frac{p+1}{p-1}}, |
which contradicts to (42). Hence
The author thanks the unknown referee for helpful comments.
[1] |
Aloui C, Hkiri B (2014) Co-movements of GCC emerging stock markets: New evidence from wavelet coherence analysis. Econ Model 36: 421–431. doi: 10.1016/j.econmod.2013.09.043
![]() |
[2] |
Aggarwal S, Raja A (2019) Stock market interlinkages among the BRIC economies. Int J Ethics Syst 35: 59–74. doi: 10.1108/IJOES-04-2018-0064
![]() |
[3] |
Bissoondoyal-Bheenick E, Brooks R, et al. (2018) Volatility spillover between the US, Chinese and Australian stock markets. Aus J Manage 43: 263–285. doi: 10.1177/0312896217717305
![]() |
[4] | Bai S, Cui W, Zhang L (2018) The Granger causality analysis of stocks based on clustering. Cluster Comput, 1–6. |
[5] |
Cai XJ, Tian S, Yuan N, et al. (2017) Interdependence between oil and East Asian stock markets: Evidence from wavelet coherence analysis. J Int Financ Mark Inst Money 48: 206–223. doi: 10.1016/j.intfin.2017.02.001
![]() |
[6] | Cappiello L, Engle RF, Sheppard K (2006) Asymmetric dynamics in the correlations of global equity and bond returns. J Financ Econ 4: 537–572. |
[7] | Chien M, Lee C, Hu T, et al. (2015) Dynamic Asian stock market convergence: Evidence from dynamic cointegration analysis among China and ASEAN-5. Econ Model 51: 84–98. |
[8] | Caporale G, Ali F, Spagnolo N (2015) Oil price uncertainty and sectoral stock returns in China: A time-varying approach. China Econ Rev 34: 311–321. |
[9] | Chiang T, Chen X (2016) Empirical analysis of dynamic linkages between China and international stock markets. J Math Financ 6: 189. |
[10] |
Caporin M, McAleer M (2013) Ten things you should know about the dynamic conditional correlation representation. Econometrics 1: 115–126. doi: 10.3390/econometrics1010115
![]() |
[11] | Drometer-Oesingmann K (2015) Household Debt in Central and Eastern Europe CEE. In CESifo Forum, München: ifo Institut–Leibniz-Institut für Wirtschaftsforschung an der Universität München. 16: 82–84. |
[12] |
Engle R (2002) Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J Bus Econ Stat 20: 339–350 doi: 10.1198/073500102288618487
![]() |
[13] | Fang L, Bessler D (2018) Is it China that leads the Asian stock market contagion in 2015? Appl Econ Lett 25: 752–757. |
[14] | Grinsted A, Moore J, Jevrejeva S(2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11: 561–566. |
[15] | Hung N (2019) Return and volatility spillover across equity markets between China and Southeast Asian countries. J Econ Financ Administrative Sci. |
[16] | Hung N (2018) Volatility Behaviour of the Foreign Exchange Rate and Transmission Among Central and Eastern European Countries: Evidence from the EGARCH Model. Global Bus Rev. |
[17] | Huyghebaert N, Wang L (2010) The co-movement of stock markets in East Asia: Did the 1997–1998 Asian financial crisis really strengthen stock market integration? China Econ Rev 21: 98–112. |
[18] | Jain A, Biswal P (2016) Dynamic linkages among oil price, gold price, exchange rate, and stock market in India. Resour Policy 49: 179–185. |
[19] |
Joyo A, Lefen L (2019) Stock Market Integration of Pakistan with Its Trading Partners: A Multivariate DCC-GARCH Model Approach. Sustainability 11: 303. doi: 10.3390/su11020303
![]() |
[20] | Kumar D (2014) Return and volatility transmission between gold and stock sectors: Application of portfolio management and hedging effectiveness. IIMB Manage Rev 26: 5–16. |
[21] |
Kao W, Kao T, Changchien C, et al. (2018) Contagion in international stock markets after the subprime mortgage crisis. Chin Econ 51: 130–153. doi: 10.1080/10971475.2018.1447822
![]() |
[22] | Khan F, Bangash R, Khan M (2018) Dynamic Linkage among Pakistan, Emerging and Developed Equity Market. FWU J Social Sci 112. |
[23] |
Li Y, Giles D (2015) Modelling volatility spillover effects between developed stock markets and Asian emerging stock markets. Int J Financ Econ 20: 155–177. doi: 10.1002/ijfe.1506
![]() |
[24] |
Li B, Zeng Z (2018) Time-varying dependence structures of equity markets of China, ASEAN and the USA. Appl Econ Lett 25: 87–91. doi: 10.1080/13504851.2017.1296545
![]() |
[25] |
Lee B (2019) Asian financial market integration and the role of Chinese financial market. Int Rev Econ Financ 59: 490–499. doi: 10.1016/j.iref.2018.10.012
![]() |
[26] |
Lau C, Sheng X (2018) Inter-and intra-regional analysis on spillover effects across international stock markets. Res Int Bus Financ 46: 420–429. doi: 10.1016/j.ribaf.2018.04.013
![]() |
[27] |
Majdoub J, Sassi S (2017) Volatility spillover and hedging effectiveness among China and emerging Asian Islamic equity indexes. Emerg Mark Rev 31: 16–31. doi: 10.1016/j.ememar.2016.12.003
![]() |
[28] |
Nagayev R, Disli M, Inghelbrecht K, et al. (2016) On the dynamic links between commodities and Islamic equity. Energy Econ 58: 125–140. doi: 10.1016/j.eneco.2016.06.011
![]() |
[29] | Najeeb S, Bacha O, Masih M (2015) Does heterogeneity in investment horizons affect portfolio diversification? Some insights using M-GARCH-DCC and wavelet correlation analysis. Emerg Mark Financ Trade 51: 188–208. |
[30] |
Prasad N, Grant A, Kim S (2018) Time varying volatility indices and their determinants: Evidence from developed and emerging stock markets. Int Rev Financ Anal 60: 115–126. doi: 10.1016/j.irfa.2018.09.006
![]() |
[31] |
Paramati S, Zakari A, Jalle M, et al. (2018) The dynamic impact of bilateral trade linkages on stock market correlations of Australia and China. Appl Econ Lett 25: 141–145. doi: 10.1080/13504851.2017.1305067
![]() |
[32] | Raza S, Shah N, Sharif A (2019) Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector. Energy. |
[33] |
Raza S, Sharif A, Wong WK, et al. (2017) Tourism development and environmental degradation in the United States: Evidence from wavelet-based analysis. Curr Issues Tour 20: 1768–1790. doi: 10.1080/13683500.2016.1192587
![]() |
[34] | Ramsey J, Zhang Z (1996) The application of wave form dictionaries to stock market index data. In Predictability of complex dynamical systems, Springer, 189–205. |
[35] | Rizvi S, Arshad S (2014) An empirical study of Islamic equity as a better alternative during crisis using multivariate GARCH DCC. Islamic Econ Stud 130: 1–27. |
[36] | Roni B, Abbas G, Wang S (2018) Return and Volatility Spillovers Effects: Study of Asian Emerging Stock Markets. J Syst Sci Inf 6: 97–119. |
[37] |
Kirkulak Uludag B, Khurshid M (2019) Volatility spillover from the Chinese stock market to E7 and G7 stock markets. J Econ Stud 46: 90–105. doi: 10.1108/JES-01-2017-0014
![]() |
[38] |
Sehgal S, Pandey P, Deisting F (2018) Stock market integration dynamics and its determinants in the East Asian Economic Community Region. J Quant Econ 16: 389–425. doi: 10.1007/s40953-017-0090-7
![]() |
[39] |
Sznajderska A (2019) The role of China in the world economy: evidence from a global VAR model. Appl Econ 51: 1574–1587. doi: 10.1080/00036846.2018.1527464
![]() |
[40] |
Torrence C, Webster P (1999) Interdecadal changes in the ENSO–monsoon system. J clim 12: 2679–2690. doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2
![]() |
[41] |
Tamakoshi G, Hamori S (2013) An asymmetric dynamic conditional correlation analysis of linkages of European financial institutions during the Greek sovereign debt crisis. Eur J Financ 19: 939–950. doi: 10.1080/1351847X.2012.712921
![]() |
[42] |
Toyoshima Y, Tamakoshi G, Hamori S (2012) Asymmetric dynamics in correlations of treasury and swap markets: Evidence from the US market. J Int Financ Mark Inst Money 22: 381–394. doi: 10.1016/j.intfin.2011.12.002
![]() |
[43] |
Yarovaya L, Brzeszczyński J, Lau C (2016) Volatility spillovers across stock index futures in Asian markets: Evidence from range volatility estimators. Financ Res Lett 17: 158–166. doi: 10.1016/j.frl.2016.03.005
![]() |
[44] |
Yilmaz K (2010) Return and volatility spillovers among the East Asian equity markets. J Asian Econ 21: 304–313. doi: 10.1016/j.asieco.2009.09.001
![]() |
[45] |
Yang L, Cai XJ, Zhang H, et al. (2016) Interdependence of foreign exchange markets: A wavelet coherence analysis. Econ Model 55: 6–14. doi: 10.1016/j.econmod.2016.01.022
![]() |
[46] | Yang L, Cai XJ, Hamori S (2017). Does the crude oil price influence the exchange rates of oil-importing and oil-exporting countries differently? A wavelet coherence analysis. Int Rev Econ Financ 49: 536–547. |
[47] |
Zhou X, Zhang W, Zhang J (2012) Volatility spillovers between the Chinese and world equity markets. Pac-Basin Financ J 20: 247–270. doi: 10.1016/j.pacfin.2011.08.002
![]() |
1. | Chao Yang, Sharp condition of global well-posedness for inhomogeneous nonlinear Schrödinger equation, 2021, 14, 1937-1632, 4631, 10.3934/dcdss.2021136 |