Processing math: 93%
Commentary Recurring Topics

Facial Emotion Processing in the Laboratory (and elsewhere): Tradeoffs between Stimulus Control and Ecological Validity

  • Citation: Fernando Ferreira-Santos. Facial Emotion Processing in the Laboratory (and elsewhere): Tradeoffs between Stimulus Control and Ecological Validity[J]. AIMS Neuroscience, 2015, 2(4): 236-239. doi: 10.3934/Neuroscience.2015.4.236

    Related Papers:

    [1] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [2] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [3] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
    [4] Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345
    [5] Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397
    [6] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [7] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [8] Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338
    [9] Zaid Laadjal, Fahd Jarad . On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function. AIMS Mathematics, 2022, 7(1): 1273-1292. doi: 10.3934/math.2022075
    [10] Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644


  • Fractional calculus is the generalization of the ordinary differentiation and integration to non-integer order. It has been applied in various fields such as visco-elastic materials, aerodynamics, finance, chaotic dynamics, nonlinear control, signal processing, bioengineering, chemical engineering, and applied sciences. Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of many materials and processes. However, for the last few years, the fractional calculus was developed by many researchers. There are different definitions of fractional operators (derivative and integral) that have been presented such as Riemann-Liouville, Caputo, Hadamard, Hilfer, Katugampola, and the generalized fractional operators, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14] and references therein.

    The impulsive differential equations have impulsive conditions at points of discontinuity. They have played an important role in discussing the dynamics process of various physical and evolutionary phenomena which have discontinuous jumps and abrupt changes in their state of systems. Such processes and phenomena appear in various applications. For some works on impulsive problems, we refer readers to [15,16,17,18,19] and references cited therein.

    The Langevin differential equation (first introduced by Paul Langevin in $ 1908 $ to provide a complex illustration of Brownian motion [20]) is found an effective piece of equipment to explain the evolution of physical phenomena in fluctuating environments of mathematical physics. After that, the ordinary Langevin equation was replaced by the fractional Langevin equation in $ 1996 $ [21]. For some works on the fractional Langevin equation, see, for example, [22,23,24,25,26].

    In recent years, many researchers attention studied the exclusive examination of the qualitative theory for fractional differential equations. It is existence and uniqueness theory and stability analysis. One of the most method used to examine the stability analysis of functional differential equations is the Ulam's stability such as Ulam-Hyers ($ \mathbb{UH} $) stability, generalized Ulam-Hyers ($ \mathbb{UH} $) stability, Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability and generalized Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability [27,28,29,30,31,32,33,34]. It has helpfulness in the field of numerical analysis and optimization because solving the exact solutions of the problems of fractional differential equations is very difficult. Consequently, it is imperative to develop the concepts of Ulam's stability for these problems because we need not get the exact solutions of the purpose problems when we study the properties of Ulam's stability. The qualitative theory encourages us obtain an efficient and reliable technique for approximately finding fractional differential equations because there exists a close exact solution when the purpose problem is Ulam's stable. Recently, many researchers attentively initiated and examined the existence, uniqueness, and different types of Ulam's stability of the solutions for nonlinear fractional differential equations with/without impulsive conditions; see [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] and references cited therein. To the best of our knowledge, there is no paper on impulsive fractional Langevin differential equations containing the Caputo proportional fractional derivative of a function concerning function.

    Motivated by the papers mentioned above [13,40,47] and a series of papers was devoted to the investigation of existence, uniqueness, and Ulam's stability of solutions of the impulsive fractional Langevin differential equation within different kinds of fractional derivatives, this paper examines the existence results and Ulam's stability of solutions for a class of the following impulsive fractional Langevin differential equation with non-separated boundary conditions under the Caputo proportional derivative type of the form:

    $ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=f(t,x(t),x(μt)),ttk,k=0,1,2,,m,x(t+k)x(tk)=φk(x(tk)),k=1,2,,m,CtkDαk,ρ,ψkx(t+k)tk1CDαk1,ρ,ψk1x(tk)=φk(x(tk)),k=1,2,,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, $ (1.1)

    where $ {^{C}_{t_k}}D^{\nu, \rho, \psi_k} $ denotes the Caputo proportional fractional derivative of order $ \nu $ with respect to certain continuously differentiable and increasing function $ \psi_{k} $ with $ \psi^{\prime}(t) > 0 $ and $ \nu \in \{\alpha_k, \beta_k\} $, $ \alpha_k $, $ \beta_k \in(0, 1) $, $ 1 < \alpha_k +\beta_k < 2 $, $ t\in J_{k} = (t_k, t_{k+1}] \subseteq J = [0, T] = \{0\}\cup \left(\bigcup_{0}^{m}J_{k}\right) $, $ k = 0, 1, \ldots, m $. $ 0 = t_0 < t_1 < \cdot < t_m < t_{m+1} = T $ are impulsive points, $ 0 < \rho \leq 1 $, $ \lambda \in \mathbb{R} $, $ \mu \in(0, 1) $, $ f \in \mathcal{C}(J\times\mathbb{R}^{2}, \mathbb{R}) $, $ \varphi_k $, $ \varphi_k^{\ast} \in \mathcal{C}(\mathbb{R}, \mathbb{R}) $, $ k = 1, 2, \ldots, m $, $ x(t_k^+) = \lim_{\epsilon \to 0^{+}}x(t_{k}+\epsilon) $, $ x(t_k^-) = x(t_{k}) $ and the given constants $ \eta_i $, $ \kappa_i $, $ \xi_i \in\mathbb{R} $ for $ i = 1, 2 $.

    The outline of the paper is as follows: Section $ 2 $ contains fundamental concepts from proportional fractional calculus and some basic lemmas needed in the sequel. An auxiliary result useful to transform problem (1.1) into an equivalent integral equation is proved in Section $ 2 $. The existence results are presented in Section $ 3 $, where the uniqueness result is proved via Banach's fixed point theorem and the existence result with the help of Schaefer's fixed point theorem. Furthermore, we study different types of Ulam's stability results for the problem (1.1). Finally, an illustrative example is constructed in Section $ 5 $ to illustrate the usefulness of the main results.

    In this section, we recall some notations, definitions, lemmas, and properties of proportional fractional derivative and fractional integral operators of a function with respect to another function that will be used throughout the remaining part of this paper. For more details, see [13,14,50].

    Definition 2.1. (The proportional derivative of a function with respect to another function [13,14]) Take $ \rho \in [0, 1] $ and the let the functions $ \kappa_{0} $, $ \kappa_{1} : [0, 1] \times \mathbb{R} \to [0, \infty) $ be continuous such that for all $ t\in \mathbb{R} $ we have

    $ limρ0+κ1(ρ,t)=1,limρ0+κ0(ρ,t)=0,limρ1κ1(ρ,t)=0,limρ1κ0(ρ,t)=1, $

    and $ \kappa_{1}(\rho, t) \neq 0 $, $ \rho \in [0, 1) $, $ \kappa_{0}(\rho, t) \neq 0 $, $ \rho \in (0, 1] $. Let $ \psi(t) $ be a continuously differentiable and increasing function. Then, the proportional differential operator of order $ \rho $ of $ f $ with respect to $ \psi $ is defined by

    $ Dρ,ψf(t)=κ1(ρ,t)f(t)+κ0(ρ,t)f(t)ψ(t). $ (2.1)

    In particular, If $ \kappa_{1}(\rho, t) = 1 - \rho $ and $ \kappa_{0}(\rho, t) = \rho $, we get

    $ Dρ,ψf(t)=(1ρ)f(t)+ρf(t)ψ(t). $ (2.2)

    Definition 2.2. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}^{1}([a, b]) $, $ \psi^{\prime} > 0 $. The proportional fractional integral of order $ \alpha $ of the function $ f\in L^{1}([a, b]) $ with respect to another function $ \psi $ is defined by

    $ aIα,ρ,ψf(t)=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1f(s)ψ(s)ds, $ (2.3)

    where $ \Gamma(\cdot) $ represents the Gamma function [4].

    Definition 2.3. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}([a, b]) $, $ \psi^{\prime}(t) > 0 $. The Riemann-Liouvill proportional fractional derivative of order $ \alpha $ of the function $ f\in \mathcal{C}^{n}([a, b]) $ with respect to another function $ \psi $ is defined by

    $ aDα,ρ,ψf(t)=Dn,ρ,ψaInα,ρ,ψf(t)=Dn,ρ,ψtρnαΓ(nα)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))nα1f(s)ψ(s)ds, $ (2.4)

    where $ n = [Re(\alpha)]+1 $, $ [Re(\alpha)] $ represents the integer part of the real number $ \alpha $ and $ \mathfrak{D}^{n, \rho, \psi} = \underbrace{\mathfrak{D}^{\rho, \psi}\mathfrak{D}^{\rho, \psi}\cdots\mathfrak{D}^{\rho, \psi}}_{\rm{n times}} $.

    Definition 2.4. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}([a, b]) $, $ \psi^{\prime}(t) > 0 $. The Caputo proportional fractional derivative of order $ \alpha $ of the function $ f $ with respect to another function $ \psi $ is defined by

    $ CaDα,ρ,ψf(t)=aInα,ρ,ψDn,ρ,ψf(t)=1ρnαΓ(nα)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))nα1Dn,ρ,ψf(s)ψ(s)ds. $ (2.5)

    Lemma 2.5. ([13]) Let $ \rho \in (0, 1] $, $ Re(\alpha) > 0, $ $ Re(\beta) > 0 $. Then, for $ f $ is continuous and defined for $ t \geq a $, we have

    $ aIα,ρ,ψaIβ,ρ,ψf(t)=aIβ,ρ,ψaIα,ρ,ψf(t)=aIα+β,ρ,ψf(t). $

    Lemma 2.6. ([13]) Let $ 0 \leq m < [Re(\alpha)]+1 $ and $ f $ be integrable in each interval $ [a, t] $, $ t > a $. Then

    $ Dm,ρ,ψaIα,ρ,ψf(t)=aIαm,ρ,ψf(t). $

    Corollary 2.7. ([13]) Let $ 0 < Re(\beta) < Re(\alpha) $ and $ m - 1 < Re(\beta) \leq m $. Then, we have

    $ aDβ,ρ,ψaIα,ρ,ψf(t)=aIαβ,ρ,ψf(t). $

    Corollary 2.8. Let $ 0 < Re(\beta) < Re(\alpha) $ and $ m-1 < Re(\beta) \leq m $. Then, we have

    $ CaDβ,ρ,ψaIα,ρ,ψf(t)=aIαβ,ρ,ψf(t). $

    Proof. By the help of Definition $ 2.4 $, Lemma $ 2.5 $ and Lemma $ 2.6 $, we have

    $ CaDβ,ρ,ψaIα,ρ,ψf(t)=aImβ,ρ,ψDm,ρ,ψaIα,ρ,ψf(t)=aImβ,ρ,ψaIαm,ρ,ψf(t)=aIαβ,ρ,ψf(t). $

    The proof is completed.

    Next, the lemma presents the impact of the proportional fractional integral operator on the Caputo proportional fractional derivative operator of the same order.

    Lemma 2.9.([14]) For $ \rho\in(0, 1] $ and $ n = [Re(\alpha)]+1 $, we have $ {_{a}^{C}}\mathfrak{D}^{\alpha, \rho, \psi} {_{a}}\mathfrak{I}^{\alpha, \rho, \psi}f(t) = f(t), $ and

    $ aIα,ρ,ψCaDα,ρ,ψf(t)=f(t)n1k=0Dk,ρ,ψf(a)ρkk!(ψ(t)ψ(a))keρ1ρ(ψ(t)ψ(a)). $

    Proposition 2.10. ([14]) Let $ Re(\alpha) \geq 0 $ and $ Re(\beta) > 0 $. Then, for any $ \rho\in(0, 1] $ and $ n = [Re(\alpha)]+1 $, we have

    (i) $ \left({_{a}}\mathfrak{I}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\Gamma(\beta)}{\rho^{\alpha}\Gamma(\beta+\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)} \left(\psi(t)-\psi(a) \right)^{\beta+\alpha-1}, \quad Re(\alpha) > 0. $

    (ii) $ \left({_{a}}\mathfrak{D}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\rho^{\alpha}\Gamma(\beta)}{\Gamma(\beta-\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(a) \right)^{\beta-\alpha-1}, \quad Re(\alpha) \geq 0 $.

    (iii) $ \left({_{a}^{C}}\mathfrak{D}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\rho^{\alpha}\Gamma(\beta)}{\Gamma(\beta-\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(a) \right)^{\beta-\alpha-1}, \quad Re(\beta) > n $.

    For $ k = 0, 1, \ldots, n-1 $, we have

    $ (CaDα,ρ,ψeρ1ρψ(s)(ψ(s)ψ(a))k)(t)=0and(CaDα,ρ,ψeρ1ρψ(s))(t)=0. $

    Throughout this paper, let $ \mathbb{E} : = PC(J, \mathbb{R}) : = \{x : J \to \mathbb{R} : x(t) $ is continuous everywhere except for some $ t_k $ at which $ x(t_k^+) $ and $ x(t_k^-) = x(t_k) $, $ k = 1, 2, \ldots, m \} $ the space of piecewise continuous functions. Obviously, $ (\mathbb{E}, \Vert x \Vert) $ is a Banach space equipped with the norm $ \| x \| : = \sup_{t\in J}\vert x(t)\vert $.

    In the following, for the convenience for the reader, we set the functional equation $ F_x(t) = f(t, x(t), x(\mu t)) $, and we express the proportional fractional integral operator defined in (2.3) of a nonlinear function $ F_{x} $ by a subscript notation by

    $ aIα,ρ,ψFx(t)=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1Fx(s)ψ(s)ds=1ραΓ(α)taeρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1f(s,x(s),x(μs))ψ(s)ds. $

    In the sequel, for nonnegative integers $ a < b $, we use the following notations:

    $ Φc(ta,tb)=(ψa(tb)ψa(ta))cρcΓ(c+1), $ (2.6)
    $ Gi(x)=tiIβi,ρ,ψiFx(ti+1)+φi+1(x(ti+1)), $ (2.7)
    $ Hi(x)=tiIαi+βi,ρ,ψiFx(ti+1)λtiIαi,ρ,ψix(ti+1)+φi+1(x(ti+1)), $ (2.8)

    where $ i = 0, 1, 2, \ldots, m $.

    In Lemma $ 2.11 $, we prepare an important lemma, which is used as the main results of the problem (1.1).

    Lemma 2.11. Let $ 0 < \alpha_k, \beta_k < 1 $, $ 1 < \alpha_k +\beta_k < 2 $, $ 0 < \rho\leq 1 $, $ F_{x} \in AC(J\times\mathbb{R}^{2}, \mathbb{R}) $ for any $ x \in \mathcal{C}(J, \mathbb{R}) $ and $ \Omega_{1} \Omega_{4} \neq \Omega_{2} \Omega_{3} $. Then the following boundary value problem:

    $ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=Fx(t),ttk,k=0,1,2,,m,x(t+k)x(tk)=φk(x(tk)),k=1,2,,m,CtkDαk,ρ,ψkx(t+k)tk1CDαk1,ρ,ψk1x(tk)=φk(x(tk)),k=1,2,,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, $ (2.9)

    is equivalent to the following integral equation:

    $ x(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+Ω1R(x,Fx)Ω3K(x,Fx)Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+Ω4K(x,Fx)Ω2R(x,Fx)Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)),tJk, $ (2.10)

    where

    $ Ω1=κ1m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), $ (2.11)
    $ Ω2=η1+κ1m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), $ (2.12)
    $ Ω3=η2+κ2(1λm+1i=1Φαi1(ti1,ti))m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), $ (2.13)
    $ Ω4=η2λκ2λm+1i=1eρ1ρ(ψi1(ti)ψi1(ti1)), $ (2.14)
    $ Ω5=Ω1Ω4Ω2Ω3, $ (2.15)
    $ K(x,Fx)=ξ1κ1tmIαm+βm,ρ,ψmFx(T)+κ1λtmIαm,ρ,ψmx(T)κ1mi=1Gi1(x)mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))κ1mi=1Hi1(x)mj=ieρ1ρ(ψj(tj+1)ψj(tj)), $ (2.16)
    $ R(x,Fx)=ξ2κ2tmIβm,ρ,ψmFx(T)+κ2λtmIαm+βm,ρ,ψmFx(T)κ2λ2tmIαm,ρ,ψmx(T)κ2mi=1Gi1(x)(1λmj=iΦαj(tj,tj+1))mj=ieρ1ρ(ψj(tj+1)ψj(tj))+κ2λmi=1Hi1(x)mj=ieρ1ρ(ψj(tj+1)ψj(tj)), $ (2.17)

    where $ \Phi^{c}(t_a, t_b) $, $ G_{i-1}(x) $, $ H_{i-1}(x) $ are defind by (2.6), (2.7), (2.8), respectively.

    Proof. Firstly, for $ t\in J_{0} = [t_0, t_1] $, we transform the problem (2.9) into an integral equation by applying the proportional fractional integral of order $ \beta_{0} \in (0, 1) $ with respect to a function $ \psi_{0}(t) $ to both sides of (2.9) and also using Lemma $ 2.9 $, we obtain

    $ Ct0Dα0,ρ,ψ0x(t)=t0Iβ0,ρ,ψ0Fx(t)λx(t)+c1eρ1ρ(ψ0(t)ψ0(t0)), $

    where $ c_{1} \in \mathbb{R} $.

    In the same process, taking the proportional fractional integral of order $ \alpha_{0} \in (0, 1) $ with respect to a function $ \psi_{0}(t) $ to both sides of (2), we get, for $ c_{1} $, $ c_{2} \in \mathbb{R} $,

    $ x(t)=t0Iα0+β0,ρ,ψ0Fx(t)λt0Iα0,ρ,ψ0x(t)+c1{(ψ0(t)ψ0(t0))α0ρα0Γ(α0+1)}eρ1ρ(ψ0(t)ψ0(t0))+c2eρ1ρ(ψ0(t)ψ0(t0)). $

    For $ t\in J_{1} = (t_1, t_2] $, by applying the proportional fractional integral of order $ \beta_{1} \in (0, 1) $ with respect to a function $ \psi_{1}(t) $ to both sides of (2.9) and again using Lemma $ 2.9 $, we have

    $ Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)λx(t)+d1eρ1ρ(ψ1(t)ψ1(t1)), $ (2.18)

    and the same method, it follows that

    $ x(t)=t1Iα1+β1,ρ,ψ1Fx(t)λt1Iα1,ρ,ψ1x(t)+d1(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1)eρ1ρ(ψ1(t)ψ1(t1))+d2eρ1ρ(ψ1(t)ψ1(t1)), $ (2.19)

    where $ d_1 $, $ d_2\in \mathbb{R} $

    By using impulsive conditions $ x(t_1^+) = x(t_1^-) + \varphi_1(x(t_1)) $ and $ {^{C}_{t_{1}}}\mathfrak{D}^{\alpha_1, \rho, \psi_{1}}x(t_1^+) = {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_{0}}x(t_1^-) + \varphi_1^*(x(t_1)) $, then

    $ d1=t0Iβ0,ρ,ψ0Fx(t1)+c1eρ1ρ(ψ0(t1)ψ0(t0))+φ1(x(t1)),d2=t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+c1(ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)eρ1ρ(ψ0(t1)ψ0(t0))+c2eρ1ρ(ψ0(t1)ψ0(t0))+φ1(x(t1)). $

    Substituting $ d_1 $ and $ d_2 $ into (2.18) and (2.19), we obtain

    $ Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))}eρ1ρ(ψ1(t)ψ1(t1))+c1{eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1)),tJ1,x(t)=t1Iα1+β1,ρ,ψ1Fx(t)λt1Iα1,ρ,ψ1x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1)}eρ1ρ(ψ1(t)ψ1(t1))+{(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))}eρ1ρ(ψ1(t)ψ1(t1))+c1{((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t)ψ1(t1))α1ρα1Γ(α1+1))eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1))+c2{eρ1ρ(ψ0(t1)ψ0(t0))}eρ1ρ(ψ1(t)ψ1(t1)),tJ1. $

    For $ t\in J_{2} = (t_2, t_3] $, by using the proportional fractional integral of order $ \beta_{2} \in (0, 1) $ and $ \alpha_{2} \in (0, 1) $ with respect to a function $ \psi_{2}(t) $ to both sides of (2.9), we have

    $ Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)λx(t)+d1eρ1ρ(ψ2(t)ψ2(t2)), $ (2.20)
    $ x(t)=t2Iα2+β2,ρ,ψ2Fx(t)λt2Iα2,ρ,ψ2x(t)+d3(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1)eρ1ρ(ψ2(t)ψ2(t2))+d4eρ1ρ(ψ2(t)ψ2(t2)). $ (2.21)

    where $ d_3 $, $ d_4\in \mathbb{R} $. In view of the impulsive conditions $ x(t_2^+) = x(t_2^-) + \varphi_2(x(t_2)) $ and $ {^{C}_{t_{2}}}\mathfrak{D}^{\alpha_2, \rho, \psi_{2}}x(t_2^+) = {^{C}_{t_{1}}}\mathfrak{D}^{\alpha_1, \rho, \psi_{1}}x(t_2^-) + \varphi_2^*(x(t_2)) $, we obtain

    $ d3=(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2))+c1eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))],d4=(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))+c1((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1))eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]+c2eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]. $

    Substituting $ d_3 $ and $ d_4 $ into (2.20) and (2.21), we obtain

    $ Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))}eρ1ρ(ψ2(t)ψ2(t2))+{(t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2)))}eρ1ρ(ψ2(t)ψ2(t2))+c1{eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2)),tJ2,x(t)=t2Iα2+β2,ρ,ψ2Fx(t)λt2Iα2,ρ,ψ2x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ1(x(t1)))×((ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iβ1,ρ,ψ1Fx(t2)+φ2(x(t2)))(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1)}eρ1ρ(ψ2(t)ψ2(t2))+{(t0Iα0+β0,ρ,ψ0Fx(t1)λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ1ρ(ψ1(t2)ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))}eρ1ρ(ψ2(t)ψ2(t2))+c1{((ψ0(t1)ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)ψ2(t2))α2ρα2Γ(α2+1))×eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2))+c2{eρ1ρ[(ψ0(t1)ψ0(t0))+(ψ1(t2)ψ1(t1))]}eρ1ρ(ψ2(t)ψ2(t2)),tJ2. $

    By a similar way repeating the same process, for $ t\in J_k = (t_k, t_{k+1}] $, $ k = 0, 1, 2, \ldots, m $, we have the integral equation

    $ x(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+c1ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+c2ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)), $ (2.22)
    $ CtkDαk,ρ,ψkx(t)=tkIβk,ρ,ψkFx(t)λx(t)+{ki=1Gi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+c1ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)). $ (2.23)

    From the given boundary conditions, we get the following system

    $ Ω1c1+Ω2c2=K(x,Fx),Ω3c1+Ω4c2=R(x,Fx). $

    Solving the above system for the constants $ c_1 $ and $ c_2 $, we have

    $ c1=Ω1R(x,Fx)Ω3K(x,Fx)Ω1Ω4Ω2Ω3andc2=Ω4K(x,Fx)Ω2R(x,Fx)Ω1Ω4Ω2Ω3, $

    where $ \Omega_{1} \Omega_{4} \neq \Omega_{2} \Omega_{3} $ are defined by (2.11), (2.12), (2.13) and (2.14), respectively. Substituting these values of $ c_{1} $ and $ c_{2} $ in (2.22), yields the solution in (2.10).

    Conversely, it is easily to shown by direct calculuation that the solution $ x(t) $ is given by (2.10) satisfies the problem (2.9) under the given boundary conditions. This completes the proof.

    The fixed point theorems play an important role in studying the existence theory for the problem (1.1). We collect here some well-known fixed point theorems for the sake of essential in the proofs of our existence and uniqueness results.

    Theorem 2.12. (Banach's fixed point theorem [50]) Let $ D $ be a non-empty closed subset of a Banach space $ E $. Then any contraction mapping $ T $ from $ D $ into itself has a unique fixed point.

    Theorem 2.13. (Schaefer's fixed point theorem [50]) Let $ E $ be a Banach space and $ T $ : $ E \to E $ be a completely continuous operator, and let the set $ D = \{x \in E : x = \sigma Tx, 0 < \sigma \leq 1\} $ be bounded. Then $ T $ has a fixed point in $ E $.

    In this section, we discuss the existence and uniqueness results for the problem (1.1) via Banach's and Schaefer's fixed point theorems.

    In view of Lemma $ 2.11 $ to establish existence theorems, we consider the operator equation $ x = \mathcal{Q}x $, where $ \mathcal{Q} : \mathbb{E} \to \mathbb{E} $ is defined by

    $ (Qx)(t)=tkIαk+βk,ρ,ψkFx(t)λtkIαk,ρ,ψkx(t)+{ki=1Hi1(x)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(x)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+Ω1R(x,Fx)Ω3K(x,Fx)Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+Ω4K(x,Fx)Ω2R(x,Fx)Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)),tJk. $ (3.1)

    It is clear that the problem (1.1) has a solution if and only if the operator $ \mathcal{Q} $ has fixed points.

    To simplify the computations, we use the following constants:

    $ Λ1=m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1), $ (3.2)
    $ Λ2=m+1i=1Φαi1(ti1,ti), $ (3.3)
    $ Λ3=mi=1mj=iΦαj(tj,tj+1), $ (3.4)
    $ Λ4=m+1i=1Φβi1(ti1,ti), $ (3.5)
    $ Θ1=Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|, $ (3.6)
    $ Θ2=1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, $ (3.7)
    $ Θ3=Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|, $ (3.8)
    $ Θ4=(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, $ (3.9)

    By applying classical fixed point theorems, we prove in the next subsections, for the problems (1.1), our main existence and uniqueness results.

    The first result is an existence and uniqueness result for the problem (1.1) by applying Banach's fixed point theorem.

    Theorem 3.1. Let $ \psi_{k} \in \mathcal{C}^{2}(J) $ with $ \psi^{\prime}_{k}(t) > 0 $ for $ t\in J $, $ k = 0, 1, 2, \ldots, m $. Assume that $ f\in \mathcal{C}(J\times\mathbb{R}^{2}, \mathbb{R}) $, $ \varphi_{k} $, $ \varphi_{k}^{\ast} \in \mathcal{C}(\mathbb{R}, \mathbb{R}) $, $ k = 1, 2, \ldots, m $ satisfy the following assumptions:

    $ (H_1) $ There exist a constant $ L_1 > 0 $ such that, for every $ t\in J $ and $ x_{1} $, $ x_{2} $, $ y_{1} $, $ y_2 \in \mathbb{R} $, such that

    $ |f(t,x1,y1)f(t,x2,y2)|L1(|x1x2|+|y1y2|). $

    $ (H_2) $ There exist constants $ M_1, M_1^* > 0 $, for any $ x, y\in \mathbb{R} $, such that

    $ |φk(x)φk(y)|M1|xy|,|φk(x)φk(y)|M1|xy|,k=1,2,,m. $

    Then, the problem (1.1) has a unique solution on $ J $ provided that

    $ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3<1. $ (3.10)

    Proof. Observe that the problem (1.1) is equivalent to a fixed point problem $ x = \mathcal{Q}x $, where the operator $ \mathcal{Q} $ is defined by (3.1). Thus, we need to establish that the operator $ \mathcal{Q} $ has a fixed point. This will be achieved by means of the Banach's fixed point theorem.

    Let $ K_1 $, $ K_2 $ and $ K_3 $ be nonnegative constants such that $ K_1 = \sup_{t\in J}|f(t, 0, 0)| $, $ K_2 = \max\{\varphi_k(0): k = 1, 2, \ldots, m\} $ and $ K_3 = \max\{\varphi_k^*(0): k = 1, 2, \ldots, m\} $. Next we set $ B_{r_1} = \{x \in \mathbb{E} : \|x\| \leq r_1\} $ with

    $ r1K1Θ1+mK2Θ2+K3Θ3+Θ41(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3). $ (3.11)

    Clearly, $ B_{r_1} $ is a bounded, closed, and convex subset of $ \mathbb{E} $. We complete the proof in two steps.

    Step I. We show that $ \mathcal{Q}B_{r_1} \subset B_{r_1} $.

    For any $ x\in B_{r_1} $, we have

    $ |(Qx)(t)|tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+{mi=1|Hi1(x)|mj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1|Gi1(x)|mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm)). $ (3.12)

    By using $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ with $ (H_1) $ and $ (H_2) $, we have

    $ |G_{i-1}(x)| \leq |G_{i-1}(x) - G_{i-1}(0)| + |G_{i-1}(0)|\\ \leq {{_{t_{i-1}}}}\mathfrak{I}^{\beta_{i-1}, \rho, \psi_{i-1}}|F_{x}(s) - F_{0}(s)|(t_{i}) + |\varphi_{i}^*(x(t_{i})) - \varphi_{i}^*(0)| + {{_{t_{i-1}}}}\mathfrak{I}^{\beta_{i-1}, \rho, \psi_{i-1}}|F_{0}(s)|(t_{i}) + |\varphi_{i}^*(0)|\\ \leq \frac{2L_{1}r_{1}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}^{*} r_{1} \\ + \frac{K_{1}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + K_{3}\\ \leq \left(2L_{1} \frac{(\psi_{i-1}(t_{i}) - \psi_{i-1}(t_{i-1}))^{\beta_{i-1}}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1}+1)} + M_{1}^{*}\right) r_{1} + K_{1} \frac{(\psi_{i-1}(t_{i}) - \psi_{i-1}(t_{i-1}))^{\beta_{i-1}}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1}+1)} + K_{3}\\ = \left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}, \label{ConIneB1}\\ $ (3.13)
    $ |Hi1(x)||Hi1(x)Hi1(0)|+|Hi1(0)|ti1Iαi1+βi1,ρ,ψi1|Fx(s)F0(s)|(ti)+|λ|ti1Iαi1,ρ,ψi1|x(s)|(ti)+|φi(x(ti))φi(0)|+ti1Iαi1+βi1,ρ,ψi1|F0(s)|(ti)+|φi(0)|2L1r1ραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|r1ραi1Γ(αi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1r1+K2+K1ραi1+βi1Γ(αi1+βi1)titi1,|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds(2L1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+|λ|(ψi1(ti)ψi1(ti1))αi1ραi1Γ(αi1+1)+M1)r1+K1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+K2=(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1Φαi1+βi1(ti1,ti)+K2. $ (3.14)

    From the results of the inequalities (3.13)-(3.14) with the similarly process, we obtain,

    $ |K(x,Fx)||K(x,Fx)K(0,F0)|+|K(0,F0)||ξ1|+|κ1|tmIαm+βm,ρ,ψm|Fx(s)F0(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)|(T)+|κ1|mi=1|Gi1(x)Gi1(0)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(x)Hi1(0)|+|κ1|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ1|mi=1|Gi1(0)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(0)||ξ1|+2L1r1|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|r1ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(2L1Φβi1(ti1,ti)+M1)r1mj=iΦαj(tj,tj+1)+|κ1|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1|mi=1(K1Φβi1(ti1,ti)+K3)mj=iΦαj(tj,tj+1)+|κ1|mi=1(K1Φαi1+βi1(ti1,ti)+K2){2L1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+|λ|m+1i=1Φαi1(ti1,ti)+M1mi=1mj=iΦαj(tj,tj+1)+mM1}|κ1|r1+{K1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+K3mi=1mj=iΦαj(tj,tj+1)+mK2}|κ1|+|ξ1|=(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|, $ (3.15)
    $ |R(x,Fx)||R(x,Fx)R(0,F0)|+|R(0,F0)||ξ2|+|κ2|tmIβm,ρ,ψm|Fx(s)F0(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)F0(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)|(T)+|κ2|mi=1|Gi1(x)Gi1(0)|(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1|Hi1(x)Hi1(0)|+|κ2|tmIβm,ρ,ψm|F0(s)|(T)+|κ2||λ|mi=1|Hi1(0)|+|κ2||λ|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ2|mi=1|Gi1(0)|(1+|λ|mj=iΦαj(tj,tj+1))|ξ2|+2L1r1|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+2L1r1|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2r1ραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2|mi=1(2L1Φβi1(ti1,ti)+M1)r1(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)r1+K1|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+|κ2||λ|mi=1(K1Φαi1+βi1(ti1,ti)+K2)+K1|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|mi=1(K1Φβi1(ti1,ti)+K3)(1+|λ|mj=iΦαj(tj,tj+1)){2L1[|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+m+1i=1Φβi1(ti1,ti)]+M1(|λ|mi=1mj=iΦαj(tj,tj+1)+mg)+λ2m+1i=1Φαi1(ti1,ti)+m|λ|M1}|κ2|r1+{K1[m+1i=1Φβi1(ti1,ti)+|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))]+K3[|λ|mi=1mj=iΦαj(tj,tj+1)+m]+K2m|λ|}|κ2|+|ξ2|=(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|r1+(K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|)|κ2|+|ξ2|. $ (3.16)

    Substisuting (3.13), (3.14), (3.15) and (3.16) into (3.12), we obtain

    $ |(\mathcal{Q}x)(t)| \leq{{_{t_m}}}\mathfrak{I}^{\alpha_m+\beta_m, \rho, \psi_{m}}\left(|F_{x}(s)-F_{0}(s)| + |F_{0}(s)|\right)(T) + |\lambda| {{_{t_m}}}\mathfrak{I}^{\alpha_m, \rho, \psi_{m}}|x(s)|(T)\\ + \sum\limits_{i = 1}^{m}\left(|H_{i-1}(x) - H_{i-1}(0)| + |H_{i-1}(0)|\right) + \sum\limits_{i = 1}^{m}\left(|G_{i-1}(x) - G_{i-1}(0)| + |G_{i-1}(0)|\right) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + (|\Omega_{1}| (|\mathcal{R}(x, F_{x}) - \mathcal{R}(0, F_{0})| + |\mathcal{R}(0, F_{0})|) + |\Omega_{3}| (|\mathcal{K}(x, F_{x}) - \mathcal{K}(0, F_{0})| + |\mathcal{K}(0, F_{0})|)) \nonumber\\ \times \frac{1}{|\Omega_{5}|}\sum\limits_{i = 1}^{m+1}\Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + \frac{1}{|\Omega_{5}|}(|\Omega_{4}| (|\mathcal{K}(x, F_{x}) - \mathcal{K}(0, F_{0})| + |\mathcal{K}(0, F_{0})|)\\ + |\Omega_{2}| (|\mathcal{R}(x, F_{x}) - \mathcal{R}(0, F_{0})| + |\mathcal{R}(0, F_{0})|))\\ \leq \frac{2L_{1} r_{1} + K_{1}}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right| ( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1}\psi_{m}'(s)ds\\ + \frac{|\lambda| r_{1} }{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right| ( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1}\psi_{m}'(s)ds\\ + \sum\limits_{i = 1}^{m} [\left(2L_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + M_{1}\right)r_{1} + K_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + K_{2}]\\ + \sum\limits_{i = 1}^{m} [\left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{1}{|\Omega_{5}|}\sum\limits_{i = 1}^{m+1}\Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})[|\Omega_{1}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}| ) \\ + |\Omega_{3}| ( (2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1} + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}| )] \nonumber\\ + \frac{1}{|\Omega_{5}|} [|\Omega_{4}| ( (2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1} + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}| )\\ + |\Omega_{2}| ((2 L_{1} ( |\lambda| \Lambda_{1} + \Lambda_{4}) + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} ) |\kappa_2| r_{1}\notag\\ + (K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|) |\kappa_2| + |\xi_{2}| ) ]\\ \leq 2L_{1}\Phi^{\alpha_m+\beta_m}(t_m, T) r_{1} + K_{1}\Phi^{\alpha_m+\beta_m}(t_m, T) + |\lambda| \Phi^{\alpha_m}(t_m, T) r_{1}\\ + \sum\limits_{i = 1}^{m}\left[\left(2L_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + M_{1}\right)r_{1} + K_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + K_{2}\right]\\ + \sum\limits_{i = 1}^{m}\left[\left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}\right]\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\nonumber\\ + [|\Omega_{1}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}|) \\ + |\Omega_{3}| ((2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1}\notag + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}|)] \frac{\Lambda_{2}}{|\Omega_{5}|}\\ + \frac{1}{|\Omega_{5}|} [|\Omega_{4}| ((2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1}\notag + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}|)\\ + |\Omega_{2}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}|)] $
    $ = (2L_{1}\left[\Lambda_{1} + \left( |\kappa_{1}| \Lambda_{1}(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + (m M_{1} + |\lambda|\Lambda_{2})\left[1 + \left(|\kappa_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + M_{1}^{*}\left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3}+ m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right] ) r_{1}\\ + K_{1}\left[\Lambda_{1} + \left(|\kappa_{1}|\Lambda_{1} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + m K_{2}\left[1 + \left(|\kappa_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2| |\lambda|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|) \right)\frac{1}{|\Omega_{5}|}\right]\\ + K_{3}\left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3}(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3} + m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + (|\xi_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\xi_{2}|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|}\\ = (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) r_{1} + K_{1}\Theta_{1} + m K_{2}\Theta_{2} + K_{3}\Theta_{3} + \Theta_{4}\\ \leq r_{1}, $

    which implies that $ \mathcal{Q}B_{r_1} \subset B_{r_1}. $

    Step II. We prove that the operator $ \mathcal{Q} $ is a contraction.

    Let $ x, y\in \mathbb{E} $. Then, for each $ t \in J $, we have

    $ |(Qx)(t)(Qy)(t)|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)y(s)|(T)+{mi=1|Hi1(x)Hi1(y)|mj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1|Gi1(x)Gi1(y)|mj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+(|Ω1||R(x,Fx)R(y,Fy)|+|Ω3||K(x,Fx)K(y,Fy)|)×1|Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+(|Ω4||K(x,Fx)K(y,Fy)|+|Ω2||R(x,Fx)R(y,Fy)|)×1|Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm)). $ (3.17)

    By using $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ and $ (H_1) $-$ (H_2) $, we get

    $ |Gi1(x)Gi1(y)|ti1Iβi1,ρ,ψi1|Fx(s)Fy(s)|(ti)+|φi(x(ti))φi(y(ti))|2L1xyρβi1Γ(βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))βi11ψi1(s)ds+M1xy(2L1(ψi1(ti)ψi1(ti1))βi1ρβi1Γ(βi1+1)+M1)xy=(2L1Φβi1(ti1,ti)+M1)xy, $ (3.18)
    $ |Hi1(x)Hi1(y)|ti1Iαi1+βi1,ρ,ψi1|Fx(s)Fy(s)|(ti)+|λ|ti1Iαi1,ρ,ψi1|x(s)y(s)|(ti)+|φi(x(ti))φi(y(ti))|2L1xyραi1+βi1Γ(αi1+βi1)titi1|eρ1ρ(ψi1(ti)ψi1(s))|×(ψi1(ti)ψi1(s))αi1+βi11ψi1(s)ds+|λ|xyραi1Γ(αi1)×titi1|eρ1ρ(ψi1(ti)ψi1(s))|(ψi1(ti)ψi1(s))αi11ψi1(s)ds+M1xy(2L1(ψi1(ti)ψi1(ti1))αi1+βi1ραi1+βi1Γ(αi1+βi1+1)+|λ|(ψi1(ti)ψi1(ti1))αi1ραi1Γ(αi1+1)+M1)xy=(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy. $ (3.19)

    By using the results of the inequalities (3.18) and (3.19), we have

    $ |K(x,Fx)K(y,Fy)||κ1|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)y(s)|(T)+|κ1|mi=1|Gi1(x)Gi1(y)|mj=iΦαj(tj,tj+1)+|κ1|mi=1|Hi1(x)Hi1(y)|2L1xy|κ1|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ1||λ|xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ1|mi=1(2L1Φβi1(ti1,ti)+M1)mj=iΦαj(tj,tj+1)xy+|κ1|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy[2L1(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+|λ|(m+1i=1Φαi1(ti1,ti))+M1(mi=1mj=iΦαj(tj,tj+1))+mM1]|κ1|xy=(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy, $ (3.20)
    $ |R(x,Fx)R(y,Fy)||κ2|tmIβm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)Fy(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)y(s)|(T)+|κ2||λ|mi=1|Hi1(x)Hi1(y)|+|κ2|mi=1|Gi1(x)Gi1(y)|(1+|λ|mj=iΦαj(tj,tj+1))2L1xy|κ2|ρβmΓ(βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))βm1ψm(s)ds+2L1xy|κ2||λ|ραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|κ2|λ2xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+|κ2||λ|mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy+|κ2|mi=1(2L1Φβi1(ti1,ti)+M1)(1+|λ|mj=iΦαj(tj,tj+1))xy[2L1(|λ|(m+1i=1Φαi1+βi1(ti1,ti)+mi=1Φβi1(ti1,ti)mj=iΦαj(tj,tj+1))+m+1i=1Φβi1(ti1,ti))+M1(|λ|(mi=1mj=iΦαj(tj,tj+1))+mg)+λ2(m+1i=1Φαi1(ti1,ti))+m|λ|M1]|κ2|xy=(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy. $ (3.21)

    Substituting (3.18), (3.19), (3.20) and (3.21) into (3.17), it follows that

    $ |(Qx)(t)(Qy)(t)|2L1xyραm+βmΓ(αm+βm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm+βm1ψm(s)ds+|λ|xyραmΓ(αm)Ttm|eρ1ρ(ψm(T)ψm(s))|(ψm(T)ψm(s))αm1ψm(s)ds+{mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xymj=ieρ1ρ(ψj(tj+1)ψj(tj))+mi=1(2L1Φβi1(ti1,ti)+M1)xymj=iΦαj(tj,tj+1)mj=ieρ1ρ(ψj(tj+1)ψj(tj))+[|Ω1|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy.+|Ω3|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy]1|Ω5|m+1i=1Φαi1(ti1,ti)m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))+[|Ω4|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω2|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy]1|Ω5|m+1i=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψm(T)ψm(tm))2L1Φαm+βm(tm,T)xy+|λ|Φαm(tm,T)xy+mi=1(2L1Φαi1+βi1(ti1,ti)+|λ|Φαi1(ti1,ti)+M1)xy+mi=1(2L1Φβi1(ti1,ti)+M1)xymj=iΦαj(tj,tj+1)+Λ2|Ω1||Ω5|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy+Λ2|Ω3||Ω5|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω4||Ω5|(2L1Λ1+|λ|Λ2+M1Λ3+mM1)|κ1|xy+|Ω2||Ω5|(2L1(|λ|Λ1+Λ4)+M1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|xy=(2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|])xy=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)xy, $

    which implies that $ \|\mathcal{Q}x - \mathcal{Q}y\| \leq (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3})\|x - y\| $. Clearly $ (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $, thus, by the Banach's contraction principle (Theorem $ 2.12 $), the operator $ \mathcal{Q} $ is a contraction, hence, the operator $ \mathcal{Q} $ has a unique fixed point that is the unique solution of the problem (1.1) on $ J $. This completes the proof.

    The second existence result is based on Schaefer's fixed point theorem.

    Theorem 3.2. Let $ \psi_{k} \in \mathcal{C}^{2}(J) $ with $ \psi^{\prime}_{k}(t) > 0 $ for $ t\in J $, $ k = 0, 1, 2, \ldots, m $. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ and $ \varphi_{k}^{\ast} : \mathbb{R} \to \mathbb{R} $ are continuous functions, $ k = 1, 2, \ldots, m $ satisfy the following assumptions:

    $ (H_3) $ There exist nonnegative continuous functions $ h_1 $, $ h_2 $, $ h_3 \in \mathcal{C}(J, \mathbb{R}^+) $ such that, for every $ t\in J $ and $ x $, $ y \in \mathbb{R} $, such that

    $ |f(t,x,y)|h1(t)+h2(t)(|x|+|y|), $

    with $ h_{1}^* = \sup_{t\in J}\{h_{1}(t)\} $ and $ h_{2}^* = \sup_{t\in J}\{h_{2}(t)\} $.

    $ (H_4) $ There exist positive constants $ k_{1} $, $ k_1^* $, for any $ x\in \mathbb{R} $, such that

    $ |φk(x)|k1,|φk(x)|k1,k=1,2,,m. $

    Then, the problem (1.1) has at least one solution on $ J $.

    Proof. We apply Schaefer's fixed point theorem. The proof is given in the following four steps.

    Step I. We prove that the operator $ \mathcal{Q} $ is continuous.

    Let $ x_{n} $ be a sequence such that $ x_{n} \to x $ in $ \mathbb{E} $. Then, for any $ t \in J $, we get

    $ |(\mathcal{Q}x_{n})(t) - (\mathcal{Q} x)(t)|\\ \leq {{_{t_m}}}\mathfrak{I}^{\alpha_m+\beta_m, \rho, \psi_{m}}|F_{x_{n}}(s) - F_{x}(s)|(t) + |\lambda| {{_{t_m}}}\mathfrak{I}^{\alpha_m, \rho, \psi_{m}}|x_{n}(s) - x(s)|(t)\\ + \sum\limits_{i = 1}^{m}|H_{i-1}(x_{n}) - H_{i-1}(x)| + \sum\limits_{i = 1}^{m} |G_{i-1}(x_{n}) - G_{i-1}(x)| \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{\Lambda_{2}}{|\Omega_{5}|}[|\Omega_{1}| |\mathcal{R}(x_n, F_{x_n}) - \mathcal{R}(x, F_{x})| + |\Omega_{3}| |\mathcal{K}(x_n, F_{x_n}) - \mathcal{K}(x, F_{x})|]\\ + \frac{1}{\Omega_{5}}[|\Omega_{4}| |\mathcal{K}(x_n, F_{x_n}) - \mathcal{K}(x, F_{x})| + |\Omega_{2}| |\mathcal{R}(x_n, F_{x_n}) - \mathcal{R}(x, F_{x})|]\\ \leq { \frac{1}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| }{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\\ { + \sum\limits_{i = 1}^{m} (\frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ { \times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i}) - x(t_{i})|) + \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) } $
    $ { + \frac{\Lambda_{2}}{|\Omega_{5}|}\{|\Omega_{1}| [ \frac{|\kappa_{2}|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds } \notag\\ { + \frac{|\kappa_2| \lambda^{2}}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ { \times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i-1}) - x(t_{i-1})| ) + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) ] }\\ { + |\Omega_{3}| [\frac{|\kappa_{1}|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\nonumber\\ {+ \frac{|\kappa_{1}| |\lambda|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_n(s) - x(s)| \psi_{m}^{\prime}(s)ds}\notag\\ {+ |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds }\nonumber\\ {+ M_{1}^{*} |x_n(t_{i-1}) - x(t_{i-1})|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} |x_n(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}| x_{n}(t_{i-1}) - x(t_{i-1})| ) ] \} + \frac{1}{\Omega_{5}} \{ |\Omega_{4}| }\\ {\times ( \frac{|\kappa_{1}|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\nonumber\\ {+ \frac{|\kappa_{1}| |\lambda|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_n(s) - x(s)| \psi_{m}^{\prime}(s)ds}\notag\\ {+ |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds }\nonumber\\ {+ M_{1}^{*} |x_n(t_{i-1}) - x(t_{i-1})|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| } \nonumber\\ {\times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds +\frac{ |\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\nonumber\\ {\times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} |x_n(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}| x_{n}(t_{i-1}) - x(t_{i-1})| ) }\\ { + |\Omega_{2}| [ \frac{|\kappa_{2}|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds } \notag\\ { + \frac{|\kappa_2| \lambda^{2}}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ {\times|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ {\times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i-1}) - x(t_{i-1})| ) + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| } \nonumber\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) ] \}. } $

    By using the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain

    $ |(\mathcal{Q}x_{n})(t) - (\mathcal{Q} x)(t)|\\ \leq { \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1}\psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| \|x_{n} - x \|}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + \sum\limits_{i = 1}^m (\frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| \|x_{n} - x \|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + M_{1} \|x_{n} - x \|) + \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_{n} - x\| ) } $
    $ { \times \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + \frac{\Lambda_{2}}{|\Omega_{5}|}\{|\Omega_{1}| [ \frac{|\kappa_{2}| \|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_2| \lambda^{2} \|x_{n} - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} } \notag\\ { \times \psi_{m}^{\prime}(s)ds + |\kappa_2| |\lambda| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + \frac{|\lambda|\|x_{n} - x\| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}\|x_{n} - x\| ) }\\ { + |\kappa_2| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_{n} - x\| ) ] }\\ { + |\Omega_{3}| [\frac{|\kappa_{1}|\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_{1}| |\lambda| \|x_{n} - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})} }\nonumber\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + M_{1}^{*} \|x_n - x\|) \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}\|x_n - x\| )] \} } $
    $ { + \frac{1}{\Omega_{5}} \{ |\Omega_{4}| ( \frac{|\kappa_{1}| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_{1}| |\lambda| \|x_n - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})} }\nonumber\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + M_{1}^{*} \|x_n - x\|) \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds +\frac{ |\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1} \|x_n - x\| ) } $
    $ { + |\Omega_{2}| [ \frac{|\kappa_{2}| \|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds +\frac{|\kappa_2| |\lambda| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})} }\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_2| \lambda^{2} \|x_n - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{ \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + \frac{|\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1} \|x_n - x\| ) }\\ { + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_n - x\| ) ] \}. }\\ \leq \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| \nonumber\\ + \sum\limits_{i = 1}^{m}\left(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|\right)\nonumber\\ + \sum\limits_{i = 1}^{m}\left(\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|\right) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{\Lambda_{2}}{|\Omega_{5}|} [|\Omega_{1}| (|\kappa_2| \Phi^{\beta_{m}}(t_{m}, T)\|F_{x_n} - F_{x}\| + |\kappa_2| |\lambda| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\|\\ + |\kappa_2| \lambda^{2} \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} (\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\|\\ + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) + |\kappa_2| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| \\ + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \left(1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})\right)) + |\Omega_{3}| (|\kappa_{1}| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\|\\ + |\kappa_{1}| |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| + |\kappa_{1}| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m}(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) )]\\ + \frac{1}{\Omega_{5}} [|\Omega_{4}| ( |\kappa_{1}| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\kappa_{1}| |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\|\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m}(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) )\\ + |\Omega_{2}| (|\kappa_2| \Phi^{\beta_{m}}(t_{m}, T)\|F_{x_n} - F_{x}\| + |\kappa_2| |\lambda| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\kappa_2| \lambda^{2} \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\|\\ + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} (\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|)\\ + |\kappa_2| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \left(1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})\right))]\\ = \left[\Lambda_{1} + (|\kappa_{1}| \Lambda_{1} (\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda|\Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|} \right]\|F_{x_n} - F_{x}\|\\ + |\lambda| \Lambda_{2} \left[1 + (|\kappa_{1}| (\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{\Omega_{5}} \right]\| x_n - x \| \\ + \left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3}+ m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\|\varphi_k^*(x_n) - \varphi_k^*(x)\|\\ = \Theta_{1}\|F_{x_n} - F_{x}\| + \Theta_{2}\| x_n - x \| + \Theta_{3}\|\varphi_k^*(x_n) - \varphi_k^*(x)\|. $

    Since $ f $, $ \lambda $, $ \varphi_k $ and $ \varphi_k^* $ are continuous, this implies that $ \mathcal{Q} $ is also continuous. Then, $ \|F_{x_n} - F_{x}\| \to 0 $, and $ \|x_n - x\| \to 0 $, as $ n \to \infty $, and$ \|\varphi_k(x_n) - \varphi_k(x)\| \to 0 $, and $ \|\varphi_k^*(x_n) - \varphi_k^*(x)\| \to 0 $ as $ n \to \infty $.

    Step II. We prove that the operator $ \mathcal{Q} $ maps a bounded set into a bounded set in $ \mathbb{E} $.

    For $ r_{2} > 0 $, there exists a constant $ N > 0 $ such that, for each $ x \in B_{r_2} = \{x \in \mathbb{E} : \|x\| \leq r_{2}\} $, then $ \|\mathcal{Q}x\| \leq N $. Then, for any $ t\in J $ and $ x \in B_{r_2} $, we have

    $ |(Qx)(t)|tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+mi=1|Hi1(x)|+mi=1|Gi1(x)|mj=iΦαj(tj,tj+1)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1i=1Φαi1(ti1,ti)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|. $ (3.22)

    It follows from $ (H_3) $ and $ (H_4) $, that

    $ |Fx(t)|h1+2h2r2,|φk(x)|k1,|φk(x)|k1,k=1,2,,m. $ (3.23)

    Then by substituting (3.23) into (3.22) with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we have

    $ { |(\mathcal{Q}x)(t)| } \leq { \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds }\\ { + \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] }\\ { + \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) }\\ { + \{|\Omega_{1}| ( |\xi_{2}| + \frac{|\kappa_{2}| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| |\lambda|(h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| \lambda^{2} r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + |\kappa_2| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] [1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})] }\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}]) }\\ { + |\Omega_{3}| ( |\xi_{1}| + \frac{|\kappa_1| |\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds } $
    $ { \frac{|\kappa_1| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + |\kappa_{1}| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] }\\ { \times \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} [ \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) \}\frac{\Lambda_{2}}{|\Omega_{5}|} + \frac{1}{|\Omega_{5}|} \{|\Omega_{4}| ( |\xi_{1}| + \frac{|\kappa_{1}| |\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)} }\\ { \times \int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_1| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})} }\\ { \times \int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) }\\ { + |\kappa_{1}| \sum\limits_{i = 1}^{m} [ \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) }\\ { + |\Omega_{2}| ( |\xi_{2}| + \frac{|\kappa_2| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| |\lambda| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| \lambda^{2} r_{2})}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + |\kappa_2| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] [1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})] }\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) \} }\\ \leq \left[\Lambda_{1} + (|\kappa_{1}| \Lambda_{1} (|\Omega_{3}| \Lambda_{2} + |\Omega_{4}|) + |\kappa_2| (|\lambda| \Lambda_{1} + \Lambda_{4})(|\Omega_{1}| \Lambda_{2} + |\Omega_{2}|)) \frac{1}{|\Omega_{5}|}\right](h_{1}^* + 2h_{2}^*r_{2})\\ + |\lambda| \Lambda_{2} \left[1 + (|\kappa_{1}| (\Lambda_{2} |\Omega_{3}| + \Omega_{4}|) + |\lambda| |\kappa_2| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|) )\frac{1}{|\Omega_{5}|} \right] r_{2}\\ + m \left[1 + (|\kappa_{1}| (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|) )\frac{1}{|\Omega_{5}|} \right] k_{1}\\ + \left[\Lambda_{3} + (|\kappa_{1}| \Lambda_{3}(\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\kappa_2| (|\lambda| \Lambda_{3} + m) (\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)) \frac{1}{|\Omega_{5}|} \right]k_{1}^{*} \\ + (|\xi_{1}| (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\xi_{2}| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|}, $

    we estimate $ \|\mathcal{Q}x\| \leq \Theta_{1}\left(h_{1}^* + 2h_{2}^* r_{2}\right) + (|\lambda| \Lambda_{2} r_{2} + m k_{1}) \Theta_{2} + \Theta_{3} k_{1}^{*} + \Theta_{4} : = N $, which implies that $ \|\mathcal{Q}x\| \leq N $. Hence, the set $ \mathcal{Q}B_{r_2} $ is uniformly bounded.

    Step III. We prove that $ \mathcal{Q} $ maps a bounded set into an equicontinuous set of $ \mathbb{E} $.

    Let $ \tau_{1} $, $ \tau_{2} \in J_{k} $ for some $ k \in \{0, 1, 2, \ldots, m\} $ with $ \tau_{1} < \tau_{2} $. Then, for any $ x \in B_{r_2} $, where $ B_{r_2} $ is as defined in Step II, by using the property of $ f $ is bounded on the compact set $ J\times B_{r_2} $, we have

    $ |(Qx)(τ2)(Qx)(τ1)|{mi=1(Φαi1+βi1(ti1,ti)(h1+2h2r2)+|λ|Φαi1(ti1,ti)r2+k1)+mi=1(Φβi1(ti1,ti)(h1+2h2r2)+k1)k1j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|ki=1(Φαi1(ti1,ti)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|}g|eρ1ρ(ψk(τ2)ψk(tk))eρ1ρ(ψk(τ1)ψk(tk))g|+h1+2h2r2ραk+βkΓ(αk+βk)(τ2τ1eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk+βk1ψk(s)ds+τ1tkg|eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk+βk1eρ1ρ(ψk(τ1)ψk(s))(ψk(τ1)ψk(s))αk+βk1g|ψk(s)dsg)+|λ|r2Γ(αk)(τ2τ1eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk1ψk(s)ds+τ1tkg|eρ1ρ(ψk(τ2)ψk(s))(ψk(τ2)ψk(s))αk1eρ1ρ(ψk(τ1)ψk(s))(ψk(τ1)ψk(s))αk1g|ψk(s)ds). $

    By using the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain that

    $ |(Qx)(τ2)(Qx)(τ1)|{mi=1(Φαi1+βi1(ti1,ti)(h1+2h2r2)+|λ|Φαi1(ti1,ti)r2+k1)+mi=1(Φβi1(ti1,ti)(h1+2h2r2)+k1)k1j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+[(|κ1|Λ1|Ω3|+|κ2||Ω1|(|λ|Λ1+Λ4))(h1+2h2r2)+|λ|Λ2(|κ1||Ω3|+|κ2||λ||Ω1|)r2+m(|κ1||Ω3|+|κ2||λ||Ω1|)k1+(|κ1|Λ3|Ω3|+|κ2||Ω1|(|λ|Λ3+m))k1+|ξ1||Ω3|+|ξ2||Ω1|]×1|Ω5|mi=1(Φαi1(ti1,ti)+|Φαk(tk,τ2)Φαk(tk,τ1)|)+[|λ|Λ2(|κ1||Ω4|+|κ2||λ||Ω2|)r2+(|κ1|Λ1|Ω4|+|κ2||Ω2|(|λ|Λ1+Λ4))(h1+2h2r2)+m(|κ1||Ω4|+|κ2||λ||Ω2|)k1+(|κ1|Λ3|Ω4|+|κ2||Ω2|(|λ|Λ3+m))k1+|ξ1||Ω4|+|ξ2||Ω2|]1|Ω5|}g|eρ1ρ(ψk(τ2)ψk(tk))eρ1ρ(ψk(τ1)ψk(tk))g|+h1+2h2r2ραk+βkΓ(αk+βk+1)(2|ψk(τ2)ψk(τ1)|αk+βk+|(ψk(τ2)ψk(tk))αk+βk(ψk(τ1)ψk(tk))αk+βk|)+|λ|r2Γ(αk+1)(2|ψk(τ2)ψk(τ1)|αk+|(ψk(τ2)ψk(tk))αk(ψk(τ1)ψk(tk))αk|). $

    From the above inequality, we get that $ |e^{\frac{\rho-1}{\rho}(\psi_{k}(\tau_2) - \psi_{k}(t_k))} - e^{\frac{\rho-1}{\rho}(\psi_{k}(\tau_1) - \psi_{k}(t_k))}| \to 0 $, $ |\psi_k(\tau_2)-\psi_k(\tau_1)|^{u} \to 0 $ and $ |\left(\psi_k(\tau_2)-\psi_k(t_k)\right)^{u}- \left(\psi_k(\tau_1)-\psi_k(t_k)\right)^{u}| \to 0 $ as $ \tau_{2} \to \tau_{1} $, where $ u = \{\alpha_k, \alpha_k+\beta_k\} $. This inequality is independent of unknown variable $ x \in B_{r_{2}} $ and tends to zero as $ \tau_2 \to \tau_1 $, which} implies that $ \|(\mathcal{Q}x)(\tau_2) - (\mathcal{Q}x)(\tau_1)\| \to 0 $ as $ \tau_2 \to \tau_1 $. Therefore by the Arzelá-Ascoli theorem, we can conclude that the operator $ \mathcal{Q}: \mathbb{E} \to \mathbb{E} $ is completely continuous.

    Step IV. The set $ \mathbb{D} = \{x \in \mathbb{E} : x = \sigma \mathcal{Q} x, \, \, \} $ is bounded (a priori bounds).

    Let $ x\in \mathbb{D} $, then $ x = \sigma \mathcal{Q} x $ for some $ 0 < \sigma < 1 $. From $ (H_3) $ and $ (H_4) $, for each $ t \in J $, we get the result by using the same process in Step II,

    $ |x(t)|=|σ(Qx)(t)|([Λ1+(|κ1|Λ1(|Ω3|Λ2+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(|Ω1|Λ2+|Ω2|))1|Ω5|](h1+2h2r2)+|λ|Λ2[1+(|κ1|(Λ2|Ω3|+Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]r2+m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]k1+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|]k1+(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|. $

    Then, $ \|x\| \leq \Theta_{1}\left(h_{1}^* + 2h_{2}^* r_{2}\right) + (|\lambda| \Lambda_{2} r_{2} + m k_{1}) \Theta_{2} + \Theta_{3} k_{1}^{*} + \Theta_{4} : = N < \infty. $ This implies that the set $ \mathbb{D} $ is bounded. By all the assumptions of Theorem $ 3.2 $, we conclude that there exists a positive constant $ N $ such that $ \|x\| \leq N < \infty $. By applying Schaefer's fixed point theorem (Theorem $ 2.13 $), the operator $ \mathcal{Q} $ has at least one fixed point which is a solution of problem (1.1). The proof is completed.

    This section is discussed the different type of Ulam's stability such as $ \mathbb{UH} $ stable, generalized $ \mathbb{UH} $ stable, $ \mathbb{UHR} $ stable and generalized $ \mathbb{UHR} $ stable of the problem (1.1).

    Now, we introduce Ulam's stability concepts for the problem (1.1). Let $ \phi \in \mathcal{C}(J, \mathbb{R}^+) $ be a nondecreasing function, $ \epsilon > 0 $, $ \upsilon \geq 0 $, $ z \in \mathbb{E} $ such that, for $ t \in J_{k} $, $ k = 1, 2, \ldots, m $, the following sets of inequalities are satisfied:

    $ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)f(t,z(t),z(μt))|ϵ,|z(t+k)z(tk)φk(z(tk))|ϵ,|CtkDαk,ρ,ψkx(t+k)tk1CDαk,ρ,ψkx(tk)φk(x(tk))|ϵ. $ (4.1)
    $ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)f(t,z(t),z(μt))|ϕ(t),|z(t+k)z(tk)φk(z(tk))|υ,|CtkDαk,ρ,ψkx(t+k)tk1CDαk,ρ,ψkx(tk)φk(x(tk))|υ. $ (4.2)
    $ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)f(t,z(t),z(μt))|ϵϕ(t),|z(t+k)z(tk)φk(z(tk))|ϵυ,|CtkDαk,ρ,ψkx(t+k)tk1CDαk,ρ,ψkx(tk)φk(x(tk))|ϵυ. $ (4.3)

    Definition 4.1. If for $ \epsilon > 0 $ there exists a constant $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.1), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies

    $ |z(t)x(t)|Cfϵ,tJ, $

    then system (1.1) is $ \mathbb{UH} $ stable.

    Definition 4.2. If for $ \epsilon > 0 $ and set of positive real numbers $ \mathbb{R}^+ $ there exists $ \phi \in \mathcal{C}(\mathbb{R}^+, \mathbb{R}^+) $, with $ \phi(0) = 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.2), there exist $ \epsilon > 0 $ and a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies

    $ |z(t)x(t)|ϕ(ϵ),tJ, $

    then system (1.1) is generalized $ \mathbb{UH} $ stable.

    Definition 4.3. If for $ \epsilon > 0 $ there exists a real number $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.3), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies

    $ |z(t)x(t)|Cfϵ(υ+ϕ(t)),tJ, $

    then system (1.1) is $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.

    Definition 4.4. If there exists a real number $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.2), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies

    $ |z(t)x(t)|Cf(υ+ϕ(t)),tJ, $

    then system (1.1) is generalized $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.

    Remark 4.5. It is clear that: $ (i) $ Definition $ 4.1 $ $ \Longrightarrow $ Definition $ 4.2 $; $ (ii) $ Definition $ 4.3 $ $ \Longrightarrow $ Definition $ 4.4 $; $ (iii) $ Definition $ 4.3 $ for $ \upsilon + \phi(t) = 1 $ $ \Longrightarrow $ Definition $ 4.1 $.

    Remark 4.6. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.1) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that

    $ (A_1) $ $ |w(t)| \leq \epsilon $, $ |w_{k}| \leq \epsilon $, $ t\in J $,

    $ (A_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,

    $ (A_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,

    $ (A_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.

    Remark 4.7. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.2) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that

    $ (B_1) $ $ |w(t)| \leq \phi(t) $, $ |w_{k}| \leq \upsilon $, $ t\in J $,

    $ (B_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,

    $ (B_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,

    $ (B_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.

    Remark 4.8. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.3) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that

    $ (C_1) $ $ |w(t)| \leq \epsilon\phi(t) $, $ |w_{k}| \leq \epsilon\upsilon $, $ t\in J $,

    $ (C_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,

    $ (C_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,

    $ (C_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.

    In this subsection, we establish the results related to $ \mathbb{UH} $ stability of system (1.1).

    Theorem 4.9. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ is continuous functions. If assumptions $ (H_1) $, $ (H_2) $ and the inequality

    $ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3<1 $ (4.4)

    are satiafied, then system (1.1) is $ \mathbb{UH} $ stable.

    Proof. Let $ z $ be any solution of inequality (4.1). Then, by Remark $ 4.6 $ $ (A_2) $–$ (A_4) $, we have

    $ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)=f(t,z(t),z(μt))+w(t),z(t+k)z(tk)=φk(z(tk))+wk,CtkDαk,ρ,ψkz(t+k)tk1CDαk,ρ,ψkz(tk)=φk(z(tk))+wk,η1z(0)+κ1z(T)=ξ1,η2Ct0Dα0,ρ,ψ0z(0)+κ2CtmDαm,ρ,ψmz(T)=ξ2, $ (4.5)

    By Lemma $ 2.11 $, the solution of (4.5) is given by

    $ z(t)=tkIαk+βk,ρ,ψkFz(t)λtkIαk,ρ,ψkz(t)+{ki=1Hi1(z)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1Gi1(z)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+Ω1R(z,Fz)Ω3K(z,Fz)Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+Ω4K(z,Fz)Ω2R(z,Fz)Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk))+tkIαk+βk,ρ,ψkw(t)+{ki=1(ti1Iαi1+βi1,ρ,ψi1w(ti)+wk)k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+ki=1(ti1Iβi1,ρ,ψi1w(ti)+wk)k1j=i(Φαj(tj,tj+1)+Φαk(tk,t))k1j=ieρ1ρ(ψj(tj+1)ψj(tj))+[Ω1(κ2tmIβm,ρ,ψmw(T)+κ2λtmIαm+βm,ρ,ψmw(T)κ2mi=1(ti1Iβi1,ρ,ψi1w(ti)+wk)(1λmj=iΦαj(tj,tj+1))mj=ieρ1ρ(ψj(tj+1)ψj(tj))+κ2λmi=1(ti1Iαi1+βi1,ρ,ψi1w(ti)+wk)mj=ieρ1ρ(ψj(tj+1)ψj(tj)))Ω3(κ1tmIαm+βm,ρ,ψmw(T)κ1mi=1(ti1Iβi1,ρ,ψi1w(ti)+wk)mj=iΦαj(tj,tj+1)×mj=ieρ1ρ(ψj(tj+1)ψj(tj))κ1mi=1(ti1Iαi1+βi1,ρ,ψi1w(ti)+wk)mj=ieρ1ρ(ψj(tj+1)ψj(tj)))]×1Ω5ki=1(Φαi1(ti1,ti)+Φαk(tk,t))ki=1eρ1ρ(ψi1(ti)ψi1(ti1))+[Ω4(κ1tmIαm+βm,ρ,ψmw(T)κ1mi=1(ti1Iβi1,ρ,ψi1w(ti)+wk)mj=iΦαj(tj,tj+1)×mj=ieρ1ρ(ψj(tj+1)ψj(tj))κ1mi=1(ti1Iαi1+βi1,ρ,ψi1w(ti)+wk)mj=ieρ1ρ(ψj(tj+1)ψj(tj)))Ω2(κ2tmIβm,ρ,ψmw(T)+κ2λtmIαm+βm,ρ,ψmw(T)κ2mi=1(ti1Iβi1,ρ,ψi1w(ti)+wk)(1λmj=iΦαj(tj,tj+1))mj=ieρ1ρ(ψj(tj+1)ψj(tj))+κ2λmi=1(ti1Iαi1+βi1,ρ,ψi1w(ti)+wk)mj=ieρ1ρ(ψj(tj+1)ψj(tj)))]×1Ω5ki=1eρ1ρ(ψi1(ti)ψi1(ti1))}eρ1ρ(ψk(t)ψk(tk)),tJk,k=0,1,2,,m. $

    From Remark $ 4.6 $ $ (A_1) $ with $ (H_1) $, $ (H_2) $ and the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $, it follows that

    $ |z(t)x(t)|tmIαm+βm,ρ,ψm|Fz(s)Fx(s)|(T)+|λ|tmIαm,ρ,ψm|z(s)x(s)|(T)+mi=1|Hi1(z)Hi1(x)|+mi=1|Gi1(z)Gi1(x)|mj=iΦαj(tj,tj+1)+(|Ω1||R(z,Fz)R(x,Fx)|+|Ω3||K(z,Fz)K(x,Fx)|)1|Ω5|m+1i=1Φαi1(ti1,ti)+(|Ω4||K(z,Fz)K(x,Fx)|+|Ω2||R(z,Fz)R(x,Fx)|)1|Ω5|+tmIαm+βm,ρ,ψm|w(t)|+mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|)+mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+[|Ω1|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))+|Ω3|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))]1|Ω5|m+1i=1Φαi1(ti1,ti)+[|Ω4|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))+|Ω2|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))]1|Ω5|{2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}|z(t)x(t)|+{[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}ϵ=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)|z(t)x(t)|+(Θ1+mΘ2+Θ3)ϵ. $

    This implies that

    $ |z(t)x(t)|(Θ1+mΘ2+Θ3)ϵ1(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3), $

    with $ (2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $. By setting

    $ Cf=Θ1+mΘ2+Θ31(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3), $

    we end up with $ |z(t) - x(t)| \leq C_{f} \epsilon $. Hence, the system (1.1) is $ \mathbb{UH} $ stable. The proof is completed.

    Corollary 4.10. In Theorem $ 4.9 $, if we set $ \phi(\epsilon) = C_{f}(\epsilon) $ such that $ \phi(0) = 0 $, then the system (1.1) is generalized $ \mathbb{UH} $ stable.

    For the proof of our next result, we assume the following assumption

    $ (H_5) $ There eixsts a nondecreasing function $ \phi \in \mathcal{C}(J, \mathbb{R}) $ and constants $ \omega_{\phi} > 0 $, $ \epsilon > 0 $ such that the following inequality holds:

    $ aIα,ρ,ψϕ(t)ωϕϕ(t). $

    Theorem 4.11. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ is continuous functions. If assumptions $ (H_1) $, $ (H_2) $, $ (H_5) $ and the inequality

    $ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3<1 $ (4.6)

    are satiafied, then system (1.1) is $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $. where $ \phi $ is a nondecreasing function and $ \upsilon \geq 0 $.

    Proof. Let $ z $ be any solution of the inequality (4.3) and $ x $ be the unique solution of the system (1.1). Then, for $ t\in J_{k} $, we have

    $ |z(t)x(t)|tmIαm+βm,ρ,ψm|Fz(s)Fx(s)|(T)+|λ|tmIαm,ρ,ψm|z(s)x(s)|(T)+mi=1|Hi1(z)Hi1(x)|+mi=1|Gi1(z)Gi1(x)|mj=iΦαj(tj,tj+1)+(|Ω1||R(z,Fz)R(x,Fx)|+|Ω3||K(z,Fz)K(x,Fx)|)1|Ω5|m+1i=1Φαi1(ti1,ti)+(|Ω4||K(z,Fz)K(x,Fx)|+|Ω2||R(z,Fz)R(x,Fx)|)1|Ω5|+tmIαm+βm,ρ,ψm|w(t)|+mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|)+mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+[|Ω1|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))+|Ω3|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))]1|Ω5|m+1i=1Φαi1(ti1,ti)+[|Ω4|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)mj=iΦαj(tj,tj+1)+|κ1|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))+|Ω2|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|mi=1(ti1Iβi1,ρ,ψi1|w(ti)|+|wk|)(1+|λ|mj=iΦαj(tj,tj+1))+|κ2||λ|mi=1(ti1Iαi1+βi1,ρ,ψi1|w(ti)|+|wk|))]1|Ω5| $

    By using Remark $ 4.8 $ $ (C_1) $ with $ (H_1) $, $ (H_2) $, $ (H_5) $ and the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $, we obtain the following inequality

    $ |z(t)x(t)|{2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}|z(t)x(t)|+{(1+m)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]+(|κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|}ϵωϕϕ(t)+{m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}ϵυ(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3)|z(t)x(t)|+(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)ϵ(υ+ϕ(t)) $

    which implies that

    $ |z(t)x(t)|(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)ϵ(υ+ϕ(t))1(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3), $

    with $ (2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $. By setting

    $ Cf=(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)1(2L1Θ1+(mM1+|λ|Λ2)Θ2+M1Θ3), $

    we end up with $ |z(t) - x(t)| \leq C_{f} \epsilon (\upsilon +\phi(t)) $. Therefore, the system (1.1) is $ \mathbb{UHR} $ stable. This completes the proof.

    Corollary 4.12. In Theorem $ 4.11 $, if we set $ \epsilon = 1 $ then the system (1.1) is generalized $ \mathbb{UHR} $ stable.

    This section give an example which illustrate the validity and applicability of main results.

    Example 5.1. Consider the following an impulsive boundary value problem is given by:

    $ {Ck4Dk+2k+3,12,et2+k8(Ck4Dk+1k+2,12,et2+k8+149)x(t)=f(t,x(t),x(3t/4)),tk4,k=0,1,2,x(t+k)x(tk)=φk(x(tk)),k=1,2,Ck4Dk+1k+2,12,et2+k8x(t+k)k14CDkk+1,12,et2+k18x(tk)=φk(x(tk)),k=1,2,15x(0)23x(32)=12,7C0D12,12,et2x(0)C1D56,12,et2+12x(32)=3, $ (5.1)

    Here $ \alpha_k = (k+1)/(k+2) $, $ \beta_k = (k+2)/(k+3) $, $ \psi_k(t) = \exp(t/2) + k/8 $, $ t_{k} = k/4 $, $ k = 0, 1, 2 $, $ \rho = 1/2 $, $ \lambda = 1/49 $, $ \mu = 3/4 $, $ m = 4 $, $ T = 3/2 $, $ \eta_{1} = 1/5 $, $ \eta_{2} = \sqrt{7} $, $ \kappa_1 = -\sqrt{2}/3 $, $ \kappa_{2} = -1 $, $ \xi_{1} = 1/2 $, $ \xi_{2} = \sqrt{3} $. Using the all datas, we find that $ \Omega_{1} \approx -0.4687161284 $, $ \Omega_{2} \approx -0.0990842078 $, $ \Omega_{3} \approx 2.031589673 $, $ \Omega_{4} \approx -0.04104689584 $, $ \Omega_{5} \approx 0.2205377954 $, $ \Lambda_{1} \approx 1.147842297 $, $ \Lambda_{2} \approx 1.567171105 $, $ \Lambda_{3} \approx 1.471412869 $, $ \Lambda_{4} \approx 1.356509541 $, $ \Theta_{1} \approx 14.27646343 $, $ \Theta_{2} \approx 7.970430815 $, and $ \Theta_{3} \approx 19.28788257 $. Let $ f : J\times\mathbb{R}^2 \to \mathbb{R} $, $ \varphi $, $ \varphi_k : \mathbb{R} \to \mathbb{R} $ be the functions defined by

    $ f(t,x(t),x(3t/4))=12+t+4t2+19t+1(9+sin2πt)(|x(t)|10+|x(t)|+|x(3t/4)|10+|x(3t/4)|),φk(x(tk))=1(10+k)2sin|x(tk)|+111,k=1,2,φk(x(tk))=1(8+k)2tan1|x(tk)|+19,k=1,2. $

    By $ (H_1) $–$ (H_2) $, for any $ x_i $, $ y_i \in \mathbb{R} $, $ i = 1, 2 $, and $ t\in J $, we have $ |f(t, x_1(t), x_2(3t/4)) - f(t, y_1(t), y_2(3t/4))| \leq (1/81)(|x_1(t) - y_1(t)| + |x_2(3t/4) - y_2(3t/4)|) $, $ | \varphi_k(x_1) - \varphi_k(y_1)| \leq (1/121)| x_1(t_{k}) - y_1(t_{k})| $, and$ |\varphi_k^{\ast}(x_1) - \varphi_k^{\ast}(y_1)| \leq (1/81)|x_1(t_{k}) - y_1(t_{k})| $, for $ k = 1, 2 $. The $ (H_1) $–$ (H_2) $ are satisfied with $ L_{1} = 1/81 $, $ M_{1} = 1/121 $ and $ M_{1}^{\ast} = 1/81 $. Therefore, we get that

    $ \begin{equation*} 2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3} \approx 0.9772888914 < 1. \end{equation*} $

    Thus, all the assumptions of Theorem $ 3.1 $ are fulfilled, which implies that the problem (5.1) has a unique solution on $ [0, 3/2] $. Also $ (H_3) $–$ (H_4) $ holds with $ h_{1}(t) = (1/2) + t $, $ h_{2}(t) = (4t^{2}+1)/((10)(9^{t+1}(9+\sin^2\pi t)) $, where $ h_{1}^{*} = 2 $, $ h_{2}^* = 1/81 $ and $ k_{1} = 12/121 $, $ k_{1}^{*} = 10/81 $. So, all the assumptions of Theorem $ 3.2 $ are satisfied, then the problem (5.1) has at least one solution on $ [0, 3/2] $.

    Moreover, we also calculate that

    $ \begin{equation*} C_{f} = \frac{\Theta_{1} + m \Theta_{2} + \Theta_{3}} {1 - \left(2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3} \right)} \approx 2,179.779442 > 0. \end{equation*} $

    Hence, by Theorem $ 4.9 $ is both $ \mathbb{UH} $ stable and also generalized $ \mathbb{UH} $ stable. Further, by setting $ \phi(t) = e^{\frac{\rho - 1}{\rho}\psi_{k}(t)}(\psi_{k}(t) - \psi_k(0)) $ and $ \upsilon = 1 $, for any $ t\in [0, 3/2] $, then

    $ \begin{equation*} {{_{t_k}}}\mathfrak{I}^{\alpha_k+\beta_k, \rho, \psi_k} \phi(t) \leq \frac{\left(2\right)^{\frac{31}{20}}}{\Gamma(\frac{71}{20})}\left(e^{\frac{3}{4}} - 1\right)^{\frac{51}{20}} \phi(t). \end{equation*} $

    From the inequality in $ (H_5) $ is satisfy with $ \omega_{\phi} = \frac{\left(2\right)^{\frac{31}{20}}}{\Gamma(\frac{71}{20})}\left(e^{\frac{3}{4}} - 1\right)^{\frac{51}{20}} > 0 $, we have

    $ \begin{equation*} C_{f} = \frac{(\Theta_{1} + (1+m)\Theta_{2} + \Theta_{3})(1+\omega_{\phi})} {1-\left(2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2}) \Theta_{2} + M_{1}^{*} \Theta_{3} \right)} \approx 5,327.572054 > 0. \end{equation*} $

    Consequently, by all the assumptions in Theorem $ 4.11 $, the problem (5.1) is $ \mathbb{UHR} $ stable and generalized $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.

    In this paper, we have studied the existence, uniqueness, and stability of solutions for a new class of impulsive fractional differential equation augmented by non-separated boundary conditions involving Caputo proportional derivative of a function with respect to another function. The uniqueness of solutions is obtained by using Banach's contraction mapping principle, whereas the existence result is established via Schaefer's fixed point theorem. Moreover, by the application of qualitative theory and nonlinear functional analysis, we investigated results concerning to different kinds of Ulam-Hyers stability such as, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability. The concerned results have been examined by a suitable example to illustrate the main results.

    Further, our results are interesting special cases for different values of the parameters involved in the considered problem. For instance, our results correspond to a considered problem with

    $ \rm(i) $ periodic boundary conditions:

    $ \begin{equation*} x(0) = x(T), \qquad {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_0}x(0) = {^{C}_{t_{m}}}\mathfrak{D}^{\alpha_m, \rho, \psi_m}x(T), \end{equation*} $

    for $ \eta_1 = \eta_2 = 1 $, $ \kappa_1 = \kappa_2 = -1 $ and $ \xi_1 = \xi_2 = 0 $

    $ \rm(ii) $ anti-periodic boundary conditions:

    $ \begin{equation*} x(0) = - x(T), \qquad {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_0}x(0) = - {^{C}_{t_{m}}}\mathfrak{D}^{\alpha_m, \rho, \psi_m}x(T), \end{equation*} $

    for $ \eta_1 = \eta_2 = \kappa_1 = \kappa_2 = 1 $ and $ \xi_1 = \xi_2 = 0 $.

    The first author was financially supported by Navamindradhiraj University through the Navamindradhiraj University Research Fund (NURF). The second author would like to thank for funding this work through the King Mongkut's University of Technology North Bangkok and the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand for support this work.

    On behalf of all authors, the corresponding author states that there is no conflict of interest.

    [1] Maratos FA, Garner M, Hogan AM, et al. (2015) When is a Face a Face? Schematic Faces, Emotion, Attention and the N170. AIMS Neurosci 2: 172-182.
    [2] Krombholz A, Schaefer F, Boucsein W (2007) Modification of N170 by different emotional expression of schematic faces. Biol Psychol 76: 156-162. doi:10.1016/j.biopsycho.2007.07.004 doi: 10.1016/j.biopsycho.2007.07.004
    [3] Almeida PR, Ferreira-Santos F, Vieira JB, et al. (2014) Dissociable effects of psychopathic traits on cortical and subcortical visual pathways during facial emotion processing: An ERP study on the N170. Psychophysiology 51: 645-657. doi:10.1111/psyp.12209 doi: 10.1111/psyp.12209
    [4] Sato W, Kochiyamab T, Yoshikawab S, Naitoa E, et al. (2004) Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Brain Res Cogn Brain Res 20: 81-91. doi:10.1016/j.cogbrainres.2004.01.008 doi: 10.1016/j.cogbrainres.2004.01.008
    [5] Pönkänen LM, Alhoniemi A, Leppaänen JM, et al. (2011) Does it make a difference if I have an eye contact with you or with your picture? An ERP study. Soc Cogn Affect Neurosci 6: 486-494. doi:10.1093/scan/nsq068 doi: 10.1093/scan/nsq068
    [6] Gramann K, Ferris DP, Gwin J, et al. (2014) Imaging natural cognition in action. Int J Psychophysiol 91: 22-29. doi:10.1016/j.ijpsycho.2013.09.003 doi: 10.1016/j.ijpsycho.2013.09.003
    [7] Makeig S, Gramann K, Jung T-P, et al. (2009) Linking brain, mind and behavior: The promise of mobile brain/body imaging (MoBI). Int J Psychophysiol 73: 985-100.
  • This article has been cited by:

    1. Bounmy Khaminsou, Weerawat Sudsutad, Chatthai Thaiprayoon, Jehad Alzabut, Songkran Pleumpreedaporn, Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions, 2021, 5, 2504-3110, 251, 10.3390/fractalfract5040251
    2. Ravi P. Agarwal, Snezhana Hristova, Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type, 2022, 11, 2075-1680, 742, 10.3390/axioms11120742
    3. Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, 2022, 7, 2473-6988, 7817, 10.3934/math.2022438
    4. Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon, Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function, 2022, 7, 2473-6988, 9549, 10.3934/math.2022531
    5. Vipin Kumar, Gani Stamov, Ivanka Stamova, Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems, 2023, 439, 00963003, 127625, 10.1016/j.amc.2022.127625
    6. Ravi P. Agarwal, Snezhana Hristova, Donal O’Regan, Ulam Stability for Boundary Value Problems of Differential Equations—Main Misunderstandings and How to Avoid Them, 2024, 12, 2227-7390, 1626, 10.3390/math12111626
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5039) PDF downloads(961) Cited by(4)

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog