Citation: Fernando Ferreira-Santos. Facial Emotion Processing in the Laboratory (and elsewhere): Tradeoffs between Stimulus Control and Ecological Validity[J]. AIMS Neuroscience, 2015, 2(4): 236-239. doi: 10.3934/Neuroscience.2015.4.236
[1] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[2] | Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327 |
[3] | Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288 |
[4] | Rizwan Rizwan, Jung Rye Lee, Choonkil Park, Akbar Zada . Qualitative analysis of nonlinear impulse langevin equation with helfer fractional order derivatives. AIMS Mathematics, 2022, 7(4): 6204-6217. doi: 10.3934/math.2022345 |
[5] | Arjumand Seemab, Mujeeb ur Rehman, Jehad Alzabut, Yassine Adjabi, Mohammed S. Abdo . Langevin equation with nonlocal boundary conditions involving a $ \psi $-Caputo fractional operators of different orders. AIMS Mathematics, 2021, 6(7): 6749-6780. doi: 10.3934/math.2021397 |
[6] | Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222 |
[7] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for $ \psi $-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[8] | Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338 |
[9] | Zaid Laadjal, Fahd Jarad . On a Langevin equation involving Caputo fractional proportional derivatives with respect to another function. AIMS Mathematics, 2022, 7(1): 1273-1292. doi: 10.3934/math.2022075 |
[10] | Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644 |
Fractional calculus is the generalization of the ordinary differentiation and integration to non-integer order. It has been applied in various fields such as visco-elastic materials, aerodynamics, finance, chaotic dynamics, nonlinear control, signal processing, bioengineering, chemical engineering, and applied sciences. Fractional derivatives provide an excellent instrument for the description of memory and hereditary properties of many materials and processes. However, for the last few years, the fractional calculus was developed by many researchers. There are different definitions of fractional operators (derivative and integral) that have been presented such as Riemann-Liouville, Caputo, Hadamard, Hilfer, Katugampola, and the generalized fractional operators, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14] and references therein.
The impulsive differential equations have impulsive conditions at points of discontinuity. They have played an important role in discussing the dynamics process of various physical and evolutionary phenomena which have discontinuous jumps and abrupt changes in their state of systems. Such processes and phenomena appear in various applications. For some works on impulsive problems, we refer readers to [15,16,17,18,19] and references cited therein.
The Langevin differential equation (first introduced by Paul Langevin in $ 1908 $ to provide a complex illustration of Brownian motion [20]) is found an effective piece of equipment to explain the evolution of physical phenomena in fluctuating environments of mathematical physics. After that, the ordinary Langevin equation was replaced by the fractional Langevin equation in $ 1996 $ [21]. For some works on the fractional Langevin equation, see, for example, [22,23,24,25,26].
In recent years, many researchers attention studied the exclusive examination of the qualitative theory for fractional differential equations. It is existence and uniqueness theory and stability analysis. One of the most method used to examine the stability analysis of functional differential equations is the Ulam's stability such as Ulam-Hyers ($ \mathbb{UH} $) stability, generalized Ulam-Hyers ($ \mathbb{UH} $) stability, Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability and generalized Ulam-Hyers-Rassias ($ \mathbb{UHR} $) stability [27,28,29,30,31,32,33,34]. It has helpfulness in the field of numerical analysis and optimization because solving the exact solutions of the problems of fractional differential equations is very difficult. Consequently, it is imperative to develop the concepts of Ulam's stability for these problems because we need not get the exact solutions of the purpose problems when we study the properties of Ulam's stability. The qualitative theory encourages us obtain an efficient and reliable technique for approximately finding fractional differential equations because there exists a close exact solution when the purpose problem is Ulam's stable. Recently, many researchers attentively initiated and examined the existence, uniqueness, and different types of Ulam's stability of the solutions for nonlinear fractional differential equations with/without impulsive conditions; see [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49] and references cited therein. To the best of our knowledge, there is no paper on impulsive fractional Langevin differential equations containing the Caputo proportional fractional derivative of a function concerning function.
Motivated by the papers mentioned above [13,40,47] and a series of papers was devoted to the investigation of existence, uniqueness, and Ulam's stability of solutions of the impulsive fractional Langevin differential equation within different kinds of fractional derivatives, this paper examines the existence results and Ulam's stability of solutions for a class of the following impulsive fractional Langevin differential equation with non-separated boundary conditions under the Caputo proportional derivative type of the form:
$ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=f(t,x(t),x(μt)),t≠tk,k=0,1,2,…,m,x(t+k)−x(t−k)=φk(x(tk)),k=1,2,…,m,CtkDαk,ρ,ψkx(t+k)−tk−1CDαk−1,ρ,ψk−1x(t−k)=φ∗k(x(tk)),k=1,2,…,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, $ | (1.1) |
where $ {^{C}_{t_k}}D^{\nu, \rho, \psi_k} $ denotes the Caputo proportional fractional derivative of order $ \nu $ with respect to certain continuously differentiable and increasing function $ \psi_{k} $ with $ \psi^{\prime}(t) > 0 $ and $ \nu \in \{\alpha_k, \beta_k\} $, $ \alpha_k $, $ \beta_k \in(0, 1) $, $ 1 < \alpha_k +\beta_k < 2 $, $ t\in J_{k} = (t_k, t_{k+1}] \subseteq J = [0, T] = \{0\}\cup \left(\bigcup_{0}^{m}J_{k}\right) $, $ k = 0, 1, \ldots, m $. $ 0 = t_0 < t_1 < \cdot < t_m < t_{m+1} = T $ are impulsive points, $ 0 < \rho \leq 1 $, $ \lambda \in \mathbb{R} $, $ \mu \in(0, 1) $, $ f \in \mathcal{C}(J\times\mathbb{R}^{2}, \mathbb{R}) $, $ \varphi_k $, $ \varphi_k^{\ast} \in \mathcal{C}(\mathbb{R}, \mathbb{R}) $, $ k = 1, 2, \ldots, m $, $ x(t_k^+) = \lim_{\epsilon \to 0^{+}}x(t_{k}+\epsilon) $, $ x(t_k^-) = x(t_{k}) $ and the given constants $ \eta_i $, $ \kappa_i $, $ \xi_i \in\mathbb{R} $ for $ i = 1, 2 $.
The outline of the paper is as follows: Section $ 2 $ contains fundamental concepts from proportional fractional calculus and some basic lemmas needed in the sequel. An auxiliary result useful to transform problem (1.1) into an equivalent integral equation is proved in Section $ 2 $. The existence results are presented in Section $ 3 $, where the uniqueness result is proved via Banach's fixed point theorem and the existence result with the help of Schaefer's fixed point theorem. Furthermore, we study different types of Ulam's stability results for the problem (1.1). Finally, an illustrative example is constructed in Section $ 5 $ to illustrate the usefulness of the main results.
In this section, we recall some notations, definitions, lemmas, and properties of proportional fractional derivative and fractional integral operators of a function with respect to another function that will be used throughout the remaining part of this paper. For more details, see [13,14,50].
Definition 2.1. (The proportional derivative of a function with respect to another function [13,14]) Take $ \rho \in [0, 1] $ and the let the functions $ \kappa_{0} $, $ \kappa_{1} : [0, 1] \times \mathbb{R} \to [0, \infty) $ be continuous such that for all $ t\in \mathbb{R} $ we have
$ limρ→0+κ1(ρ,t)=1,limρ→0+κ0(ρ,t)=0,limρ→1−κ1(ρ,t)=0,limρ→1−κ0(ρ,t)=1, $ |
and $ \kappa_{1}(\rho, t) \neq 0 $, $ \rho \in [0, 1) $, $ \kappa_{0}(\rho, t) \neq 0 $, $ \rho \in (0, 1] $. Let $ \psi(t) $ be a continuously differentiable and increasing function. Then, the proportional differential operator of order $ \rho $ of $ f $ with respect to $ \psi $ is defined by
$ Dρ,ψf(t)=κ1(ρ,t)f(t)+κ0(ρ,t)f′(t)ψ′(t). $ | (2.1) |
In particular, If $ \kappa_{1}(\rho, t) = 1 - \rho $ and $ \kappa_{0}(\rho, t) = \rho $, we get
$ Dρ,ψf(t)=(1−ρ)f(t)+ρf′(t)ψ′(t). $ | (2.2) |
Definition 2.2. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}^{1}([a, b]) $, $ \psi^{\prime} > 0 $. The proportional fractional integral of order $ \alpha $ of the function $ f\in L^{1}([a, b]) $ with respect to another function $ \psi $ is defined by
$ aIα,ρ,ψf(t)=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1f(s)ψ′(s)ds, $ | (2.3) |
where $ \Gamma(\cdot) $ represents the Gamma function [4].
Definition 2.3. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}([a, b]) $, $ \psi^{\prime}(t) > 0 $. The Riemann-Liouvill proportional fractional derivative of order $ \alpha $ of the function $ f\in \mathcal{C}^{n}([a, b]) $ with respect to another function $ \psi $ is defined by
$ aDα,ρ,ψf(t)=Dn,ρ,ψaIn−α,ρ,ψf(t)=Dn,ρ,ψtρn−αΓ(n−α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−α−1f(s)ψ′(s)ds, $ | (2.4) |
where $ n = [Re(\alpha)]+1 $, $ [Re(\alpha)] $ represents the integer part of the real number $ \alpha $ and $ \mathfrak{D}^{n, \rho, \psi} = \underbrace{\mathfrak{D}^{\rho, \psi}\mathfrak{D}^{\rho, \psi}\cdots\mathfrak{D}^{\rho, \psi}}_{\rm{n times}} $.
Definition 2.4. ([13,14]) Take $ \alpha \in \mathbb{C} $, $ Re(\alpha) > 0 $, $ \rho \in (0, 1] $, $ \psi \in \mathcal{C}([a, b]) $, $ \psi^{\prime}(t) > 0 $. The Caputo proportional fractional derivative of order $ \alpha $ of the function $ f $ with respect to another function $ \psi $ is defined by
$ CaDα,ρ,ψf(t)=aIn−α,ρ,ψDn,ρ,ψf(t)=1ρn−αΓ(n−α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))n−α−1Dn,ρ,ψf(s)ψ′(s)ds. $ | (2.5) |
Lemma 2.5. ([13]) Let $ \rho \in (0, 1] $, $ Re(\alpha) > 0, $ $ Re(\beta) > 0 $. Then, for $ f $ is continuous and defined for $ t \geq a $, we have
$ aIα,ρ,ψaIβ,ρ,ψf(t)=aIβ,ρ,ψaIα,ρ,ψf(t)=aIα+β,ρ,ψf(t). $ |
Lemma 2.6. ([13]) Let $ 0 \leq m < [Re(\alpha)]+1 $ and $ f $ be integrable in each interval $ [a, t] $, $ t > a $. Then
$ Dm,ρ,ψaIα,ρ,ψf(t)=aIα−m,ρ,ψf(t). $ |
Corollary 2.7. ([13]) Let $ 0 < Re(\beta) < Re(\alpha) $ and $ m - 1 < Re(\beta) \leq m $. Then, we have
$ aDβ,ρ,ψaIα,ρ,ψf(t)=aIα−β,ρ,ψf(t). $ |
Corollary 2.8. Let $ 0 < Re(\beta) < Re(\alpha) $ and $ m-1 < Re(\beta) \leq m $. Then, we have
$ CaDβ,ρ,ψaIα,ρ,ψf(t)=aIα−β,ρ,ψf(t). $ |
Proof. By the help of Definition $ 2.4 $, Lemma $ 2.5 $ and Lemma $ 2.6 $, we have
$ CaDβ,ρ,ψaIα,ρ,ψf(t)=aIm−β,ρ,ψDm,ρ,ψaIα,ρ,ψf(t)=aIm−β,ρ,ψaIα−m,ρ,ψf(t)=aIα−β,ρ,ψf(t). $ |
The proof is completed.
Next, the lemma presents the impact of the proportional fractional integral operator on the Caputo proportional fractional derivative operator of the same order.
Lemma 2.9.([14]) For $ \rho\in(0, 1] $ and $ n = [Re(\alpha)]+1 $, we have $ {_{a}^{C}}\mathfrak{D}^{\alpha, \rho, \psi} {_{a}}\mathfrak{I}^{\alpha, \rho, \psi}f(t) = f(t), $ and
$ aIα,ρ,ψCaDα,ρ,ψf(t)=f(t)−n−1∑k=0Dk,ρ,ψf(a)ρkk!(ψ(t)−ψ(a))keρ−1ρ(ψ(t)−ψ(a)). $ |
Proposition 2.10. ([14]) Let $ Re(\alpha) \geq 0 $ and $ Re(\beta) > 0 $. Then, for any $ \rho\in(0, 1] $ and $ n = [Re(\alpha)]+1 $, we have
(i) $ \left({_{a}}\mathfrak{I}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\Gamma(\beta)}{\rho^{\alpha}\Gamma(\beta+\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)} \left(\psi(t)-\psi(a) \right)^{\beta+\alpha-1}, \quad Re(\alpha) > 0. $
(ii) $ \left({_{a}}\mathfrak{D}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\rho^{\alpha}\Gamma(\beta)}{\Gamma(\beta-\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(a) \right)^{\beta-\alpha-1}, \quad Re(\alpha) \geq 0 $.
(iii) $ \left({_{a}^{C}}\mathfrak{D}^{\alpha, \rho, \psi}e^{\frac{\rho-1}{\rho}\psi(s)}\left(\psi(s)-\psi(a) \right)^{\beta-1}\right)(t) = \frac{\rho^{\alpha}\Gamma(\beta)}{\Gamma(\beta-\alpha)}e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(a) \right)^{\beta-\alpha-1}, \quad Re(\beta) > n $.
For $ k = 0, 1, \ldots, n-1 $, we have
$ (CaDα,ρ,ψeρ−1ρψ(s)(ψ(s)−ψ(a))k)(t)=0and(CaDα,ρ,ψeρ−1ρψ(s))(t)=0. $ |
Throughout this paper, let $ \mathbb{E} : = PC(J, \mathbb{R}) : = \{x : J \to \mathbb{R} : x(t) $ is continuous everywhere except for some $ t_k $ at which $ x(t_k^+) $ and $ x(t_k^-) = x(t_k) $, $ k = 1, 2, \ldots, m \} $ the space of piecewise continuous functions. Obviously, $ (\mathbb{E}, \Vert x \Vert) $ is a Banach space equipped with the norm $ \| x \| : = \sup_{t\in J}\vert x(t)\vert $.
In the following, for the convenience for the reader, we set the functional equation $ F_x(t) = f(t, x(t), x(\mu t)) $, and we express the proportional fractional integral operator defined in (2.3) of a nonlinear function $ F_{x} $ by a subscript notation by
$ aIα,ρ,ψFx(t)=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1Fx(s)ψ′(s)ds=1ραΓ(α)∫taeρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1f(s,x(s),x(μs))ψ′(s)ds. $ |
In the sequel, for nonnegative integers $ a < b $, we use the following notations:
$ Φc(ta,tb)=(ψa(tb)−ψa(ta))cρcΓ(c+1), $ | (2.6) |
$ Gi(x)=tiIβi,ρ,ψiFx(ti+1)+φ∗i+1(x(ti+1)), $ | (2.7) |
$ Hi(x)=tiIαi+βi,ρ,ψiFx(ti+1)−λtiIαi,ρ,ψix(ti+1)+φi+1(x(ti+1)), $ | (2.8) |
where $ i = 0, 1, 2, \ldots, m $.
In Lemma $ 2.11 $, we prepare an important lemma, which is used as the main results of the problem (1.1).
Lemma 2.11. Let $ 0 < \alpha_k, \beta_k < 1 $, $ 1 < \alpha_k +\beta_k < 2 $, $ 0 < \rho\leq 1 $, $ F_{x} \in AC(J\times\mathbb{R}^{2}, \mathbb{R}) $ for any $ x \in \mathcal{C}(J, \mathbb{R}) $ and $ \Omega_{1} \Omega_{4} \neq \Omega_{2} \Omega_{3} $. Then the following boundary value problem:
$ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)x(t)=Fx(t),t≠tk,k=0,1,2,…,m,x(t+k)−x(t−k)=φk(x(tk)),k=1,2,…,m,CtkDαk,ρ,ψkx(t+k)−tk−1CDαk−1,ρ,ψk−1x(t−k)=φ∗k(x(tk)),k=1,2,…,m,η1x(0)+κ1x(T)=ξ1,η2Ct0Dα0,ρ,ψ0x(0)+κ2CtmDαm,ρ,ψmx(T)=ξ2, $ | (2.9) |
is equivalent to the following integral equation:
$ x(t)=tkIαk+βk,ρ,ψkFx(t)−λtkIαk,ρ,ψkx(t)+{k∑i=1Hi−1(x)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+k∑i=1Gi−1(x)k−1∑j=i(Φαj(tj,tj+1)+Φαk(tk,t))k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+Ω1R(x,Fx)−Ω3K(x,Fx)Ω5k∑i=1(Φαi−1(ti−1,ti)+Φαk(tk,t))k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+Ω4K(x,Fx)−Ω2R(x,Fx)Ω5k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk)),t∈Jk, $ | (2.10) |
where
$ Ω1=κ1m+1∑i=1Φαi−1(ti−1,ti)m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1)), $ | (2.11) |
$ Ω2=η1+κ1m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1)), $ | (2.12) |
$ Ω3=η2+κ2(1−λm+1∑i=1Φαi−1(ti−1,ti))m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1)), $ | (2.13) |
$ Ω4=−η2λ−κ2λm+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1)), $ | (2.14) |
$ Ω5=Ω1Ω4−Ω2Ω3, $ | (2.15) |
$ K(x,Fx)=ξ1−κ1tmIαm+βm,ρ,ψmFx(T)+κ1λtmIαm,ρ,ψmx(T)−κ1m∑i=1Gi−1(x)m∑j=iΦαj(tj,tj+1)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))−κ1m∑i=1Hi−1(x)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)), $ | (2.16) |
$ R(x,Fx)=ξ2−κ2tmIβm,ρ,ψmFx(T)+κ2λtmIαm+βm,ρ,ψmFx(T)−κ2λ2tmIαm,ρ,ψmx(T)−κ2m∑i=1Gi−1(x)(1−λm∑j=iΦαj(tj,tj+1))m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+κ2λm∑i=1Hi−1(x)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)), $ | (2.17) |
where $ \Phi^{c}(t_a, t_b) $, $ G_{i-1}(x) $, $ H_{i-1}(x) $ are defind by (2.6), (2.7), (2.8), respectively.
Proof. Firstly, for $ t\in J_{0} = [t_0, t_1] $, we transform the problem (2.9) into an integral equation by applying the proportional fractional integral of order $ \beta_{0} \in (0, 1) $ with respect to a function $ \psi_{0}(t) $ to both sides of (2.9) and also using Lemma $ 2.9 $, we obtain
$ Ct0Dα0,ρ,ψ0x(t)=t0Iβ0,ρ,ψ0Fx(t)−λx(t)+c1eρ−1ρ(ψ0(t)−ψ0(t0)), $ |
where $ c_{1} \in \mathbb{R} $.
In the same process, taking the proportional fractional integral of order $ \alpha_{0} \in (0, 1) $ with respect to a function $ \psi_{0}(t) $ to both sides of (2), we get, for $ c_{1} $, $ c_{2} \in \mathbb{R} $,
$ x(t)=t0Iα0+β0,ρ,ψ0Fx(t)−λt0Iα0,ρ,ψ0x(t)+c1{(ψ0(t)−ψ0(t0))α0ρα0Γ(α0+1)}eρ−1ρ(ψ0(t)−ψ0(t0))+c2eρ−1ρ(ψ0(t)−ψ0(t0)). $ |
For $ t\in J_{1} = (t_1, t_2] $, by applying the proportional fractional integral of order $ \beta_{1} \in (0, 1) $ with respect to a function $ \psi_{1}(t) $ to both sides of (2.9) and again using Lemma $ 2.9 $, we have
$ Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)−λx(t)+d1eρ−1ρ(ψ1(t)−ψ1(t1)), $ | (2.18) |
and the same method, it follows that
$ x(t)=t1Iα1+β1,ρ,ψ1Fx(t)−λt1Iα1,ρ,ψ1x(t)+d1(ψ1(t)−ψ1(t1))α1ρα1Γ(α1+1)eρ−1ρ(ψ1(t)−ψ1(t1))+d2eρ−1ρ(ψ1(t)−ψ1(t1)), $ | (2.19) |
where $ d_1 $, $ d_2\in \mathbb{R} $
By using impulsive conditions $ x(t_1^+) = x(t_1^-) + \varphi_1(x(t_1)) $ and $ {^{C}_{t_{1}}}\mathfrak{D}^{\alpha_1, \rho, \psi_{1}}x(t_1^+) = {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_{0}}x(t_1^-) + \varphi_1^*(x(t_1)) $, then
$ d1=t0Iβ0,ρ,ψ0Fx(t1)+c1eρ−1ρ(ψ0(t1)−ψ0(t0))+φ∗1(x(t1)),d2=t0Iα0+β0,ρ,ψ0Fx(t1)−λt0Iα0,ρ,ψ0x(t1)+c1(ψ0(t1)−ψ0(t0))α0ρα0Γ(α0+1)eρ−1ρ(ψ0(t1)−ψ0(t0))+c2eρ−1ρ(ψ0(t1)−ψ0(t0))+φ1(x(t1)). $ |
Substituting $ d_1 $ and $ d_2 $ into (2.18) and (2.19), we obtain
$ Ct1Dα1,ρ,ψ1x(t)=t1Iβ1,ρ,ψ1Fx(t)−λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))}eρ−1ρ(ψ1(t)−ψ1(t1))+c1{eρ−1ρ(ψ0(t1)−ψ0(t0))}eρ−1ρ(ψ1(t)−ψ1(t1)),t∈J1,x(t)=t1Iα1+β1,ρ,ψ1Fx(t)−λt1Iα1,ρ,ψ1x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))(ψ1(t)−ψ1(t1))α1ρα1Γ(α1+1)}eρ−1ρ(ψ1(t)−ψ1(t1))+{(t0Iα0+β0,ρ,ψ0Fx(t1)−λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))}eρ−1ρ(ψ1(t)−ψ1(t1))+c1{((ψ0(t1)−ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t)−ψ1(t1))α1ρα1Γ(α1+1))eρ−1ρ(ψ0(t1)−ψ0(t0))}eρ−1ρ(ψ1(t)−ψ1(t1))+c2{eρ−1ρ(ψ0(t1)−ψ0(t0))}eρ−1ρ(ψ1(t)−ψ1(t1)),t∈J1. $ |
For $ t\in J_{2} = (t_2, t_3] $, by using the proportional fractional integral of order $ \beta_{2} \in (0, 1) $ and $ \alpha_{2} \in (0, 1) $ with respect to a function $ \psi_{2}(t) $ to both sides of (2.9), we have
$ Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)−λx(t)+d1eρ−1ρ(ψ2(t)−ψ2(t2)), $ | (2.20) |
$ x(t)=t2Iα2+β2,ρ,ψ2Fx(t)−λt2Iα2,ρ,ψ2x(t)+d3(ψ2(t)−ψ2(t2))α2ρα2Γ(α2+1)eρ−1ρ(ψ2(t)−ψ2(t2))+d4eρ−1ρ(ψ2(t)−ψ2(t2)). $ | (2.21) |
where $ d_3 $, $ d_4\in \mathbb{R} $. In view of the impulsive conditions $ x(t_2^+) = x(t_2^-) + \varphi_2(x(t_2)) $ and $ {^{C}_{t_{2}}}\mathfrak{D}^{\alpha_2, \rho, \psi_{2}}x(t_2^+) = {^{C}_{t_{1}}}\mathfrak{D}^{\alpha_1, \rho, \psi_{1}}x(t_2^-) + \varphi_2^*(x(t_2)) $, we obtain
$ d3=(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))eρ−1ρ(ψ1(t2)−ψ1(t1))+t1Iβ1,ρ,ψ1Fx(t2)+φ∗2(x(t2))+c1eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))],d4=(ψ1(t2)−ψ1(t1))α1ρα1Γ(α1+1)(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))eρ−1ρ(ψ1(t2)−ψ1(t1))+(t0Iα0+β0,ρ,ψ0Fx(t1)−λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ−1ρ(ψ1(t2)−ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)−λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))+c1((ψ0(t1)−ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)−ψ1(t1))α1ρα1Γ(α1+1))eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))]+c2eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))]. $ |
Substituting $ d_3 $ and $ d_4 $ into (2.20) and (2.21), we obtain
$ Ct2Dα2,ρ,ψ2x(t)=t2Iβ2,ρ,ψ2Fx(t)−λx(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))eρ−1ρ(ψ1(t2)−ψ1(t1))}eρ−1ρ(ψ2(t)−ψ2(t2))+{(t1Iβ1,ρ,ψ1Fx(t2)+φ∗2(x(t2)))}eρ−1ρ(ψ2(t)−ψ2(t2))+c1{eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))]}eρ−1ρ(ψ2(t)−ψ2(t2)),t∈J2,x(t)=t2Iα2+β2,ρ,ψ2Fx(t)−λt2Iα2,ρ,ψ2x(t)+{(t0Iβ0,ρ,ψ0Fx(t1)+φ∗1(x(t1)))×((ψ1(t2)−ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)−ψ2(t2))α2ρα2Γ(α2+1))eρ−1ρ(ψ1(t2)−ψ1(t1))+(t1Iβ1,ρ,ψ1Fx(t2)+φ∗2(x(t2)))(ψ2(t)−ψ2(t2))α2ρα2Γ(α2+1)}eρ−1ρ(ψ2(t)−ψ2(t2))+{(t0Iα0+β0,ρ,ψ0Fx(t1)−λt0Iα0,ρ,ψ0x(t1)+φ1(x(t1)))eρ−1ρ(ψ1(t2)−ψ1(t1))+(t1Iα1+β1,ρ,ψ1Fx(t2)−λt1Iα1,ρ,ψ1x(t2)+φ2(x(t2)))}eρ−1ρ(ψ2(t)−ψ2(t2))+c1{((ψ0(t1)−ψ0(t0))α0ρα0Γ(α0+1)+(ψ1(t2)−ψ1(t1))α1ρα1Γ(α1+1)+(ψ2(t)−ψ2(t2))α2ρα2Γ(α2+1))×eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))]}eρ−1ρ(ψ2(t)−ψ2(t2))+c2{eρ−1ρ[(ψ0(t1)−ψ0(t0))+(ψ1(t2)−ψ1(t1))]}eρ−1ρ(ψ2(t)−ψ2(t2)),t∈J2. $ |
By a similar way repeating the same process, for $ t\in J_k = (t_k, t_{k+1}] $, $ k = 0, 1, 2, \ldots, m $, we have the integral equation
$ x(t)=tkIαk+βk,ρ,ψkFx(t)−λtkIαk,ρ,ψkx(t)+{k∑i=1Hi−1(x)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+k∑i=1Gi−1(x)k−1∑j=i(Φαj(tj,tj+1)+Φαk(tk,t))k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+c1k∑i=1(Φαi−1(ti−1,ti)+Φαk(tk,t))k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+c2k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk)), $ | (2.22) |
$ CtkDαk,ρ,ψkx(t)=tkIβk,ρ,ψkFx(t)−λx(t)+{k∑i=1Gi−1(x)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+c1k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk)). $ | (2.23) |
From the given boundary conditions, we get the following system
$ Ω1c1+Ω2c2=K(x,Fx),Ω3c1+Ω4c2=R(x,Fx). $ |
Solving the above system for the constants $ c_1 $ and $ c_2 $, we have
$ c1=Ω1R(x,Fx)−Ω3K(x,Fx)Ω1Ω4−Ω2Ω3andc2=Ω4K(x,Fx)−Ω2R(x,Fx)Ω1Ω4−Ω2Ω3, $ |
where $ \Omega_{1} \Omega_{4} \neq \Omega_{2} \Omega_{3} $ are defined by (2.11), (2.12), (2.13) and (2.14), respectively. Substituting these values of $ c_{1} $ and $ c_{2} $ in (2.22), yields the solution in (2.10).
Conversely, it is easily to shown by direct calculuation that the solution $ x(t) $ is given by (2.10) satisfies the problem (2.9) under the given boundary conditions. This completes the proof.
The fixed point theorems play an important role in studying the existence theory for the problem (1.1). We collect here some well-known fixed point theorems for the sake of essential in the proofs of our existence and uniqueness results.
Theorem 2.12. (Banach's fixed point theorem [50]) Let $ D $ be a non-empty closed subset of a Banach space $ E $. Then any contraction mapping $ T $ from $ D $ into itself has a unique fixed point.
Theorem 2.13. (Schaefer's fixed point theorem [50]) Let $ E $ be a Banach space and $ T $ : $ E \to E $ be a completely continuous operator, and let the set $ D = \{x \in E : x = \sigma Tx, 0 < \sigma \leq 1\} $ be bounded. Then $ T $ has a fixed point in $ E $.
In this section, we discuss the existence and uniqueness results for the problem (1.1) via Banach's and Schaefer's fixed point theorems.
In view of Lemma $ 2.11 $ to establish existence theorems, we consider the operator equation $ x = \mathcal{Q}x $, where $ \mathcal{Q} : \mathbb{E} \to \mathbb{E} $ is defined by
$ (Qx)(t)=tkIαk+βk,ρ,ψkFx(t)−λtkIαk,ρ,ψkx(t)+{k∑i=1Hi−1(x)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+k∑i=1Gi−1(x)k−1∑j=i(Φαj(tj,tj+1)+Φαk(tk,t))k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+Ω1R(x,Fx)−Ω3K(x,Fx)Ω5k∑i=1(Φαi−1(ti−1,ti)+Φαk(tk,t))k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+Ω4K(x,Fx)−Ω2R(x,Fx)Ω5k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk)),t∈Jk. $ | (3.1) |
It is clear that the problem (1.1) has a solution if and only if the operator $ \mathcal{Q} $ has fixed points.
To simplify the computations, we use the following constants:
$ Λ1=m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1), $ | (3.2) |
$ Λ2=m+1∑i=1Φαi−1(ti−1,ti), $ | (3.3) |
$ Λ3=m∑i=1m∑j=iΦαj(tj,tj+1), $ | (3.4) |
$ Λ4=m+1∑i=1Φβi−1(ti−1,ti), $ | (3.5) |
$ Θ1=Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|, $ | (3.6) |
$ Θ2=1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, $ | (3.7) |
$ Θ3=Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|, $ | (3.8) |
$ Θ4=(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|, $ | (3.9) |
By applying classical fixed point theorems, we prove in the next subsections, for the problems (1.1), our main existence and uniqueness results.
The first result is an existence and uniqueness result for the problem (1.1) by applying Banach's fixed point theorem.
Theorem 3.1. Let $ \psi_{k} \in \mathcal{C}^{2}(J) $ with $ \psi^{\prime}_{k}(t) > 0 $ for $ t\in J $, $ k = 0, 1, 2, \ldots, m $. Assume that $ f\in \mathcal{C}(J\times\mathbb{R}^{2}, \mathbb{R}) $, $ \varphi_{k} $, $ \varphi_{k}^{\ast} \in \mathcal{C}(\mathbb{R}, \mathbb{R}) $, $ k = 1, 2, \ldots, m $ satisfy the following assumptions:
$ (H_1) $ There exist a constant $ L_1 > 0 $ such that, for every $ t\in J $ and $ x_{1} $, $ x_{2} $, $ y_{1} $, $ y_2 \in \mathbb{R} $, such that
$ |f(t,x1,y1)−f(t,x2,y2)|≤L1(|x1−x2|+|y1−y2|). $ |
$ (H_2) $ There exist constants $ M_1, M_1^* > 0 $, for any $ x, y\in \mathbb{R} $, such that
$ |φk(x)−φk(y)|≤M1|x−y|,|φ∗k(x)−φ∗k(y)|≤M∗1|x−y|,k=1,2,…,m. $ |
Then, the problem (1.1) has a unique solution on $ J $ provided that
$ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3<1. $ | (3.10) |
Proof. Observe that the problem (1.1) is equivalent to a fixed point problem $ x = \mathcal{Q}x $, where the operator $ \mathcal{Q} $ is defined by (3.1). Thus, we need to establish that the operator $ \mathcal{Q} $ has a fixed point. This will be achieved by means of the Banach's fixed point theorem.
Let $ K_1 $, $ K_2 $ and $ K_3 $ be nonnegative constants such that $ K_1 = \sup_{t\in J}|f(t, 0, 0)| $, $ K_2 = \max\{\varphi_k(0): k = 1, 2, \ldots, m\} $ and $ K_3 = \max\{\varphi_k^*(0): k = 1, 2, \ldots, m\} $. Next we set $ B_{r_1} = \{x \in \mathbb{E} : \|x\| \leq r_1\} $ with
$ r1≥K1Θ1+mK2Θ2+K3Θ3+Θ41−(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3). $ | (3.11) |
Clearly, $ B_{r_1} $ is a bounded, closed, and convex subset of $ \mathbb{E} $. We complete the proof in two steps.
Step I. We show that $ \mathcal{Q}B_{r_1} \subset B_{r_1} $.
For any $ x\in B_{r_1} $, we have
$ |(Qx)(t)|≤tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+{m∑i=1|Hi−1(x)|m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+m∑i=1|Gi−1(x)|m∑j=iΦαj(tj,tj+1)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1∑i=1Φαi−1(ti−1,ti)m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψm(T)−ψm(tm)). $ | (3.12) |
By using $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ with $ (H_1) $ and $ (H_2) $, we have
$ |G_{i-1}(x)| \leq |G_{i-1}(x) - G_{i-1}(0)| + |G_{i-1}(0)|\\ \leq {{_{t_{i-1}}}}\mathfrak{I}^{\beta_{i-1}, \rho, \psi_{i-1}}|F_{x}(s) - F_{0}(s)|(t_{i}) + |\varphi_{i}^*(x(t_{i})) - \varphi_{i}^*(0)| + {{_{t_{i-1}}}}\mathfrak{I}^{\beta_{i-1}, \rho, \psi_{i-1}}|F_{0}(s)|(t_{i}) + |\varphi_{i}^*(0)|\\ \leq \frac{2L_{1}r_{1}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}^{*} r_{1} \\ + \frac{K_{1}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + K_{3}\\ \leq \left(2L_{1} \frac{(\psi_{i-1}(t_{i}) - \psi_{i-1}(t_{i-1}))^{\beta_{i-1}}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1}+1)} + M_{1}^{*}\right) r_{1} + K_{1} \frac{(\psi_{i-1}(t_{i}) - \psi_{i-1}(t_{i-1}))^{\beta_{i-1}}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1}+1)} + K_{3}\\ = \left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}, \label{ConIneB1}\\ $ | (3.13) |
$ |Hi−1(x)|≤|Hi−1(x)−Hi−1(0)|+|Hi−1(0)|≤ti−1Iαi−1+βi−1,ρ,ψi−1|Fx(s)−F0(s)|(ti)+|λ|ti−1Iαi−1,ρ,ψi−1|x(s)|(ti)+|φi(x(ti))−φi(0)|+ti−1Iαi−1+βi−1,ρ,ψi−1|F0(s)|(ti)+|φi(0)|≤2L1r1ραi−1+βi−1Γ(αi−1+βi−1)∫titi−1|eρ−1ρ(ψi−1(ti)−ψi−1(s))|(ψi−1(ti)−ψi−1(s))αi−1+βi−1−1ψ′i−1(s)ds+|λ|r1ραi−1Γ(αi−1)∫titi−1|eρ−1ρ(ψi−1(ti)−ψi−1(s))|(ψi−1(ti)−ψi−1(s))αi−1−1ψ′i−1(s)ds+M1r1+K2+K1ραi−1+βi−1Γ(αi−1+βi−1)∫titi−1,|eρ−1ρ(ψi−1(ti)−ψi−1(s))|(ψi−1(ti)−ψi−1(s))αi−1+βi−1−1ψ′i−1(s)ds≤(2L1(ψi−1(ti)−ψi−1(ti−1))αi−1+βi−1ραi−1+βi−1Γ(αi−1+βi−1+1)+|λ|(ψi−1(ti)−ψi−1(ti−1))αi−1ραi−1Γ(αi−1+1)+M1)r1+K1(ψi−1(ti)−ψi−1(ti−1))αi−1+βi−1ραi−1+βi−1Γ(αi−1+βi−1+1)+K2=(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)r1+K1Φαi−1+βi−1(ti−1,ti)+K2. $ | (3.14) |
From the results of the inequalities (3.13)-(3.14) with the similarly process, we obtain,
$ |K(x,Fx)|≤|K(x,Fx)−K(0,F0)|+|K(0,F0)|≤|ξ1|+|κ1|tmIαm+βm,ρ,ψm|Fx(s)−F0(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)|(T)+|κ1|m∑i=1|Gi−1(x)−Gi−1(0)|m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1|Hi−1(x)−Hi−1(0)|+|κ1|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ1|m∑i=1|Gi−1(0)|m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1|Hi−1(0)|≤|ξ1|+2L1r1|κ1|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ1||λ|r1ραmΓ(αm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm−1ψ′m(s)ds+|κ1|m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)r1m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)r1+K1|κ1|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ1|m∑i=1(K1Φβi−1(ti−1,ti)+K3)m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(K1Φαi−1+βi−1(ti−1,ti)+K2)≤{2L1(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))+|λ|m+1∑i=1Φαi−1(ti−1,ti)+M∗1m∑i=1m∑j=iΦαj(tj,tj+1)+mM1}|κ1|r1+{K1(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))+K3m∑i=1m∑j=iΦαj(tj,tj+1)+mK2}|κ1|+|ξ1|=(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|r1+(K1Λ1+K3Λ3+mK2)|κ1|+|ξ1|, $ | (3.15) |
$ |R(x,Fx)|≤|R(x,Fx)−R(0,F0)|+|R(0,F0)|≤|ξ2|+|κ2|tmIβm,ρ,ψm|Fx(s)−F0(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)−F0(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)|(T)+|κ2|m∑i=1|Gi−1(x)−Gi−1(0)|(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1|Hi−1(x)−Hi−1(0)|+|κ2|tmIβm,ρ,ψm|F0(s)|(T)+|κ2||λ|m∑i=1|Hi−1(0)|+|κ2||λ|tmIαm+βm,ρ,ψm|F0(s)|(T)+|κ2|m∑i=1|Gi−1(0)|(1+|λ|m∑j=iΦαj(tj,tj+1))≤|ξ2|+2L1r1|κ2|ρβmΓ(βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))βm−1ψ′m(s)ds+2L1r1|κ2||λ|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ2|λ2r1ραmΓ(αm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm−1ψ′m(s)ds+|κ2|m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)r1(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)r1+K1|κ2|ρβmΓ(βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))βm−1ψ′m(s)ds+|κ2||λ|m∑i=1(K1Φαi−1+βi−1(ti−1,ti)+K2)+K1|κ2||λ|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ2|m∑i=1(K1Φβi−1(ti−1,ti)+K3)(1+|λ|m∑j=iΦαj(tj,tj+1))≤{2L1[|λ|(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))+m+1∑i=1Φβi−1(ti−1,ti)]+M∗1(|λ|m∑i=1m∑j=iΦαj(tj,tj+1)+mg)+λ2m+1∑i=1Φαi−1(ti−1,ti)+m|λ|M1}|κ2|r1+{K1[m+1∑i=1Φβi−1(ti−1,ti)+|λ|(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))]+K3[|λ|m∑i=1m∑j=iΦαj(tj,tj+1)+m]+K2m|λ|}|κ2|+|ξ2|=(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|r1+(K1(Λ4+|λ|Λ1)+K3(|λ|Λ3+m)+K2m|λ|)|κ2|+|ξ2|. $ | (3.16) |
Substisuting (3.13), (3.14), (3.15) and (3.16) into (3.12), we obtain
$ |(\mathcal{Q}x)(t)| \leq{{_{t_m}}}\mathfrak{I}^{\alpha_m+\beta_m, \rho, \psi_{m}}\left(|F_{x}(s)-F_{0}(s)| + |F_{0}(s)|\right)(T) + |\lambda| {{_{t_m}}}\mathfrak{I}^{\alpha_m, \rho, \psi_{m}}|x(s)|(T)\\ + \sum\limits_{i = 1}^{m}\left(|H_{i-1}(x) - H_{i-1}(0)| + |H_{i-1}(0)|\right) + \sum\limits_{i = 1}^{m}\left(|G_{i-1}(x) - G_{i-1}(0)| + |G_{i-1}(0)|\right) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + (|\Omega_{1}| (|\mathcal{R}(x, F_{x}) - \mathcal{R}(0, F_{0})| + |\mathcal{R}(0, F_{0})|) + |\Omega_{3}| (|\mathcal{K}(x, F_{x}) - \mathcal{K}(0, F_{0})| + |\mathcal{K}(0, F_{0})|)) \nonumber\\ \times \frac{1}{|\Omega_{5}|}\sum\limits_{i = 1}^{m+1}\Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + \frac{1}{|\Omega_{5}|}(|\Omega_{4}| (|\mathcal{K}(x, F_{x}) - \mathcal{K}(0, F_{0})| + |\mathcal{K}(0, F_{0})|)\\ + |\Omega_{2}| (|\mathcal{R}(x, F_{x}) - \mathcal{R}(0, F_{0})| + |\mathcal{R}(0, F_{0})|))\\ \leq \frac{2L_{1} r_{1} + K_{1}}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right| ( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1}\psi_{m}'(s)ds\\ + \frac{|\lambda| r_{1} }{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right| ( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1}\psi_{m}'(s)ds\\ + \sum\limits_{i = 1}^{m} [\left(2L_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + M_{1}\right)r_{1} + K_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + K_{2}]\\ + \sum\limits_{i = 1}^{m} [\left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{1}{|\Omega_{5}|}\sum\limits_{i = 1}^{m+1}\Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})[|\Omega_{1}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}| ) \\ + |\Omega_{3}| ( (2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1} + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}| )] \nonumber\\ + \frac{1}{|\Omega_{5}|} [|\Omega_{4}| ( (2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1} + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}| )\\ + |\Omega_{2}| ((2 L_{1} ( |\lambda| \Lambda_{1} + \Lambda_{4}) + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} ) |\kappa_2| r_{1}\notag\\ + (K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|) |\kappa_2| + |\xi_{2}| ) ]\\ \leq 2L_{1}\Phi^{\alpha_m+\beta_m}(t_m, T) r_{1} + K_{1}\Phi^{\alpha_m+\beta_m}(t_m, T) + |\lambda| \Phi^{\alpha_m}(t_m, T) r_{1}\\ + \sum\limits_{i = 1}^{m}\left[\left(2L_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i}) + M_{1}\right)r_{1} + K_{1} \Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i}) + K_{2}\right]\\ + \sum\limits_{i = 1}^{m}\left[\left(2L_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + M_{1}^{*}\right) r_{1} + K_{1} \Phi^{\beta_{i-1}}(t_{i-1}, t_{i}) + K_{3}\right]\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\nonumber\\ + [|\Omega_{1}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}|) \\ + |\Omega_{3}| ((2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1}\notag + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}|)] \frac{\Lambda_{2}}{|\Omega_{5}|}\\ + \frac{1}{|\Omega_{5}|} [|\Omega_{4}| ((2L_{1} \Lambda_{1} + |\lambda| \Lambda_{2} + M_{1}^{*} \Lambda_{3} + m M_{1}) |\kappa_{1}| r_{1}\notag + (K_{1} \Lambda_{1} + K_{3} \Lambda_{3} + m K_{2}) |\kappa_{1}|+ |\xi_{1}|)\\ + |\Omega_{2}| (\{2 L_{1} [ |\lambda| \Lambda_{1} + \Lambda_{4}] + M_{1}^{*}( |\lambda| \Lambda_{3}+ m) + \lambda^{2} \Lambda_{2} + m |\lambda| M_{1} \} |\kappa_2| r_{1}\notag\\ + \{K_{1} (\Lambda_{4} + |\lambda| \Lambda_{1}) + K_{3}(|\lambda| \Lambda_{3} + m) + K_{2} m |\lambda|\} |\kappa_2| + |\xi_{2}|)] $ |
$ = (2L_{1}\left[\Lambda_{1} + \left( |\kappa_{1}| \Lambda_{1}(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + (m M_{1} + |\lambda|\Lambda_{2})\left[1 + \left(|\kappa_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + M_{1}^{*}\left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3}+ m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right] ) r_{1}\\ + K_{1}\left[\Lambda_{1} + \left(|\kappa_{1}|\Lambda_{1} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + m K_{2}\left[1 + \left(|\kappa_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2| |\lambda|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|) \right)\frac{1}{|\Omega_{5}|}\right]\\ + K_{3}\left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3}(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3} + m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\\ + (|\xi_{1}|(\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\xi_{2}|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|}\\ = (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) r_{1} + K_{1}\Theta_{1} + m K_{2}\Theta_{2} + K_{3}\Theta_{3} + \Theta_{4}\\ \leq r_{1}, $ |
which implies that $ \mathcal{Q}B_{r_1} \subset B_{r_1}. $
Step II. We prove that the operator $ \mathcal{Q} $ is a contraction.
Let $ x, y\in \mathbb{E} $. Then, for each $ t \in J $, we have
$ |(Qx)(t)−(Qy)(t)|≤tmIαm+βm,ρ,ψm|Fx(s)−Fy(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)−y(s)|(T)+{m∑i=1|Hi−1(x)−Hi−1(y)|m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+m∑i=1|Gi−1(x)−Gi−1(y)|m∑j=iΦαj(tj,tj+1)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+(|Ω1||R(x,Fx)−R(y,Fy)|+|Ω3||K(x,Fx)−K(y,Fy)|)×1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+(|Ω4||K(x,Fx)−K(y,Fy)|+|Ω2||R(x,Fx)−R(y,Fy)|)×1|Ω5|m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψm(T)−ψm(tm)). $ | (3.17) |
By using $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ and $ (H_1) $-$ (H_2) $, we get
$ |Gi−1(x)−Gi−1(y)|≤ti−1Iβi−1,ρ,ψi−1|Fx(s)−Fy(s)|(ti)+|φ∗i(x(ti))−φ∗i(y(ti))|≤2L1‖x−y‖ρβi−1Γ(βi−1)∫titi−1|eρ−1ρ(ψi−1(ti)−ψi−1(s))|(ψi−1(ti)−ψi−1(s))βi−1−1ψ′i−1(s)ds+M∗1‖x−y‖≤(2L1(ψi−1(ti)−ψi−1(ti−1))βi−1ρβi−1Γ(βi−1+1)+M∗1)‖x−y‖=(2L1Φβi−1(ti−1,ti)+M∗1)‖x−y‖, $ | (3.18) |
$ |Hi−1(x)−Hi−1(y)|≤ti−1Iαi−1+βi−1,ρ,ψi−1|Fx(s)−Fy(s)|(ti)+|λ|ti−1Iαi−1,ρ,ψi−1|x(s)−y(s)|(ti)+|φi(x(ti))−φi(y(ti))|≤2L1‖x−y‖ραi−1+βi−1Γ(αi−1+βi−1)∫titi−1|eρ−1ρ(ψi−1(ti)−ψi−1(s))|×(ψi−1(ti)−ψi−1(s))αi−1+βi−1−1ψ′i−1(s)ds+|λ|‖x−y‖ραi−1Γ(αi−1)×∫titi−1|eρ−1ρ(ψi−1(ti)−ψi−1(s))|(ψi−1(ti)−ψi−1(s))αi−1−1ψ′i−1(s)ds+M1‖x−y‖≤(2L1(ψi−1(ti)−ψi−1(ti−1))αi−1+βi−1ραi−1+βi−1Γ(αi−1+βi−1+1)+|λ|(ψi−1(ti)−ψi−1(ti−1))αi−1ραi−1Γ(αi−1+1)+M1)‖x−y‖=(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)‖x−y‖. $ | (3.19) |
By using the results of the inequalities (3.18) and (3.19), we have
$ |K(x,Fx)−K(y,Fy)|≤|κ1|tmIαm+βm,ρ,ψm|Fx(s)−Fy(s)|(T)+|κ1||λ|tmIαm,ρ,ψm|x(s)−y(s)|(T)+|κ1|m∑i=1|Gi−1(x)−Gi−1(y)|m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1|Hi−1(x)−Hi−1(y)|≤2L1‖x−y‖|κ1|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ1||λ|‖x−y‖ραmΓ(αm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm−1ψ′m(s)ds+|κ1|m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)m∑j=iΦαj(tj,tj+1)‖x−y‖+|κ1|m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)‖x−y‖≤[2L1(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))+|λ|(m+1∑i=1Φαi−1(ti−1,ti))+M∗1(m∑i=1m∑j=iΦαj(tj,tj+1))+mM1]|κ1|‖x−y‖=(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|‖x−y‖, $ | (3.20) |
$ |R(x,Fx)−R(y,Fy)|≤|κ2|tmIβm,ρ,ψm|Fx(s)−Fy(s)|(T)+|κ2||λ|tmIαm+βm,ρ,ψm|Fx(s)−Fy(s)|(T)+|κ2|λ2tmIαm,ρ,ψm|x(s)−y(s)|(T)+|κ2||λ|m∑i=1|Hi−1(x)−Hi−1(y)|+|κ2|m∑i=1|Gi−1(x)−Gi−1(y)|(1+|λ|m∑j=iΦαj(tj,tj+1))≤2L1‖x−y‖|κ2|ρβmΓ(βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))βm−1ψ′m(s)ds+2L1‖x−y‖|κ2||λ|ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|κ2|λ2‖x−y‖ραmΓ(αm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm−1ψ′m(s)ds+|κ2||λ|m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)‖x−y‖+|κ2|m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)(1+|λ|m∑j=iΦαj(tj,tj+1))‖x−y‖≤[2L1(|λ|(m+1∑i=1Φαi−1+βi−1(ti−1,ti)+m∑i=1Φβi−1(ti−1,ti)m∑j=iΦαj(tj,tj+1))+m+1∑i=1Φβi−1(ti−1,ti))+M∗1(|λ|(m∑i=1m∑j=iΦαj(tj,tj+1))+mg)+λ2(m+1∑i=1Φαi−1(ti−1,ti))+m|λ|M1]|κ2|‖x−y‖=(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|‖x−y‖. $ | (3.21) |
Substituting (3.18), (3.19), (3.20) and (3.21) into (3.17), it follows that
$ |(Qx)(t)−(Qy)(t)|≤2L1‖x−y‖ραm+βmΓ(αm+βm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm+βm−1ψ′m(s)ds+|λ|‖x−y‖ραmΓ(αm)∫Ttm|eρ−1ρ(ψm(T)−ψm(s))|(ψm(T)−ψm(s))αm−1ψ′m(s)ds+{m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)‖x−y‖m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)‖x−y‖m∑j=iΦαj(tj,tj+1)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+[|Ω1|(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|‖x−y‖.+|Ω3|(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|‖x−y‖]1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+[|Ω4|(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|‖x−y‖+|Ω2|(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|‖x−y‖]1|Ω5|m+1∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψm(T)−ψm(tm))≤2L1Φαm+βm(tm,T)‖x−y‖+|λ|Φαm(tm,T)‖x−y‖+m∑i=1(2L1Φαi−1+βi−1(ti−1,ti)+|λ|Φαi−1(ti−1,ti)+M1)‖x−y‖+m∑i=1(2L1Φβi−1(ti−1,ti)+M∗1)‖x−y‖m∑j=iΦαj(tj,tj+1)+Λ2|Ω1||Ω5|(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|‖x−y‖+Λ2|Ω3||Ω5|(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|‖x−y‖+|Ω4||Ω5|(2L1Λ1+|λ|Λ2+M∗1Λ3+mM1)|κ1|‖x−y‖+|Ω2||Ω5|(2L1(|λ|Λ1+Λ4)+M∗1(|λ|Λ3+m)+λ2Λ2+m|λ|M1)|κ2|‖x−y‖=(2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M∗1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|])‖x−y‖=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3)‖x−y‖, $ |
which implies that $ \|\mathcal{Q}x - \mathcal{Q}y\| \leq (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3})\|x - y\| $. Clearly $ (2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $, thus, by the Banach's contraction principle (Theorem $ 2.12 $), the operator $ \mathcal{Q} $ is a contraction, hence, the operator $ \mathcal{Q} $ has a unique fixed point that is the unique solution of the problem (1.1) on $ J $. This completes the proof.
The second existence result is based on Schaefer's fixed point theorem.
Theorem 3.2. Let $ \psi_{k} \in \mathcal{C}^{2}(J) $ with $ \psi^{\prime}_{k}(t) > 0 $ for $ t\in J $, $ k = 0, 1, 2, \ldots, m $. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ and $ \varphi_{k}^{\ast} : \mathbb{R} \to \mathbb{R} $ are continuous functions, $ k = 1, 2, \ldots, m $ satisfy the following assumptions:
$ (H_3) $ There exist nonnegative continuous functions $ h_1 $, $ h_2 $, $ h_3 \in \mathcal{C}(J, \mathbb{R}^+) $ such that, for every $ t\in J $ and $ x $, $ y \in \mathbb{R} $, such that
$ |f(t,x,y)|≤h1(t)+h2(t)(|x|+|y|), $ |
with $ h_{1}^* = \sup_{t\in J}\{h_{1}(t)\} $ and $ h_{2}^* = \sup_{t\in J}\{h_{2}(t)\} $.
$ (H_4) $ There exist positive constants $ k_{1} $, $ k_1^* $, for any $ x\in \mathbb{R} $, such that
$ |φk(x)|≤k1,|φ∗k(x)|≤k∗1,k=1,2,…,m. $ |
Then, the problem (1.1) has at least one solution on $ J $.
Proof. We apply Schaefer's fixed point theorem. The proof is given in the following four steps.
Step I. We prove that the operator $ \mathcal{Q} $ is continuous.
Let $ x_{n} $ be a sequence such that $ x_{n} \to x $ in $ \mathbb{E} $. Then, for any $ t \in J $, we get
$ |(\mathcal{Q}x_{n})(t) - (\mathcal{Q} x)(t)|\\ \leq {{_{t_m}}}\mathfrak{I}^{\alpha_m+\beta_m, \rho, \psi_{m}}|F_{x_{n}}(s) - F_{x}(s)|(t) + |\lambda| {{_{t_m}}}\mathfrak{I}^{\alpha_m, \rho, \psi_{m}}|x_{n}(s) - x(s)|(t)\\ + \sum\limits_{i = 1}^{m}|H_{i-1}(x_{n}) - H_{i-1}(x)| + \sum\limits_{i = 1}^{m} |G_{i-1}(x_{n}) - G_{i-1}(x)| \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{\Lambda_{2}}{|\Omega_{5}|}[|\Omega_{1}| |\mathcal{R}(x_n, F_{x_n}) - \mathcal{R}(x, F_{x})| + |\Omega_{3}| |\mathcal{K}(x_n, F_{x_n}) - \mathcal{K}(x, F_{x})|]\\ + \frac{1}{\Omega_{5}}[|\Omega_{4}| |\mathcal{K}(x_n, F_{x_n}) - \mathcal{K}(x, F_{x})| + |\Omega_{2}| |\mathcal{R}(x_n, F_{x_n}) - \mathcal{R}(x, F_{x})|]\\ \leq { \frac{1}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| }{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\\ { + \sum\limits_{i = 1}^{m} (\frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ { \times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i}) - x(t_{i})|) + \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) } $ |
$ { + \frac{\Lambda_{2}}{|\Omega_{5}|}\{|\Omega_{1}| [ \frac{|\kappa_{2}|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds } \notag\\ { + \frac{|\kappa_2| \lambda^{2}}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ { \times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i-1}) - x(t_{i-1})| ) + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) ] }\\ { + |\Omega_{3}| [\frac{|\kappa_{1}|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\nonumber\\ {+ \frac{|\kappa_{1}| |\lambda|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_n(s) - x(s)| \psi_{m}^{\prime}(s)ds}\notag\\ {+ |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds }\nonumber\\ {+ M_{1}^{*} |x_n(t_{i-1}) - x(t_{i-1})|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} |x_n(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}| x_{n}(t_{i-1}) - x(t_{i-1})| ) ] \} + \frac{1}{\Omega_{5}} \{ |\Omega_{4}| }\\ {\times ( \frac{|\kappa_{1}|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\nonumber\\ {+ \frac{|\kappa_{1}| |\lambda|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_n(s) - x(s)| \psi_{m}^{\prime}(s)ds}\notag\\ {+ |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds }\nonumber\\ {+ M_{1}^{*} |x_n(t_{i-1}) - x(t_{i-1})|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| } \nonumber\\ {\times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} |F_{x_n}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds +\frac{ |\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\nonumber\\ {\times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} |x_n(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}| x_{n}(t_{i-1}) - x(t_{i-1})| ) }\\ { + |\Omega_{2}| [ \frac{|\kappa_{2}|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{m}^{\prime}(s)ds } \notag\\ { + \frac{|\kappa_2| \lambda^{2}}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} |x_{n}(s) - x(s)| \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ {\times|F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} }\\ {\times |x_{n}(s) - x(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}|x_{n}(t_{i-1}) - x(t_{i-1})| ) + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{1}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| } \nonumber\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} |F_{x_{n}}(s) - F_{x}(s)| \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} |x_{n}(t_{i-1}) - x(t_{i-1})| ) ] \}. } $ |
By using the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $ with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain
$ |(\mathcal{Q}x_{n})(t) - (\mathcal{Q} x)(t)|\\ \leq { \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1}\psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| \|x_{n} - x \|}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + \sum\limits_{i = 1}^m (\frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| \|x_{n} - x \|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + M_{1} \|x_{n} - x \|) + \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_{n} - x\| ) } $ |
$ { \times \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + \frac{\Lambda_{2}}{|\Omega_{5}|}\{|\Omega_{1}| [ \frac{|\kappa_{2}| \|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { +\frac{|\kappa_2| |\lambda| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_2| \lambda^{2} \|x_{n} - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} } \notag\\ { \times \psi_{m}^{\prime}(s)ds + |\kappa_2| |\lambda| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + \frac{|\lambda|\|x_{n} - x\| }{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1}\|x_{n} - x\| ) }\\ { + |\kappa_2| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_{n} - x\| ) ] }\\ { + |\Omega_{3}| [\frac{|\kappa_{1}|\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_{1}| |\lambda| \|x_{n} - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})} }\nonumber\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + M_{1}^{*} \|x_n - x\|) \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}\|x_n - x\| )] \} } $ |
$ { + \frac{1}{\Omega_{5}} \{ |\Omega_{4}| ( \frac{|\kappa_{1}| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_{1}| |\lambda| \|x_n - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})} }\nonumber\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\notag\\ { + M_{1}^{*} \|x_n - x\|) \sum\limits_{j = i}^m \Phi^{\alpha_{j}}(t_j,t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^m ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds +\frac{ |\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1} \|x_n - x\| ) } $ |
$ { + |\Omega_{2}| [ \frac{|\kappa_{2}| \|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds +\frac{|\kappa_2| |\lambda| \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{m}+\beta_{m}}\Gamma(\alpha_{m}+\beta_{m})} }\\ { \times\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_2| \lambda^{2} \|x_n - x\|}{\rho^{\alpha_{m}}\Gamma(\alpha_{m})}\int_{t_{m}}^{T}( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_{m}-1} \psi_{m}^{\prime}(s)ds }\notag\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} ( \frac{ \|F_{x_{n}} - F_{x}\|}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + \frac{|\lambda| \|x_n - x\|}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}} ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1}\psi_{i-1}^{\prime}(s)ds + M_{1} \|x_n - x\| ) }\\ { + |\kappa_2| \sum\limits_{i = 1}^{m} ( \frac{\|F_{x_{n}} - F_{x}\|}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + M_{1}^{*} \|x_n - x\| ) ] \}. }\\ \leq \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| \nonumber\\ + \sum\limits_{i = 1}^{m}\left(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|\right)\nonumber\\ + \sum\limits_{i = 1}^{m}\left(\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|\right) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + \frac{\Lambda_{2}}{|\Omega_{5}|} [|\Omega_{1}| (|\kappa_2| \Phi^{\beta_{m}}(t_{m}, T)\|F_{x_n} - F_{x}\| + |\kappa_2| |\lambda| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\|\\ + |\kappa_2| \lambda^{2} \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} (\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\|\\ + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) + |\kappa_2| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| \\ + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \left(1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})\right)) + |\Omega_{3}| (|\kappa_{1}| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\|\\ + |\kappa_{1}| |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\| + |\kappa_{1}| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|)\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m}(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) )]\\ + \frac{1}{\Omega_{5}} [|\Omega_{4}| ( |\kappa_{1}| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\kappa_{1}| |\lambda| \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\|\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1})\\ + |\kappa_{1}| \sum\limits_{i = 1}^{m}(\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|) )\\ + |\Omega_{2}| (|\kappa_2| \Phi^{\beta_{m}}(t_{m}, T)\|F_{x_n} - F_{x}\| + |\kappa_2| |\lambda| \Phi^{\alpha_{m}+\beta_{m}}(t_{m}, T) \|F_{x_n} - F_{x}\| + |\kappa_2| \lambda^{2} \Phi^{\alpha_{m}}(t_{m}, T) \|x_n - x\|\\ + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} (\Phi^{\alpha_{i-1}+\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + |\lambda| \Phi^{\alpha_{i-1}}(t_{i-1}, t_{i})\| x_n - x \| + \|\varphi_k(x_n) - \varphi_k(x)\|)\\ + |\kappa_2| \sum\limits_{i = 1}^{m} (\Phi^{\beta_{i-1}}(t_{i-1}, t_{i})\|F_{x_n} - F_{x}\| + \|\varphi_k^*(x_n) - \varphi_k^*(x)\|) \left(1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})\right))]\\ = \left[\Lambda_{1} + (|\kappa_{1}| \Lambda_{1} (\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda|\Lambda_{1} + \Lambda_{4})(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|} \right]\|F_{x_n} - F_{x}\|\\ + |\lambda| \Lambda_{2} \left[1 + (|\kappa_{1}| (\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2|(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|))\frac{1}{\Omega_{5}} \right]\| x_n - x \| \\ + \left[\Lambda_{3} + \left(|\kappa_{1}|\Lambda_{3} (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\kappa_2|(|\lambda| \Lambda_{3}+ m)(\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)\right)\frac{1}{|\Omega_{5}|}\right]\|\varphi_k^*(x_n) - \varphi_k^*(x)\|\\ = \Theta_{1}\|F_{x_n} - F_{x}\| + \Theta_{2}\| x_n - x \| + \Theta_{3}\|\varphi_k^*(x_n) - \varphi_k^*(x)\|. $ |
Since $ f $, $ \lambda $, $ \varphi_k $ and $ \varphi_k^* $ are continuous, this implies that $ \mathcal{Q} $ is also continuous. Then, $ \|F_{x_n} - F_{x}\| \to 0 $, and $ \|x_n - x\| \to 0 $, as $ n \to \infty $, and$ \|\varphi_k(x_n) - \varphi_k(x)\| \to 0 $, and $ \|\varphi_k^*(x_n) - \varphi_k^*(x)\| \to 0 $ as $ n \to \infty $.
Step II. We prove that the operator $ \mathcal{Q} $ maps a bounded set into a bounded set in $ \mathbb{E} $.
For $ r_{2} > 0 $, there exists a constant $ N > 0 $ such that, for each $ x \in B_{r_2} = \{x \in \mathbb{E} : \|x\| \leq r_{2}\} $, then $ \|\mathcal{Q}x\| \leq N $. Then, for any $ t\in J $ and $ x \in B_{r_2} $, we have
$ |(Qx)(t)|≤tmIαm+βm,ρ,ψm|Fx(s)|(T)+|λ|tmIαm,ρ,ψm|x(s)|(T)+m∑i=1|Hi−1(x)|+m∑i=1|Gi−1(x)|m∑j=iΦαj(tj,tj+1)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|m+1∑i=1Φαi−1(ti−1,ti)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|. $ | (3.22) |
It follows from $ (H_3) $ and $ (H_4) $, that
$ |Fx(t)|≤h∗1+2h∗2r2,|φk(x)|≤k1,|φ∗k(x)|≤k∗1,k=1,2,…,m. $ | (3.23) |
Then by substituting (3.23) into (3.22) with the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we have
$ { |(\mathcal{Q}x)(t)| } \leq { \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds }\\ { + \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] }\\ { + \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds }\\ { + \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) }\\ { + \{|\Omega_{1}| ( |\xi_{2}| + \frac{|\kappa_{2}| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| |\lambda|(h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| \lambda^{2} r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + |\kappa_2| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] [1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})] }\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}]) }\\ { + |\Omega_{3}| ( |\xi_{1}| + \frac{|\kappa_1| |\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds } $ |
$ { \frac{|\kappa_1| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + |\kappa_{1}| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] }\\ { \times \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) + |\kappa_{1}| \sum\limits_{i = 1}^{m} [ \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times ( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right| }\\ { \times( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) \}\frac{\Lambda_{2}}{|\Omega_{5}|} + \frac{1}{|\Omega_{5}|} \{|\Omega_{4}| ( |\xi_{1}| + \frac{|\kappa_{1}| |\lambda| r_{2}}{\rho^{\alpha_m}\Gamma(\alpha_m)} }\\ { \times \int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + \frac{|\kappa_1| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})} }\\ { \times \int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds + |\kappa_{1}| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] \sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_j, t_{j+1}) }\\ { + |\kappa_{1}| \sum\limits_{i = 1}^{m} [ \frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) }\\ { + |\Omega_{2}| ( |\xi_{2}| + \frac{|\kappa_2| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\beta_{m}}\Gamma(\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| |\lambda| (h_{1}^* + 2h_{2}^*r_{2})}{\rho^{\alpha_m+\beta_{m}}\Gamma(\alpha_m+\beta_{m})}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m+\beta_{m}-1} \psi_{m}^{\prime}(s)ds }\\ { + \frac{|\kappa_2| \lambda^{2} r_{2})}{\rho^{\alpha_m}\Gamma(\alpha_m)}\int_{t_{m}}^{T}\left|e^{\frac{\rho-1}{\rho}(\psi_{m}(T)-\psi_{m}(s) )}\right|( \psi_{m}(T)-\psi_{m}(s) )^{\alpha_m-1} \psi_{m}^{\prime}(s)ds + |\kappa_2| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\beta_{i-1}}\Gamma(\beta_{i-1})} }\\ { \times\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\beta_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}^{*}] [1 + |\lambda|\sum\limits_{j = i}^{m}\Phi^{\alpha_{j}}(t_{j}, t_{j+1})] }\\ { + |\kappa_2| |\lambda| \sum\limits_{i = 1}^{m} [\frac{h_{1}^* + 2h_{2}^*r_{2}}{\rho^{\alpha_{i-1}+\beta_{i-1}}\Gamma(\alpha_{i-1}+\beta_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}+\beta_{i-1}-1} }\\ { \times \psi_{i-1}^{\prime}(s)ds + \frac{|\lambda| r_{2}}{\rho^{\alpha_{i-1}}\Gamma(\alpha_{i-1})}\int_{t_{i-1}}^{t_{i}}\left|e^{\frac{\rho-1}{\rho}(\psi_{i-1}(t_{i})-\psi_{i-1}(s) )}\right|( \psi_{i-1}(t_{i})-\psi_{i-1}(s) )^{\alpha_{i-1}-1} \psi_{i-1}^{\prime}(s)ds + k_{1}] ) \} }\\ \leq \left[\Lambda_{1} + (|\kappa_{1}| \Lambda_{1} (|\Omega_{3}| \Lambda_{2} + |\Omega_{4}|) + |\kappa_2| (|\lambda| \Lambda_{1} + \Lambda_{4})(|\Omega_{1}| \Lambda_{2} + |\Omega_{2}|)) \frac{1}{|\Omega_{5}|}\right](h_{1}^* + 2h_{2}^*r_{2})\\ + |\lambda| \Lambda_{2} \left[1 + (|\kappa_{1}| (\Lambda_{2} |\Omega_{3}| + \Omega_{4}|) + |\lambda| |\kappa_2| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|) )\frac{1}{|\Omega_{5}|} \right] r_{2}\\ + m \left[1 + (|\kappa_{1}| (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\lambda| |\kappa_2| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|) )\frac{1}{|\Omega_{5}|} \right] k_{1}\\ + \left[\Lambda_{3} + (|\kappa_{1}| \Lambda_{3}(\Lambda_{2}|\Omega_{3}| + |\Omega_{4}|) + |\kappa_2| (|\lambda| \Lambda_{3} + m) (\Lambda_{2}|\Omega_{1}| + |\Omega_{2}|)) \frac{1}{|\Omega_{5}|} \right]k_{1}^{*} \\ + (|\xi_{1}| (\Lambda_{2} |\Omega_{3}| + |\Omega_{4}|) + |\xi_{2}| (\Lambda_{2} |\Omega_{1}| + |\Omega_{2}|))\frac{1}{|\Omega_{5}|}, $ |
we estimate $ \|\mathcal{Q}x\| \leq \Theta_{1}\left(h_{1}^* + 2h_{2}^* r_{2}\right) + (|\lambda| \Lambda_{2} r_{2} + m k_{1}) \Theta_{2} + \Theta_{3} k_{1}^{*} + \Theta_{4} : = N $, which implies that $ \|\mathcal{Q}x\| \leq N $. Hence, the set $ \mathcal{Q}B_{r_2} $ is uniformly bounded.
Step III. We prove that $ \mathcal{Q} $ maps a bounded set into an equicontinuous set of $ \mathbb{E} $.
Let $ \tau_{1} $, $ \tau_{2} \in J_{k} $ for some $ k \in \{0, 1, 2, \ldots, m\} $ with $ \tau_{1} < \tau_{2} $. Then, for any $ x \in B_{r_2} $, where $ B_{r_2} $ is as defined in Step II, by using the property of $ f $ is bounded on the compact set $ J\times B_{r_2} $, we have
$ |(Qx)(τ2)−(Qx)(τ1)|≤{m∑i=1(Φαi−1+βi−1(ti−1,ti)(h∗1+2h∗2r2)+|λ|Φαi−1(ti−1,ti)r2+k1)+m∑i=1(Φβi−1(ti−1,ti)(h∗1+2h∗2r2)+k∗1)k−1∑j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)−Φαk(tk,τ1)|)+|Ω1||R(x,Fx)|+|Ω3||K(x,Fx)||Ω5|k∑i=1(Φαi−1(ti−1,ti)+|Φαk(tk,τ2)−Φαk(tk,τ1)|)+|Ω4||K(x,Fx)|+|Ω2||R(x,Fx)||Ω5|}g|eρ−1ρ(ψk(τ2)−ψk(tk))−eρ−1ρ(ψk(τ1)−ψk(tk))g|+h∗1+2h∗2r2ραk+βkΓ(αk+βk)(∫τ2τ1eρ−1ρ(ψk(τ2)−ψk(s))(ψk(τ2)−ψk(s))αk+βk−1ψ′k(s)ds+∫τ1tkg|eρ−1ρ(ψk(τ2)−ψk(s))(ψk(τ2)−ψk(s))αk+βk−1−eρ−1ρ(ψk(τ1)−ψk(s))(ψk(τ1)−ψk(s))αk+βk−1g|ψ′k(s)dsg)+|λ|r2Γ(αk)(∫τ2τ1eρ−1ρ(ψk(τ2)−ψk(s))(ψk(τ2)−ψk(s))αk−1ψ′k(s)ds+∫τ1tkg|eρ−1ρ(ψk(τ2)−ψk(s))(ψk(τ2)−ψk(s))αk−1−eρ−1ρ(ψk(τ1)−ψk(s))(ψk(τ1)−ψk(s))αk−1g|ψ′k(s)ds). $ |
By using the notations (2.6), (2.11)–(2.15) and (3.2)–(3.5), we obtain that
$ |(Qx)(τ2)−(Qx)(τ1)|≤{m∑i=1(Φαi−1+βi−1(ti−1,ti)(h∗1+2h∗2r2)+|λ|Φαi−1(ti−1,ti)r2+k1)+m∑i=1(Φβi−1(ti−1,ti)(h∗1+2h∗2r2)+k∗1)k−1∑j=i(Φαj(tj,tj+1)+|Φαk(tk,τ2)−Φαk(tk,τ1)|)+[(|κ1|Λ1|Ω3|+|κ2||Ω1|(|λ|Λ1+Λ4))(h∗1+2h∗2r2)+|λ|Λ2(|κ1||Ω3|+|κ2||λ||Ω1|)r2+m(|κ1||Ω3|+|κ2||λ||Ω1|)k1+(|κ1|Λ3|Ω3|+|κ2||Ω1|(|λ|Λ3+m))k∗1+|ξ1||Ω3|+|ξ2||Ω1|]×1|Ω5|m∑i=1(Φαi−1(ti−1,ti)+|Φαk(tk,τ2)−Φαk(tk,τ1)|)+[|λ|Λ2(|κ1||Ω4|+|κ2||λ||Ω2|)r2+(|κ1|Λ1|Ω4|+|κ2||Ω2|(|λ|Λ1+Λ4))(h∗1+2h∗2r2)+m(|κ1||Ω4|+|κ2||λ||Ω2|)k1+(|κ1|Λ3|Ω4|+|κ2||Ω2|(|λ|Λ3+m))k∗1+|ξ1||Ω4|+|ξ2||Ω2|]1|Ω5|}g|eρ−1ρ(ψk(τ2)−ψk(tk))−eρ−1ρ(ψk(τ1)−ψk(tk))g|+h∗1+2h∗2r2ραk+βkΓ(αk+βk+1)(2|ψk(τ2)−ψk(τ1)|αk+βk+|(ψk(τ2)−ψk(tk))αk+βk−(ψk(τ1)−ψk(tk))αk+βk|)+|λ|r2Γ(αk+1)(2|ψk(τ2)−ψk(τ1)|αk+|(ψk(τ2)−ψk(tk))αk−(ψk(τ1)−ψk(tk))αk|). $ |
From the above inequality, we get that $ |e^{\frac{\rho-1}{\rho}(\psi_{k}(\tau_2) - \psi_{k}(t_k))} - e^{\frac{\rho-1}{\rho}(\psi_{k}(\tau_1) - \psi_{k}(t_k))}| \to 0 $, $ |\psi_k(\tau_2)-\psi_k(\tau_1)|^{u} \to 0 $ and $ |\left(\psi_k(\tau_2)-\psi_k(t_k)\right)^{u}- \left(\psi_k(\tau_1)-\psi_k(t_k)\right)^{u}| \to 0 $ as $ \tau_{2} \to \tau_{1} $, where $ u = \{\alpha_k, \alpha_k+\beta_k\} $. This inequality is independent of unknown variable $ x \in B_{r_{2}} $ and tends to zero as $ \tau_2 \to \tau_1 $, which} implies that $ \|(\mathcal{Q}x)(\tau_2) - (\mathcal{Q}x)(\tau_1)\| \to 0 $ as $ \tau_2 \to \tau_1 $. Therefore by the Arzelá-Ascoli theorem, we can conclude that the operator $ \mathcal{Q}: \mathbb{E} \to \mathbb{E} $ is completely continuous.
Step IV. The set $ \mathbb{D} = \{x \in \mathbb{E} : x = \sigma \mathcal{Q} x, \, \, \} $ is bounded (a priori bounds).
Let $ x\in \mathbb{D} $, then $ x = \sigma \mathcal{Q} x $ for some $ 0 < \sigma < 1 $. From $ (H_3) $ and $ (H_4) $, for each $ t \in J $, we get the result by using the same process in Step II,
$ |x(t)|=|σ(Qx)(t)|≤([Λ1+(|κ1|Λ1(|Ω3|Λ2+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(|Ω1|Λ2+|Ω2|))1|Ω5|](h∗1+2h∗2r2)+|λ|Λ2[1+(|κ1|(Λ2|Ω3|+Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]r2+m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]k1+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ3+m)(Λ2|Ω1|+|Ω2|))1|Ω5|]k∗1+(|ξ1|(Λ2|Ω3|+|Ω4|)+|ξ2|(Λ2|Ω1|+|Ω2|))1|Ω5|. $ |
Then, $ \|x\| \leq \Theta_{1}\left(h_{1}^* + 2h_{2}^* r_{2}\right) + (|\lambda| \Lambda_{2} r_{2} + m k_{1}) \Theta_{2} + \Theta_{3} k_{1}^{*} + \Theta_{4} : = N < \infty. $ This implies that the set $ \mathbb{D} $ is bounded. By all the assumptions of Theorem $ 3.2 $, we conclude that there exists a positive constant $ N $ such that $ \|x\| \leq N < \infty $. By applying Schaefer's fixed point theorem (Theorem $ 2.13 $), the operator $ \mathcal{Q} $ has at least one fixed point which is a solution of problem (1.1). The proof is completed.
This section is discussed the different type of Ulam's stability such as $ \mathbb{UH} $ stable, generalized $ \mathbb{UH} $ stable, $ \mathbb{UHR} $ stable and generalized $ \mathbb{UHR} $ stable of the problem (1.1).
Now, we introduce Ulam's stability concepts for the problem (1.1). Let $ \phi \in \mathcal{C}(J, \mathbb{R}^+) $ be a nondecreasing function, $ \epsilon > 0 $, $ \upsilon \geq 0 $, $ z \in \mathbb{E} $ such that, for $ t \in J_{k} $, $ k = 1, 2, \ldots, m $, the following sets of inequalities are satisfied:
$ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)−f(t,z(t),z(μt))|≤ϵ,|z(t+k)−z(t−k)−φk(z(tk))|≤ϵ,|CtkDαk,ρ,ψkx(t+k)−tk−1CDαk,ρ,ψkx(t−k)−φ∗k(x(tk))|≤ϵ. $ | (4.1) |
$ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)−f(t,z(t),z(μt))|≤ϕ(t),|z(t+k)−z(t−k)−φk(z(tk))|≤υ,|CtkDαk,ρ,ψkx(t+k)−tk−1CDαk,ρ,ψkx(t−k)−φ∗k(x(tk))|≤υ. $ | (4.2) |
$ {|CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)−f(t,z(t),z(μt))|≤ϵϕ(t),|z(t+k)−z(t−k)−φk(z(tk))|≤ϵυ,|CtkDαk,ρ,ψkx(t+k)−tk−1CDαk,ρ,ψkx(t−k)−φ∗k(x(tk))|≤ϵυ. $ | (4.3) |
Definition 4.1. If for $ \epsilon > 0 $ there exists a constant $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.1), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies
$ |z(t)−x(t)|≤Cfϵ,t∈J, $ |
then system (1.1) is $ \mathbb{UH} $ stable.
Definition 4.2. If for $ \epsilon > 0 $ and set of positive real numbers $ \mathbb{R}^+ $ there exists $ \phi \in \mathcal{C}(\mathbb{R}^+, \mathbb{R}^+) $, with $ \phi(0) = 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.2), there exist $ \epsilon > 0 $ and a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies
$ |z(t)−x(t)|≤ϕ(ϵ),t∈J, $ |
then system (1.1) is generalized $ \mathbb{UH} $ stable.
Definition 4.3. If for $ \epsilon > 0 $ there exists a real number $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.3), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies
$ |z(t)−x(t)|≤Cfϵ(υ+ϕ(t)),t∈J, $ |
then system (1.1) is $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.
Definition 4.4. If there exists a real number $ C_{f} > 0 $ such that, for any solution $ z \in \mathbb{E} $ of inequality (4.2), there is a unique solution $ x \in \mathbb{E} $ of system (1.1) that satisfies
$ |z(t)−x(t)|≤Cf(υ+ϕ(t)),t∈J, $ |
then system (1.1) is generalized $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.
Remark 4.5. It is clear that: $ (i) $ Definition $ 4.1 $ $ \Longrightarrow $ Definition $ 4.2 $; $ (ii) $ Definition $ 4.3 $ $ \Longrightarrow $ Definition $ 4.4 $; $ (iii) $ Definition $ 4.3 $ for $ \upsilon + \phi(t) = 1 $ $ \Longrightarrow $ Definition $ 4.1 $.
Remark 4.6. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.1) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that
$ (A_1) $ $ |w(t)| \leq \epsilon $, $ |w_{k}| \leq \epsilon $, $ t\in J $,
$ (A_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,
$ (A_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,
$ (A_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.
Remark 4.7. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.2) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that
$ (B_1) $ $ |w(t)| \leq \phi(t) $, $ |w_{k}| \leq \upsilon $, $ t\in J $,
$ (B_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,
$ (B_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,
$ (B_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.
Remark 4.8. The function $ z \in \mathbb{E} $ is called a solution for inequality (4.3) if there exists a function $ w \in \mathbb{E} $ together with a sequence $ w_{k} $, $ k = 1, 2, \ldots, m $ (which depends on $ z $) such that
$ (C_1) $ $ |w(t)| \leq \epsilon\phi(t) $, $ |w_{k}| \leq \epsilon\upsilon $, $ t\in J $,
$ (C_2) $ $ {_{t_{k}}^{C}}\mathfrak{D}^{\beta_k, \rho, \psi_k}\left({_{t_{k}}^{C}}\mathfrak{D}^{\alpha_k, \rho, \psi_k} + \lambda\right)z(t) = f(t, z(t), z(\mu t)) + w(t) $, $ t\in J $,
$ (C_3) $ $ z(t_k^+) - z(t_k^-) = \varphi_k(z(t_k)) + w_{k} $, $ t\in J $,
$ (C_4) $ $ {^{C}_{t_{k}}}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^+) - {_{t_{k-1}}}^{C}\mathfrak{D}^{\alpha_k, \rho, \psi_k}z(t_k^-) = \varphi_k^{\ast}(z(t_k)) + w_{k} $, $ t\in J $.
In this subsection, we establish the results related to $ \mathbb{UH} $ stability of system (1.1).
Theorem 4.9. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ is continuous functions. If assumptions $ (H_1) $, $ (H_2) $ and the inequality
$ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3<1 $ | (4.4) |
are satiafied, then system (1.1) is $ \mathbb{UH} $ stable.
Proof. Let $ z $ be any solution of inequality (4.1). Then, by Remark $ 4.6 $ $ (A_2) $–$ (A_4) $, we have
$ {CtkDβk,ρ,ψk(CtkDαk,ρ,ψk+λ)z(t)=f(t,z(t),z(μt))+w(t),z(t+k)−z(t−k)=φk(z(tk))+wk,CtkDαk,ρ,ψkz(t+k)−tk−1CDαk,ρ,ψkz(t−k)=φ∗k(z(tk))+wk,η1z(0)+κ1z(T)=ξ1,η2Ct0Dα0,ρ,ψ0z(0)+κ2CtmDαm,ρ,ψmz(T)=ξ2, $ | (4.5) |
By Lemma $ 2.11 $, the solution of (4.5) is given by
$ z(t)=tkIαk+βk,ρ,ψkFz(t)−λtkIαk,ρ,ψkz(t)+{k∑i=1Hi−1(z)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+k∑i=1Gi−1(z)k−1∑j=i(Φαj(tj,tj+1)+Φαk(tk,t))k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+Ω1R(z,Fz)−Ω3K(z,Fz)Ω5k∑i=1(Φαi−1(ti−1,ti)+Φαk(tk,t))k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+Ω4K(z,Fz)−Ω2R(z,Fz)Ω5k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk))+tkIαk+βk,ρ,ψkw(t)+{k∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1w(ti)+wk)k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+k∑i=1(ti−1Iβi−1,ρ,ψi−1w(ti)+wk)k−1∑j=i(Φαj(tj,tj+1)+Φαk(tk,t))k−1∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+[Ω1(−κ2tmIβm,ρ,ψmw(T)+κ2λtmIαm+βm,ρ,ψmw(T)−κ2m∑i=1(ti−1Iβi−1,ρ,ψi−1w(ti)+wk)(1−λm∑j=iΦαj(tj,tj+1))m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+κ2λm∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1w(ti)+wk)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)))−Ω3(−κ1tmIαm+βm,ρ,ψmw(T)−κ1m∑i=1(ti−1Iβi−1,ρ,ψi−1w(ti)+wk)m∑j=iΦαj(tj,tj+1)×m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))−κ1m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1w(ti)+wk)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)))]×1Ω5k∑i=1(Φαi−1(ti−1,ti)+Φαk(tk,t))k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))+[Ω4(−κ1tmIαm+βm,ρ,ψmw(T)−κ1m∑i=1(ti−1Iβi−1,ρ,ψi−1w(ti)+wk)m∑j=iΦαj(tj,tj+1)×m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))−κ1m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1w(ti)+wk)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)))−Ω2(−κ2tmIβm,ρ,ψmw(T)+κ2λtmIαm+βm,ρ,ψmw(T)−κ2m∑i=1(ti−1Iβi−1,ρ,ψi−1w(ti)+wk)(1−λm∑j=iΦαj(tj,tj+1))m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj))+κ2λm∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1w(ti)+wk)m∏j=ieρ−1ρ(ψj(tj+1)−ψj(tj)))]×1Ω5k∏i=1eρ−1ρ(ψi−1(ti)−ψi−1(ti−1))}eρ−1ρ(ψk(t)−ψk(tk)),t∈Jk,k=0,1,2,…,m. $ |
From Remark $ 4.6 $ $ (A_1) $ with $ (H_1) $, $ (H_2) $ and the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $, it follows that
$ |z(t)−x(t)|≤tmIαm+βm,ρ,ψm|Fz(s)−Fx(s)|(T)+|λ|tmIαm,ρ,ψm|z(s)−x(s)|(T)+m∑i=1|Hi−1(z)−Hi−1(x)|+m∑i=1|Gi−1(z)−Gi−1(x)|m∑j=iΦαj(tj,tj+1)+(|Ω1||R(z,Fz)−R(x,Fx)|+|Ω3||K(z,Fz)−K(x,Fx)|)1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)+(|Ω4||K(z,Fz)−K(x,Fx)|+|Ω2||R(z,Fz)−R(x,Fx)|)1|Ω5|+tmIαm+βm,ρ,ψm|w(t)|+m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|)+m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+[|Ω1|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))+|Ω3|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))]1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)+[|Ω4|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))+|Ω2|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))]1|Ω5|≤{2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M∗1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}|z(t)−x(t)|+{[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}ϵ=(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3)|z(t)−x(t)|+(Θ1+mΘ2+Θ3)ϵ. $ |
This implies that
$ |z(t)−x(t)|≤(Θ1+mΘ2+Θ3)ϵ1−(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3), $ |
with $ (2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $. By setting
$ Cf=Θ1+mΘ2+Θ31−(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3), $ |
we end up with $ |z(t) - x(t)| \leq C_{f} \epsilon $. Hence, the system (1.1) is $ \mathbb{UH} $ stable. The proof is completed.
Corollary 4.10. In Theorem $ 4.9 $, if we set $ \phi(\epsilon) = C_{f}(\epsilon) $ such that $ \phi(0) = 0 $, then the system (1.1) is generalized $ \mathbb{UH} $ stable.
For the proof of our next result, we assume the following assumption
$ (H_5) $ There eixsts a nondecreasing function $ \phi \in \mathcal{C}(J, \mathbb{R}) $ and constants $ \omega_{\phi} > 0 $, $ \epsilon > 0 $ such that the following inequality holds:
$ aIα,ρ,ψϕ(t)≤ωϕϕ(t). $ |
Theorem 4.11. Assume that $ f : J\times\mathbb{R}^{2} \to \mathbb{R} $, $ \varphi_{k} : \mathbb{R} \to \mathbb{R} $ is continuous functions. If assumptions $ (H_1) $, $ (H_2) $, $ (H_5) $ and the inequality
$ 2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3<1 $ | (4.6) |
are satiafied, then system (1.1) is $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $. where $ \phi $ is a nondecreasing function and $ \upsilon \geq 0 $.
Proof. Let $ z $ be any solution of the inequality (4.3) and $ x $ be the unique solution of the system (1.1). Then, for $ t\in J_{k} $, we have
$ |z(t)−x(t)|≤tmIαm+βm,ρ,ψm|Fz(s)−Fx(s)|(T)+|λ|tmIαm,ρ,ψm|z(s)−x(s)|(T)+m∑i=1|Hi−1(z)−Hi−1(x)|+m∑i=1|Gi−1(z)−Gi−1(x)|m∑j=iΦαj(tj,tj+1)+(|Ω1||R(z,Fz)−R(x,Fx)|+|Ω3||K(z,Fz)−K(x,Fx)|)1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)+(|Ω4||K(z,Fz)−K(x,Fx)|+|Ω2||R(z,Fz)−R(x,Fx)|)1|Ω5|+tmIαm+βm,ρ,ψm|w(t)|+m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|)+m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+[|Ω1|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))+|Ω3|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))]1|Ω5|m+1∑i=1Φαi−1(ti−1,ti)+[|Ω4|(|κ1|tmIαm+βm,ρ,ψm|w(T)|+|κ1|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)m∑j=iΦαj(tj,tj+1)+|κ1|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))+|Ω2|(|κ2|tmIβm,ρ,ψm|w(T)|+|κ2||λ|tmIαm+βm,ρ,ψm|w(T)|+|κ2|m∑i=1(ti−1Iβi−1,ρ,ψi−1|w(ti)|+|wk|)(1+|λ|m∑j=iΦαj(tj,tj+1))+|κ2||λ|m∑i=1(ti−1Iαi−1+βi−1,ρ,ψi−1|w(ti)|+|wk|))]1|Ω5| $ |
By using Remark $ 4.8 $ $ (C_1) $ with $ (H_1) $, $ (H_2) $, $ (H_5) $ and the fact of $ 0 < e^{\frac{\rho-1}{\rho}(\psi_{a}(u)-\psi_{a}(s))} \leq 1 $ for $ 0 \leq s \leq u \leq T $, we obtain the following inequality
$ |z(t)−x(t)|≤{2L1[Λ1+(|κ1|Λ1(Λ2|Ω3|+|Ω4|)+|κ2|(|λ|Λ1+Λ4)(Λ2|Ω1|+|Ω2|))1|Ω5|]+(mM1+|λ|Λ2)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+M∗1[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}|z(t)−x(t)|+{(1+m)[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|λ||κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]+(|κ2|(Λ2|Ω1|+|Ω2|))1|Ω5|}ϵωϕϕ(t)+{m[1+(|κ1|(Λ2|Ω3|+|Ω4|)+|κ2||λ|(Λ2|Ω1|+|Ω2|))1|Ω5|]+[Λ3+(|κ1|Λ3(Λ2|Ω3|+|Ω4|)+|κ2|(Λ2|Ω1|+|Ω2|)(|λ|Λ3+m))1|Ω5|]}ϵυ≤(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3)|z(t)−x(t)|+(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)ϵ(υ+ϕ(t)) $ |
which implies that
$ |z(t)−x(t)|≤(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)ϵ(υ+ϕ(t))1−(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3), $ |
with $ (2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3}) < 1 $. By setting
$ Cf=(Θ1+(1+m)Θ2+Θ3)(1+ωϕ)1−(2L1Θ1+(mM1+|λ|Λ2)Θ2+M∗1Θ3), $ |
we end up with $ |z(t) - x(t)| \leq C_{f} \epsilon (\upsilon +\phi(t)) $. Therefore, the system (1.1) is $ \mathbb{UHR} $ stable. This completes the proof.
Corollary 4.12. In Theorem $ 4.11 $, if we set $ \epsilon = 1 $ then the system (1.1) is generalized $ \mathbb{UHR} $ stable.
This section give an example which illustrate the validity and applicability of main results.
Example 5.1. Consider the following an impulsive boundary value problem is given by:
$ {Ck4Dk+2k+3,12,et2+k8(Ck4Dk+1k+2,12,et2+k8+149)x(t)=f(t,x(t),x(3t/4)),t≠k4,k=0,1,2,x(t+k)−x(t−k)=φk(x(tk)),k=1,2,Ck4Dk+1k+2,12,et2+k8x(t+k)−k−14CDkk+1,12,et2+k−18x(t−k)=φ∗k(x(tk)),k=1,2,15x(0)−√23x(32)=12,√7C0D12,12,et2x(0)−C1D56,12,et2+12x(32)=√3, $ | (5.1) |
Here $ \alpha_k = (k+1)/(k+2) $, $ \beta_k = (k+2)/(k+3) $, $ \psi_k(t) = \exp(t/2) + k/8 $, $ t_{k} = k/4 $, $ k = 0, 1, 2 $, $ \rho = 1/2 $, $ \lambda = 1/49 $, $ \mu = 3/4 $, $ m = 4 $, $ T = 3/2 $, $ \eta_{1} = 1/5 $, $ \eta_{2} = \sqrt{7} $, $ \kappa_1 = -\sqrt{2}/3 $, $ \kappa_{2} = -1 $, $ \xi_{1} = 1/2 $, $ \xi_{2} = \sqrt{3} $. Using the all datas, we find that $ \Omega_{1} \approx -0.4687161284 $, $ \Omega_{2} \approx -0.0990842078 $, $ \Omega_{3} \approx 2.031589673 $, $ \Omega_{4} \approx -0.04104689584 $, $ \Omega_{5} \approx 0.2205377954 $, $ \Lambda_{1} \approx 1.147842297 $, $ \Lambda_{2} \approx 1.567171105 $, $ \Lambda_{3} \approx 1.471412869 $, $ \Lambda_{4} \approx 1.356509541 $, $ \Theta_{1} \approx 14.27646343 $, $ \Theta_{2} \approx 7.970430815 $, and $ \Theta_{3} \approx 19.28788257 $. Let $ f : J\times\mathbb{R}^2 \to \mathbb{R} $, $ \varphi $, $ \varphi_k : \mathbb{R} \to \mathbb{R} $ be the functions defined by
$ f(t,x(t),x(3t/4))=12+t+4t2+19t+1(9+sin2πt)(|x(t)|10+|x(t)|+|x(3t/4)|10+|x(3t/4)|),φk(x(tk))=1(10+k)2sin|x(tk)|+111,k=1,2,φ∗k(x(tk))=1(8+k)2tan−1|x(tk)|+19,k=1,2. $ |
By $ (H_1) $–$ (H_2) $, for any $ x_i $, $ y_i \in \mathbb{R} $, $ i = 1, 2 $, and $ t\in J $, we have $ |f(t, x_1(t), x_2(3t/4)) - f(t, y_1(t), y_2(3t/4))| \leq (1/81)(|x_1(t) - y_1(t)| + |x_2(3t/4) - y_2(3t/4)|) $, $ | \varphi_k(x_1) - \varphi_k(y_1)| \leq (1/121)| x_1(t_{k}) - y_1(t_{k})| $, and$ |\varphi_k^{\ast}(x_1) - \varphi_k^{\ast}(y_1)| \leq (1/81)|x_1(t_{k}) - y_1(t_{k})| $, for $ k = 1, 2 $. The $ (H_1) $–$ (H_2) $ are satisfied with $ L_{1} = 1/81 $, $ M_{1} = 1/121 $ and $ M_{1}^{\ast} = 1/81 $. Therefore, we get that
$ \begin{equation*} 2L_{1}\Theta_{1} + (m M_{1} + |\lambda|\Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3} \approx 0.9772888914 < 1. \end{equation*} $ |
Thus, all the assumptions of Theorem $ 3.1 $ are fulfilled, which implies that the problem (5.1) has a unique solution on $ [0, 3/2] $. Also $ (H_3) $–$ (H_4) $ holds with $ h_{1}(t) = (1/2) + t $, $ h_{2}(t) = (4t^{2}+1)/((10)(9^{t+1}(9+\sin^2\pi t)) $, where $ h_{1}^{*} = 2 $, $ h_{2}^* = 1/81 $ and $ k_{1} = 12/121 $, $ k_{1}^{*} = 10/81 $. So, all the assumptions of Theorem $ 3.2 $ are satisfied, then the problem (5.1) has at least one solution on $ [0, 3/2] $.
Moreover, we also calculate that
$ \begin{equation*} C_{f} = \frac{\Theta_{1} + m \Theta_{2} + \Theta_{3}} {1 - \left(2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2})\Theta_{2} + M_{1}^{*}\Theta_{3} \right)} \approx 2,179.779442 > 0. \end{equation*} $ |
Hence, by Theorem $ 4.9 $ is both $ \mathbb{UH} $ stable and also generalized $ \mathbb{UH} $ stable. Further, by setting $ \phi(t) = e^{\frac{\rho - 1}{\rho}\psi_{k}(t)}(\psi_{k}(t) - \psi_k(0)) $ and $ \upsilon = 1 $, for any $ t\in [0, 3/2] $, then
$ \begin{equation*} {{_{t_k}}}\mathfrak{I}^{\alpha_k+\beta_k, \rho, \psi_k} \phi(t) \leq \frac{\left(2\right)^{\frac{31}{20}}}{\Gamma(\frac{71}{20})}\left(e^{\frac{3}{4}} - 1\right)^{\frac{51}{20}} \phi(t). \end{equation*} $ |
From the inequality in $ (H_5) $ is satisfy with $ \omega_{\phi} = \frac{\left(2\right)^{\frac{31}{20}}}{\Gamma(\frac{71}{20})}\left(e^{\frac{3}{4}} - 1\right)^{\frac{51}{20}} > 0 $, we have
$ \begin{equation*} C_{f} = \frac{(\Theta_{1} + (1+m)\Theta_{2} + \Theta_{3})(1+\omega_{\phi})} {1-\left(2L_{1} \Theta_{1} + (m M_{1} + |\lambda| \Lambda_{2}) \Theta_{2} + M_{1}^{*} \Theta_{3} \right)} \approx 5,327.572054 > 0. \end{equation*} $ |
Consequently, by all the assumptions in Theorem $ 4.11 $, the problem (5.1) is $ \mathbb{UHR} $ stable and generalized $ \mathbb{UHR} $ stable with respect to $ (\upsilon, \phi) $.
In this paper, we have studied the existence, uniqueness, and stability of solutions for a new class of impulsive fractional differential equation augmented by non-separated boundary conditions involving Caputo proportional derivative of a function with respect to another function. The uniqueness of solutions is obtained by using Banach's contraction mapping principle, whereas the existence result is established via Schaefer's fixed point theorem. Moreover, by the application of qualitative theory and nonlinear functional analysis, we investigated results concerning to different kinds of Ulam-Hyers stability such as, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability. The concerned results have been examined by a suitable example to illustrate the main results.
Further, our results are interesting special cases for different values of the parameters involved in the considered problem. For instance, our results correspond to a considered problem with
$ \rm(i) $ periodic boundary conditions:
$ \begin{equation*} x(0) = x(T), \qquad {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_0}x(0) = {^{C}_{t_{m}}}\mathfrak{D}^{\alpha_m, \rho, \psi_m}x(T), \end{equation*} $ |
for $ \eta_1 = \eta_2 = 1 $, $ \kappa_1 = \kappa_2 = -1 $ and $ \xi_1 = \xi_2 = 0 $
$ \rm(ii) $ anti-periodic boundary conditions:
$ \begin{equation*} x(0) = - x(T), \qquad {^{C}_{t_{0}}}\mathfrak{D}^{\alpha_0, \rho, \psi_0}x(0) = - {^{C}_{t_{m}}}\mathfrak{D}^{\alpha_m, \rho, \psi_m}x(T), \end{equation*} $ |
for $ \eta_1 = \eta_2 = \kappa_1 = \kappa_2 = 1 $ and $ \xi_1 = \xi_2 = 0 $.
The first author was financially supported by Navamindradhiraj University through the Navamindradhiraj University Research Fund (NURF). The second author would like to thank for funding this work through the King Mongkut's University of Technology North Bangkok and the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Rd., Bangkok, 10400, Thailand for support this work.
On behalf of all authors, the corresponding author states that there is no conflict of interest.
[1] | Maratos FA, Garner M, Hogan AM, et al. (2015) When is a Face a Face? Schematic Faces, Emotion, Attention and the N170. AIMS Neurosci 2: 172-182. |
[2] |
Krombholz A, Schaefer F, Boucsein W (2007) Modification of N170 by different emotional expression of schematic faces. Biol Psychol 76: 156-162. doi:10.1016/j.biopsycho.2007.07.004 doi: 10.1016/j.biopsycho.2007.07.004
![]() |
[3] |
Almeida PR, Ferreira-Santos F, Vieira JB, et al. (2014) Dissociable effects of psychopathic traits on cortical and subcortical visual pathways during facial emotion processing: An ERP study on the N170. Psychophysiology 51: 645-657. doi:10.1111/psyp.12209 doi: 10.1111/psyp.12209
![]() |
[4] |
Sato W, Kochiyamab T, Yoshikawab S, Naitoa E, et al. (2004) Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Brain Res Cogn Brain Res 20: 81-91. doi:10.1016/j.cogbrainres.2004.01.008 doi: 10.1016/j.cogbrainres.2004.01.008
![]() |
[5] |
Pönkänen LM, Alhoniemi A, Leppaänen JM, et al. (2011) Does it make a difference if I have an eye contact with you or with your picture? An ERP study. Soc Cogn Affect Neurosci 6: 486-494. doi:10.1093/scan/nsq068 doi: 10.1093/scan/nsq068
![]() |
[6] |
Gramann K, Ferris DP, Gwin J, et al. (2014) Imaging natural cognition in action. Int J Psychophysiol 91: 22-29. doi:10.1016/j.ijpsycho.2013.09.003 doi: 10.1016/j.ijpsycho.2013.09.003
![]() |
[7] | Makeig S, Gramann K, Jung T-P, et al. (2009) Linking brain, mind and behavior: The promise of mobile brain/body imaging (MoBI). Int J Psychophysiol 73: 985-100. |
1. | Bounmy Khaminsou, Weerawat Sudsutad, Chatthai Thaiprayoon, Jehad Alzabut, Songkran Pleumpreedaporn, Analysis of Impulsive Boundary Value Pantograph Problems via Caputo Proportional Fractional Derivative under Mittag–Leffler Functions, 2021, 5, 2504-3110, 251, 10.3390/fractalfract5040251 | |
2. | Ravi P. Agarwal, Snezhana Hristova, Ulam-Type Stability for a Boundary-Value Problem for Multi-Term Delay Fractional Differential Equations of Caputo Type, 2022, 11, 2075-1680, 742, 10.3390/axioms11120742 | |
3. | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut, On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function, 2022, 7, 2473-6988, 7817, 10.3934/math.2022438 | |
4. | Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon, Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function, 2022, 7, 2473-6988, 9549, 10.3934/math.2022531 | |
5. | Vipin Kumar, Gani Stamov, Ivanka Stamova, Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems, 2023, 439, 00963003, 127625, 10.1016/j.amc.2022.127625 | |
6. | Ravi P. Agarwal, Snezhana Hristova, Donal O’Regan, Ulam Stability for Boundary Value Problems of Differential Equations—Main Misunderstandings and How to Avoid Them, 2024, 12, 2227-7390, 1626, 10.3390/math12111626 |