We aimed to estimate the housing price determinants and elasticities in Portugal's metropolitan areas to help understand the dynamics of the abnormal price increase of the last decade, one of the highest in Europe and the World.
We followed a three-step methodology applying panel data and time series regression estimation. First, we estimated the determinants of housing prices at the national and metropolitan area levels. Second, we split the sample by coastal and inner metropolitan areas and estimated the determinants of housing prices and the supply elasticities of each group. Third, we estimated the correlations between housing price growth and elasticities to find whether these determinants correlate.
The results showed that at the national level, housing prices are inelastic to aggregate income (0.112). Momentum is the most significant determinant of housing prices (0.760). At the metropolitan areas level, we found an inelastic housing supply, a price-to-income elasticity close to zero, and a more inelastic supply in coastal areas. We found no significant correlation between housing price growth, price-to-income, and supply elasticity. The coastal areas registered housing price growth and a momentum effect much higher than the inner areas, suggesting the existence of dynamic speculative forces that cause prices to move beyond what can be explained by equilibrium models.
The present study contributes to the literature on housing price dynamics by showing that the conventional equilibrium stock-flow model does not explain the increase in Portugal's current housing prices, suggesting that other forces (such as economic uncertainty and sentiment) determine the housing price dynamics. The explanation for the housing price growth in Portugal is a conundrum. We believe this knowledge can help define better housing policies at the local and national levels.
Citation: António M. Cunha, Ricardo Loureiro. Housing price dynamics and elasticities: Portugal's conundrum[J]. National Accounting Review, 2024, 6(1): 75-94. doi: 10.3934/NAR.2024004
[1] | Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen . Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024 |
[2] | Rrezart Prebreza, Bleona Beqiraj, Besart Prebreza, Arianit Krypa, Marigona Krypa . Factors influencing the lower number of women in STEM compared to men: A case study from Kosovo. STEM Education, 2025, 5(1): 19-40. doi: 10.3934/steme.2025002 |
[3] | Ibrahim Khalil, Amirah AL Zahrani, Bakri Awaji, Mohammed Mohsen . Teachers' perceptions of teaching mathematics topics based on STEM educational philosophy: A sequential explanatory design. STEM Education, 2024, 4(4): 421-444. doi: 10.3934/steme.2024023 |
[4] | Dragana Martinovic, Marina Milner-Bolotin . Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1(4): 279-298. doi: 10.3934/steme.2021018 |
[5] | Rommel AlAli, Wardat Yousef . Enhancing student motivation and achievement in science classrooms through STEM education. STEM Education, 2024, 4(3): 183-198. doi: 10.3934/steme.2024012 |
[6] | Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang . Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2(1): 37-46. doi: 10.3934/steme.2022002 |
[7] | Ping Chen, Aminuddin Bin Hassan, Firdaus Mohamad Hamzah, Sallar Salam Murad, Heng Wu . Impact of gender role stereotypes on STEM academic performance among high school girls: Mediating effects of educational aspirations. STEM Education, 2025, 5(4): 617-642. doi: 10.3934/steme.2025029 |
[8] | Usman Ghani, Xuesong Zhai, Riaz Ahmad . Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1(2): 104-113. doi: 10.3934/steme.2021008 |
[9] | Hyunkyung Kwon, Yujin Lee . A meta-analysis of STEM project-based learning on creativity. STEM Education, 2025, 5(2): 275-290. doi: 10.3934/steme.2025014 |
[10] | Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu . Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1(2): 114-126. doi: 10.3934/steme.2021009 |
We aimed to estimate the housing price determinants and elasticities in Portugal's metropolitan areas to help understand the dynamics of the abnormal price increase of the last decade, one of the highest in Europe and the World.
We followed a three-step methodology applying panel data and time series regression estimation. First, we estimated the determinants of housing prices at the national and metropolitan area levels. Second, we split the sample by coastal and inner metropolitan areas and estimated the determinants of housing prices and the supply elasticities of each group. Third, we estimated the correlations between housing price growth and elasticities to find whether these determinants correlate.
The results showed that at the national level, housing prices are inelastic to aggregate income (0.112). Momentum is the most significant determinant of housing prices (0.760). At the metropolitan areas level, we found an inelastic housing supply, a price-to-income elasticity close to zero, and a more inelastic supply in coastal areas. We found no significant correlation between housing price growth, price-to-income, and supply elasticity. The coastal areas registered housing price growth and a momentum effect much higher than the inner areas, suggesting the existence of dynamic speculative forces that cause prices to move beyond what can be explained by equilibrium models.
The present study contributes to the literature on housing price dynamics by showing that the conventional equilibrium stock-flow model does not explain the increase in Portugal's current housing prices, suggesting that other forces (such as economic uncertainty and sentiment) determine the housing price dynamics. The explanation for the housing price growth in Portugal is a conundrum. We believe this knowledge can help define better housing policies at the local and national levels.
The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.
In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].
On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.
Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.
This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.
All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.
This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].
Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[−,−,−]L) consisting of a vector space L and a skew-symmetric ternary operation [−,−,−]L:∧3L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, | (2.1) |
for all li∈L,1≤i≤5.
A homomorphism between two 3-Lie algebras (L1,[−,−,−]L1) and (L2,[−,−,−]L2) is a linear map f:L1→L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3∈L1.
Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[−,−,−]L) on a vector space H is a skew-symmetric linear map ρ:∧2L→End(H), such that
ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), | (2.2) |
ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), | (2.3) |
for all l1,l2,l3,l4∈L. We also denote a representation of L on H by (H;ρ).
2) A coherent action of a 3-Lie algebra (L,[−,−,−]L) on another 3-Lie algebra (H,[−,−,−]H) is defined by a skew-symmetric linear map ρ:∧2L→Der(H) that satisfies Eqs (2.2) and (2.3), along with the condition that
[ρ(l1,l2)h1,h2,h3]H=0, | (2.4) |
for all l1,l2∈L and h1,h2,h3∈H. We denote a coherent action of L on H by (H,[−,−,−]H;ρ†).
Note that Eq (2.4) and ρ(l1,l2)∈Der(H) imply that
ρ(l1,l2)[h1,h2,h3]H=0. | (2.5) |
Example 2.3. Let (H,[−,−,−]H) be a 3-Lie algebra. Define ad:∧2H→Der(H) by
ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,h∈H. |
Then (H;ad) is a representation of (H,[−,−,−]H), which is called the adjoint representation. Furthermore, if the ad satisfies
[ad(h1,h2)h′1,h′2,h′3]H=0, for allh′1,h′2,h′3∈H, |
then (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H).
Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [−,−,−]L:L⊗L⊗L→L such that
[l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, |
for all li∈L,1≤i≤5.
Proposition 2.5. Let (L,[−,−,−]L) and (H,[−,−,−]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, L⊕H is a 3-Leibniz algebra under the following map:
[l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H, |
for all l1,l2,l3∈L and h1,h2,h3∈H. This 3-Leibniz algebra (L⊕H,[−,−,−]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by L⋉ρH.
Proof. For any l1,l2,l3,l4,l5∈L and h1,h2,h3,h4,h5∈H, by Eqs (2.1)–(2.5), we have
[l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ−[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ−[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ−[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H−[[l1,l2,l3]L,l4,l5]L−ρ([l1,l2,l3]L,l4)h5−[ρ(l1,l2)h3,h4,h5]H−[[h1,h2,h3]H,h4,h5]H−[l3,[l1,l2,l4]L,l5]L−ρ(l3,[l1,l2,l4]L)h5−[h3,ρ(l1,l2)h4,h5]H−[h3,[h1,h2,h4]H,h5]H−[l3,l4,[l1,l2,l5]L]L−ρ(l3,l4)ρ(l1,l2)h5−ρ(l3,l4)[h1,h2,h5]H−[h3,h4,ρ(l1,l2)h5]H−[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]H−ρ(l3,l4)[h1,h2,h5]H=0. |
Thus, (L⊕H,[−,−,−]ρ) is a 3-Leibniz algebra.
Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†) is a linear map Λ:H→L that satisfies the following equation:
[Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), | (2.6) |
for all h1,h2,h3∈H.
2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[−,−,−]L), a coherent action (H,[−,−,−]H;ρ†) of L and a nonabelian embedding tensor Λ:H→L. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛ⟶L.
3) Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1⟶L to HΛ2⟶L consists of two 3-Lie algebras homomorphisms fL:L→L and fH:H→H, which satisfy the following equations:
Λ2∘fH=fL∘Λ1, | (2.7) |
fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), | (2.8) |
for all l1,l2∈L and h∈H. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1⟶L to HΛ2⟶L.
Remark 2.7. If (H,[−,−,−]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.
Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [−,−,−]H:∧3H→H by
[α1,α2,α3]H=α4. |
Then (H,[−,−,−]H) is a 3-Lie algebra. It is obvious that (H,[−,−,−]H;ad†) is a coherent adjoint action of (H,[−,−,−]H). Moreover,
Λ=(1000010000000000) |
is a nonabelian embedding tensor on (H,[−,−,−]H).
Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.
Theorem 2.9. A linear map Λ:H→L is a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†) if and only if the graph Gr(Λ)={Λh+h|h∈H} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH.
Proof. Let Λ:H→L be a linear map. Then, for any h1,h2,h3∈H, we have
[Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H, |
Thus, the graph Gr(Λ)={Λh+h|h∈H} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra L⋉ρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[−,−,−]H;ρ†).
Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.
Corollary 2.10. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. If a linear map [−,−,−]Λ:∧3H→H is given by
[h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, | (2.9) |
for all h1,h2,h3∈H, then (H,[−,−,−]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[−,−,−]Λ) to the 3-Lie algebra (L,[−,−,−]L). This 3-Leibniz algebra (H,[−,−,−]Λ) is called the descendent 3-Leibniz algebra.
Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[−,−,−]Λ1) to (H,[−,−,−]Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7)–(2.9), we have
fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2. |
The proof is finished.
In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.1. A 3-Leibniz-Lie algebra (H,[−,−,−]H,{−,−,−}H) encompasses a 3-Lie algebra (H,[−,−,−]H) and a ternary operation {−,−,−}H:∧3H→H, which satisfies the following equations:
{h1,h2,h3}H=−{h2,h1,h3}H, | (3.1) |
{h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, | (3.2) |
{h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, | (3.3) |
for all h1,h2,h3,h4,h5∈H.
A homomorphism between two 3-Leibniz-Lie algebras (H1,[−,−,−]H1,{−,−,−}H1) and (H2,[−,−,−]H2,{−,−,−}H2) is a 3-Lie algebra homomorphism f:(H1,[−,−,−]H1)→(H2,[−,−,−]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3∈H1.
Remark 3.2. A 3-Lie algebra (H,[−,−,−]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3∈H.
Example 3.3. Let (H,[−,−,−]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {−,−,−}H:∧3H→H by
{α1,α2,α3}H=−{α2,α1,α3}H=α4. |
Then (H,[−,−,−]H,{−,−,−}H) is a 3-Leibniz-Lie algebra.
The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.
Theorem 3.4. Let (H,[−,−,−]H,{−,−,−}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ⟨−,−,−⟩H:∧3H→H, defined as
⟨h1,h2,h3⟩H:=[h1,h2,h3]H+{h1,h2,h3}H, | (3.4) |
for all h1,h2,h3∈H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,⟨−,−,−⟩H) and is referred to as the subadjacent 3-Leibniz algebra.
Proof. For any h1,h2,h3,h4,h5∈H, according to (H,[−,−,−]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have
⟨h1,h2,⟨h3,h4,h5⟩H⟩H−⟨⟨h1,h2,h3⟩H,h4,h5⟩H−⟨h3,⟨h1,h2,h4⟩H,h5⟩H−⟨h3,h4,⟨h1,h2,h5⟩H⟩H=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H−[[h1,h2,h3]H,h4,h5]H−[{h1,h2,h3}H,h4,h5]H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−[h3,[h1,h2,h4]H,h5]H−[h3,{h1,h2,h4}H,h5]H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−[h3,h4,[h1,h2,h5]H]H−[h3,h4,{h1,h2,h5}H]H−{h3,h4,[h1,h2,h5]H}H−{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H−{[h1,h2,h3]H,h4,h5}H−{{h1,h2,h3}H,h4,h5}H−{h3,[h1,h2,h4]H,h5}H−{h3,{h1,h2,h4}H,h5}H−{h3,h4,{h1,h2,h5}H}H=0. |
Hence, (H,⟨−,−,−⟩H) is a 3-Leibniz algebra.
The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.
Theorem 3.5. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra, where
{h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, | (3.5) |
for all h1,h2,h3∈H.
Proof. For any h1,h2,h3,h4,h5∈H, by Eqs (2.3), (2.6), and (3.5), we have
{h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=−ρ(Λh2,Λh1)h3=−{h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ−{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L−Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L−Λρ(Λh1,Λh2)h4)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5−ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0. |
Furthermore, by Eqs (2.4), (2.5), and (3.5), we have
[{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0. |
Thus, (H,[−,−,−]H,{−,−,−}Λ) is a 3-Leibniz-Lie algebra.
Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[−,−,−]H,{−,−,−}Λ1) to (H,[−,−,−]H,{−,−,−}Λ2).
Proof. For any h1,h2,h3∈H, by Eqs (2.7), (2.8), and (3.5), we have
fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2. |
The proof is finished.
Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.
Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[−,−]H,⊳) encompasses a Lie algebra (H,[−,−]H) and a binary operation ⊳:H⊗H→H, ensuring that
h1⊳(h2⊳h3)=(h1⊳h2)⊳h3+h2⊳(h1⊳h3)+[h1,h2]H⊳h3,h1⊳[h2,h3]H=[h1⊳h2,h3]H=0, |
for all h1,h2,h3∈H.
Theorem 3.8. Let (H,[−,−]H,⊳) be a Leibniz-Lie algebra, and let ς∈H∗ be a trace map, which is a linear map that satisfies the following conditions:
ς([h1,h2]H)=0,ς(h1⊳h2)=0,for allh1,h2∈H. |
Define two ternary operations by
[h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3,for allh1,h2,h3∈H. |
Then (H,[−,−,−]Hς,{−,−,−}Hς) is a 3-Leibniz-Lie algebra.
Proof. First, we know from [17] that (H,[−,−,−]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5∈H, we have
{h1,h2,h3}Hς=ς(h1)h2⊳h3−ς(h2)h1⊳h3=−(ς(h2)h1⊳h3−ς(h1)h2⊳h3)=−{h2,h1,h3}Hς |
and
{{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς−{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2⊳h3)h4⊳h5−ς(h4)ς(h1)(h2⊳h3)⊳h5−ς(h2)ς(h1⊳h3)h4⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h1)ς(h2⊳h4)h3⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h2)ς(h1⊳h4)h3⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)+ς(h1)ς([h2,h3]H)h4⊳h5−ς(h4)ς(h1)[h2,h3]H⊳h5+ς(h2)ς([h3,h1]H)h4⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς([h1,h2]H)h4⊳h5−ς(h4)ς(h3)[h1,h2]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5−ς(h1)ς([h2,h4]H)h3⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h2)ς([h4,h1]H)h3⊳h5+ς(h3)ς(h4)[h1,h2]H⊳h5−ς(h4)ς([h1,h2]H)h3⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=−ς(h4)ς(h1)(h2⊳h3)⊳h5+ς(h4)ς(h2)(h1⊳h3)⊳h5+ς(h3)ς(h1)(h2⊳h4)⊳h5−ς(h3)ς(h2)(h1⊳h4)⊳h5+ς(h1)ς(h3)h4⊳(h2⊳h5)−ς(h1)ς(h4)h3⊳(h2⊳h5)−ς(h2)ς(h3)h4⊳(h1⊳h5)+ς(h2)ς(h4)h3⊳(h1⊳h5)−ς(h4)ς(h1)[h2,h3]H⊳h5−ς(h4)ς(h2)[h3,h1]H⊳h5+ς(h3)ς(h1)[h2,h4]H⊳h5+ς(h3)ς(h2)[h4,h1]H⊳h5−ς(h1)ς(h3)h2⊳(h4⊳h5)+ς(h2)ς(h3)h1⊳(h4⊳h5)+ς(h1)ς(h4)h2⊳(h3⊳h5)−ς(h2)ς(h4)h1⊳(h3⊳h5)=0. |
Similarly, we obtain
{h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2⊳[h4,h5]H−ς(h2)ς(h3)h1⊳[h4,h5]H+ς(h1)ς(h4)h2⊳[h5,h3]H−ς(h2)ς(h4)h1⊳[h5,h3]H+ς(h1)ς(h5)h2⊳[h3,h4]H−ς(h2)ς(h5)h1⊳[h3,h4]H=0 |
and
[{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2⊳h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2⊳h3]H+ς(h5)ς(h1)[h2⊳h3,h4]H−ς(h2)ς(h1⊳h3)[h4,h5]H−ς(h4)ς(h2)[h5,h1⊳h3]H−ς(h5)ς(h2)[h1⊳h3,h4]H=0. |
Hence Eqs (3.1)–(3.3) hold and we complete the proof.
In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.
Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[−,−,−]H) is a vector space V equipped with 3 actions
l:H⊗H⊗V→V,m:H⊗V⊗H→V,r:V⊗H⊗H→V, |
satisfying for any a1,a2,a3,a4,a5∈H and u∈V
l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), | (4.1) |
l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), | (4.2) |
l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), | (4.3) |
m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), | (4.4) |
r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). | (4.5) |
For n≥1, denote the n-cochains of 3-Leibniz algebra (H,[−,−,−]H) with coefficients in a representation (V;l,m,r) by
Cn3Leib(H,V)=Hom(n−1⏞∧2H⊗⋯⊗∧2H⊗H,V). |
The coboundary map δ:Cn3Leib(H,V)→Cn+13Leib(H,V), for Ai=ai∧bi∈∧2H,1≤i≤n and c∈H, as
(δφ)(A1,A2,…,An,c)=∑1≤j<k≤n(−1)jφ(A1,…,^Aj,…,Ak−1,ak∧[aj,bj,bk]H+[aj,bj,ak]H∧bk,…,An,c)+n∑j=1(−1)jφ(A1,…,^Aj,…,An,[aj,bj,c]H)+n∑j=1(−1)j+1l(Aj,φ(A1,…,^Aj,…,An,c))+(−1)n+1(m(an,φ(A1,…,An−1,bn),c)+r(φ(A1,…,An−1,an),bn,c)). |
It was proved in [23,24] that δ2=0. Therefore, (⊕+∞n=1Cn3Leib(H,V),δ) is a cochain complex.
Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[−,−,−]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[−,−,−]Λ) on L.
Lemma 4.2. With the above notations. Define 3 actions
lΛ:H⊗H⊗L→L,mΛ:H⊗L⊗H→L,rΛ:L⊗H⊗H→L, |
by
lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]L−Λρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]L−Λρ(l,Λh1)h2, |
for all h1,h2∈H,l∈L. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[−,−,−]Λ).
Proof. For any h1,h2,h3,h4,h5∈H and l∈L, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have
lΛ(h1,h2,lΛ(h3,h4,l))−lΛ([h1,h2,h3]Λ,h4,l)−lΛ(h3,[h1,h2,h4]Λ,l)−lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L−[[Λh1,Λh2,Λh3]L,Λh4,l]L−[Λh3,[Λh1,Λh2,Λh4]L,l]L−[Λh3,Λh4,[Λh1,Λh2,l]L]L=0 |
and
lΛ(h1,h2,mΛ(h3,l,h5))−mΛ([h1,h2,h3]Λ,l,h5)−mΛ(h3,lΛ(h1,h2,l),h5)−mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L−[Λh1,Λh2,Λρ(Λh3,l)h5]L−[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5−[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5−[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=−Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0, |
which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.
Proposition 4.3. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1⟶L to HΛ2⟶L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[−,−,−]Λ2) satisfying the following equations:
fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), | (4.6) |
fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), | (4.7) |
fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), | (4.8) |
for all h1,h2∈H,l∈L. In other words, the following diagrams commute:
![]() |
Proof. For any h1,h2∈H,l∈L, by Eqs (2.7) and (2.8), we have
fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]L−Λ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]L−fL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]L−Λ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)). |
And the other equation is similar to provable.
For n≥1, let δΛ:Cn3Leib(H,L)→Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[−,−,−]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕ∈Cn3Leib(H,L),Hi=ui∧vi∈∧2H,1≤i≤n and w∈H, we have
(δΛϕ)(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jϕ(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ+[uj,vj,uk]Λ∧vk,…,Hn,w)+n∑j=1(−1)jϕ(H1,…,^Hj,…,Hn,[uj,vj,w]Λ)+n∑j=1(−1)j+1lΛ(Hj,ϕ(H1,…,^Hj,…,Hn,w))+(−1)n+1(mΛ(un,ϕ(H1,…,Hn−1,vn),w)+rΛ(ϕ(H1,…,Hn−1,un),vn,w)). |
In particular, for ϕ∈C13Leib(H,L):=Hom(H,L) and u1,v1,w∈H, we have
(δΛϕ)(u1,v1,w)=−ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=−ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]L−Λρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]L−Λρ(ϕ(u1),Λv1)w. |
For any (a1,a2)∈C03Leib(H,L):=∧2L, we define δΛ:C03Leib(H,L)→C13Leib(H,L),(a1,a2)↦δΛ(a1,a2) by
δΛ(a1,a2)u=Λρ(a1,a2)u−[a1,a2,Λu]L,∀u∈H. |
Proposition 4.4. Let HΛ⟶L be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛ⟶C13Leib(H,L)δΛ⟶C23Leib(H,L) is the zero map.
Proof. For any u1,v1,w∈V, by Eqs (2.1)–(2.6) and (2.9) we have
δΛ(δΛ(a1,a2))(u1,v1,w)=−δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]L−Λρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]L−Λρ(δΛ(a1,a2)(u1),Λv1)w=−Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L−[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L−[Λu1,[a1,a2,Λv1]L,Λw]L−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L−[[a1,a2,Λu1]L,Λv1,Λw]L−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w−Λρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]H−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]H−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)w−Λρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w−Λρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=−Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0. |
Therefore, we deduce that δΛ(δΛ(a1,a2))=0.
Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[−,−,−]L) with respect to the coherent action (H,[−,−,−]H;ρ†).
For n≥0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (⊕∞n=0CnΛ(H,L),δΛ) is a cochain complex.
For n≥1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by
HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L). |
Proposition 4.5. Let HΛ1⟶L and HΛ2⟶L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1⟶L to HΛ2⟶L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)→CnΛ2(H,L) by
Ψ(ϕ)(H1,H2,…,Hn−1,w)=fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(w))), |
for all ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n−1, and w∈H. Then Ψ:(Cn+1Λ1(H,L),δΛ1)→(Cn+1Λ2(H,L),δΛ2) is a cochain map.
That is, the following diagram commutes:
![]() |
Consequently, it induces a homomorphism Ψ∗ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).
Proof. For any ϕ∈CnΛ1(H,L),Hi=ui∧vi∈∧2H,1≤i≤n, and w∈H, by Eqs (4.6)–(4.8) and Proposition 2.11, we have
(δΛ2Ψ(ϕ))(H1,H2,…,Hn,w)=∑1≤j<k≤n(−1)jΨ(ϕ)(H1,…,^Hj,…,Hk−1,uk∧[uj,vj,vk]Λ2+[uj,vj,uk]Λ2∧vk,…,Hn,w)+n∑j=1(−1)jΨ(ϕ)(H1,…,^Hj,…,Hn,[uj,vj,w]Λ2)+n∑j=1(−1)j+1lΛ2(Hj,Ψ(ϕ)(H1,…,^Hj,…,Hn,w))+(−1)n+1mΛ2(un,Ψ(ϕ)(H1,…,Hn−1,vn),w)+(−1)n+1rΛ2(Ψ(ϕ)(H1,…,Hn−1,un),vn,w)=∑1≤j<k≤n(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧f−1H([uj,vj,vk]Λ2)+f−1H([uj,vj,uk]Λ2)∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w)))+n∑j=1(−1)jfL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H([uj,vj,w]Λ2)))+n∑j=1(−1)j+1lΛ2(Hj,fL(ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w))))+(−1)n+1mΛ2(un,fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn))),w)+(−1)n+1rΛ2(fL(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un))),vn,w)=fL(∑1≤j<k≤n(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(uk−1)∧f−1H(vk−1),f−1H(uk)∧[f−1H(uj),f−1H(vj),f−1H(vk)]Λ1+[f−1H(uj),f−1H(vj),f−1H(uk)]Λ1∧f−1H(vk),…,f−1H(un)∧f−1H(vn),f−1H(w))+n∑j=1(−1)jϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),[f−1H(uj),f−1H(vj),f−1H(w)]Λ1)+n∑j=1(−1)j+1lΛ1(f−1H(uj),f−1H(vj),ϕ(f−1H(u1)∧f−1H(v1),…,^Hj,…,f−1H(un)∧f−1H(vn),f−1H(w)))+(−1)n+1mΛ1(f−1H(un),ϕ(f−1H(u1),f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(vn)),f−1H(w))+(−1)n+1rΛ1(ϕ(f−1H(u1)∧f−1H(v1),…,f−1H(un−1)∧f−1H(vn−1),f−1H(un)),f−1H(vn),f−1H(w)))=fL(δΛ1ϕ)(f−1H(u1)∧f−1H(v1),…,f−1H(un)∧f−1H(vn),f−1H(w))=Ψ(δΛ1ϕ)(H1,H2,…,Hn,w). |
Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ∗:HHn+1Λ1(H,L) →HHn+1Λ2(H,L).
At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.
Definition 4.6. Let Λ:H→L be a nonabelian embedding tensor on a 3-Lie algebra (L,[−,−,−]L) with respect to a coherent action (H,[−,−,−]H;ρ†). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.
Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have
[Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H, |
for all u1,u2,u3∈H. Therefore, we obtain the following equation:
[Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. | (4.9) |
It follows from Eq (4.9) that Λ1∈C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).
Let Λt=Λ+tΛ1 and Λ′t=Λ+tΛ′1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1∧a2∈∧2L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛt⟶L to HΛ′t⟶L. That is, the following conditions must hold:
1) The maps idL+tad(a1,a2):L→L and idH+tρ(a1,a2):H→H are two 3-Lie algebra homomorphisms,
2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:
(idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ′1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), | (4.10) |
for all a,b∈L,u∈H. It is easy to see that Eq (4.10) gives rise to
Λ1u−Λ′1u=Λρ(a1,a2)u−[a1,a2,Λu]=δΛ(a1,a2)u∈C1Λ(H,L). |
This shows that Λ1 and Λ′1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).
Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.
Theorem 4.7. Let Λ:H→L be a nonabelian embedding tensor on (L,[−,−,−]L) with respect to (H,[−,−,−]H;ρ†). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).
The authors declare there is no conflicts of interest.
[1] |
Aastveit KA, Albuquerque B, Anundsen AK (2023) Changing Supply Elasticities and Regional Housing Booms. J Money Credit Banking 55: 1749–1783. https://doi.org/10.1111/jmcb.13009 doi: 10.1111/jmcb.13009
![]() |
[2] |
Adams Z, Füss R (2010) Macroeconomic Determinants of International Housing Markets. J Hous Econ 19: 38–50. https://doi.org/10.1016/j.jhe.2009.10.005 doi: 10.1016/j.jhe.2009.10.005
![]() |
[3] |
Balcilar M, Bouri E, Gupta R, et al. (2021a) High-Frequency Predictability of Housing Market Movements of the United States: The Role of Economic Sentiment. J Behav Financ 22: 490–498. https://doi.org/10.1080/15427560.2020.1822359 doi: 10.1080/15427560.2020.1822359
![]() |
[4] |
Balcilar M, Roubaud D, Uzuner G, et al. (2021b) Housing sector and economic policy uncertainty: a GMM panel VAR approach. Int Rev Econ Finance 76: 114–126. https://doi.org/10.1016/j.iref.2021.05.011 doi: 10.1016/j.iref.2021.05.011
![]() |
[5] |
Belke A, Keil J (2018) Fundamental Determinants of Real Estate Prices: A Panel Study of German Regions. Int Adv Econ Res 24: 25–45. https://doi.org/10.1007/s11294-018-9671-2 doi: 10.1007/s11294-018-9671-2
![]() |
[6] |
Beracha E, Skiba H (2011) Momentum in Residential Real Estate. J Real Estate Finance Econ 43: 299–320. https://doi.org/10.1007/s11146-009-9210-2 doi: 10.1007/s11146-009-9210-2
![]() |
[7] |
Bramley G (1993) Land use planning and the housing market in Britain – the impact on house building and house prices. Environ Plann A 25: 1021–1052. https://doi.org/10.1068/a251021 doi: 10.1068/a251021
![]() |
[8] |
Caldera A, Johansson Å (2013) The price responsiveness of housing supply in OECD countries. J Hous Econ 22: 231–249. https://doi.org/10.1016/j.jhe.2013.05.002 doi: 10.1016/j.jhe.2013.05.002
![]() |
[9] | Case B, Wachter S (2005) Residential real estate price indices as financial soundness indicators: methodological issues. BIS papers 21: 197–211. |
[10] |
Case KE, Shiller RJ (1989) The Efficiency of the Market for Single-Family Homes. Am Econ Rev 79: 125–137. https://doi.org/10.3386/w2506 doi: 10.3386/w2506
![]() |
[11] |
Case KE, Shiller RJ (1990) Forecasting Prices and Excess Returns in the Housing Market. Real Estate Econ 18: 253–273. https://doi.org/10.1111/1540-6229.00521 doi: 10.1111/1540-6229.00521
![]() |
[12] |
Case KE, Shiller RJ (2003) Is there a bubble in the housing market? Brookings Pap Econ Act 2: 299–362. https://doi.org/10.1353/eca.2004.0004 doi: 10.1353/eca.2004.0004
![]() |
[13] |
Chowdhury SR, Gupta K, Tzeremes P (2023) US housing prices and the transmission mechanism of connectedness. Finance Res Lett 58: 104636. https://doi.org/10.1016/j.frl.2023.104636 doi: 10.1016/j.frl.2023.104636
![]() |
[14] |
Cohen V, Karpaviciute L (2016) The analysis of the determinants of housing prices. Indep J Manag Prod 8: 49–63. https://doi.org/10.14807/ijmp.v8i1.521 doi: 10.14807/ijmp.v8i1.521
![]() |
[15] |
Cunha AM, Lobã o J (2021a) The determinants of real estate prices in The European context: A four-level analysis. J Eur Real Estate Res 14: 331–348. https://doi.org/10.1108/JERER-10-2020-0053 doi: 10.1108/JERER-10-2020-0053
![]() |
[16] |
Cunha AM, Lobã o J (2021b) The effects of tourism on housing prices: applying a difference-in-differences methodology to the Portuguese market. Int J Hous Mark Anal 15: 762–779. https://doi.org/10.1108/IJHMA-04-2021-0047 doi: 10.1108/IJHMA-04-2021-0047
![]() |
[17] |
Cunha AM, Lobã o J (2022) House price dynamics in Iberian Metropolitan Statistical Areas: slope heterogeneity, cross-sectional dependence and elasticities. J Eur Real Estate Res 15: 444–462. https://doi.org/10.1108/JERER-02-2022-0005 doi: 10.1108/JERER-02-2022-0005
![]() |
[18] |
Deng KK, Wong SK (2021) Revisiting the Autocorrelation of Real Estate Returns. J Real Estate Finan Econ 67: 243–263. https://doi.org/10.1007/s11146-021-09830-8 doi: 10.1007/s11146-021-09830-8
![]() |
[19] |
DiPasquale D, Wheaton WC (1992) The markets for real estate assets and space: a conceptual framework. Real Estate Econ 20: 181–198. https://doi.org/10.1111/1540-6229.00579 doi: 10.1111/1540-6229.00579
![]() |
[20] |
DiPasquale D, Wheaton WC (1994) Housing market dynamics and the future of housing prices. J Urban Econ 35: 1–27. https://doi.org/10.1006/juec.1994.1001 doi: 10.1006/juec.1994.1001
![]() |
[21] |
Dröes MI, Francke MK (2018) What causes the positive price-turnover correlation in European housing markets? J Real Estate Finance Econ 57: 618–646. https://doi.org/10.1007/s11146-017-9602-7 doi: 10.1007/s11146-017-9602-7
![]() |
[22] |
Duca JV (2020) Making sense of increased synchronization in global house prices. J Eur Real Estate Res 13: 5–16, https://doi.org/10.1108/JERER-11-2019-0044 doi: 10.1108/JERER-11-2019-0044
![]() |
[23] |
Follain JR (1979) The Price Elasticity of the Long Run Supply of New Housing Construction. Land Econ 55: 190–199. https://doi.org/10.2307/3146061 doi: 10.2307/3146061
![]() |
[24] |
Gabauer D, Gupta R, Marfatia HA, et al. (2024). Estimating U.S. housing price network connectedness: Evidence from dynamic Elastic Net, Lasso, and ridge vector autoregressive models. Int Rev Econ Finance 89: 349–362. https://doi.org/10.1016/j.iref.2023.10.013 doi: 10.1016/j.iref.2023.10.013
![]() |
[25] |
Goodman AC (2005) The other side of eight miles: suburban population and housing supply. Real Estate Econ 33: 539–569. https://doi.org/10.1111/j.1540-6229.2005.00129.x doi: 10.1111/j.1540-6229.2005.00129.x
![]() |
[26] |
Gray D (2021) Medium-term cycles in affordability: what does the house price to income ratio indicate? National Accounting Review 3: 204–217. https://doi.org/10.3934/NAR.2021010 doi: 10.3934/NAR.2021010
![]() |
[27] |
Gray D (2023) Housing market activity diffusion in England and Wales. National Accounting Review 5: 125–144. https://doi.org/10.3934/NAR.2023008 doi: 10.3934/NAR.2023008
![]() |
[28] |
Green R, Malpezzi S, Mayo S (2005) Metropolitan-Specific Estimates of the Price Elasticity of Supply of Housing, and Their Sources. Am Econ Rev 95: 334–339. https://doi.org/10.1257/000282805774670077 doi: 10.1257/000282805774670077
![]() |
[29] |
Gupta R, Lau CKM, Nyakabawo W (2020) Predicting aggregate and state-level US house price volatility: the role of sentiment. J Rev Global Econ 9: 30–46. https://doi.org/10.6000/1929-7092.2020.09.05 doi: 10.6000/1929-7092.2020.09.05
![]() |
[30] |
Holly S, Pesaran MH, Yamagata T (2010) A spatio-temporal model of house prices in the USA. J Econom 158: 160–173. https://doi.org/10.1016/j.jeconom.2010.03.040 doi: 10.1016/j.jeconom.2010.03.040
![]() |
[31] | Jud GD, Winkler DT (2002) The Dynamics of Metropolitan Housing Prices. J Real Estate Res 23: 29–46. https://www.jstor.org/stable/24887611 |
[32] | Kishor NK, Marfatia HA (2017) The dynamic relationship between housing pricesand the macroeconomy: Evidence from OECD countries. J Real Estate Finan Econ 54: 237–268. https://doi.org/10.1007/s11146-015-9546-8 |
[33] |
Li Q, Chand S (2013) Housing prices and market fundamentals in urban China. Habitat Int 40: 148–153. https://doi.org/10.1016/j.habitatint.2013.04.002 doi: 10.1016/j.habitatint.2013.04.002
![]() |
[34] | Marfatia HA (2021) Modeling House Price Synchronization across the U.S. states and their Time-Varying Macroeconomic Linkages. J Time Ser Econ 13: 73–117. https://doi.org/10.1515/jtse-2017-0014 |
[35] |
Meen G (2005) On the Economics of the Barker Review of Housing Supply. Housing Stud 20: 949–971. https://doi.org/10.1080/02673030500291082 doi: 10.1080/02673030500291082
![]() |
[36] | Muth RF (1960) The demand for non-farm housing, In: Harberger, A.C. (Ed.), The Demand for Durable Goods, Chicago: University of Chicago Press, 27–96. |
[37] |
Ngene GM, Gupta R (2023) Impact of housing price uncertainty on herding behavior: evidence from UK's regional housing markets. J Hous Built Environ 38: 931–949. https://doi.org/10.1007/s10901-022-09975-9 doi: 10.1007/s10901-022-09975-9
![]() |
[38] | Nyakabawo W, Gupta R, Marfatia HA (2018) High frequency impact of monetary policy and macroeconomic surprises on US MSAs, aggregate US housing returns and asymmetric volatility. Advances in Decision Sciences 22: 1–25. |
[39] |
Oikarinen E, Bourassa SC, Hoesli M, Engblom J (2018) US Metropolitan House Price Dynamics. J Urban Econ 105: 54–69. https://doi.org/10.1016/j.jue.2018.03.001 doi: 10.1016/j.jue.2018.03.001
![]() |
[40] |
Oikarinen E, Engblom J (2016) Differences in housing price dynamics across cities: The comparison of different panel model specifications. Urban Stud 53: 2312–2329. https://doi.org/10.1177/0042098015589883 doi: 10.1177/0042098015589883
![]() |
[41] |
Paciorek A (2013) Supply constraints and housing market dynamics. J Urban Econ 77: 11–26. https://doi.org/10.1016/j.jue.2013.04.001 doi: 10.1016/j.jue.2013.04.001
![]() |
[42] | Peng A, Wheaton W (1994) Effects of restrictive land supply on housing in Hong Kong: an econometric analysis. J Hous Res 5: 263–291. |
[43] | Quigley JM (1999) Real estate prices and economic cycles. Int Real Estate Rev 2: 1–20. |
[44] | Sherlock E (2023) As UK House Prices Continue to Rise: These are the Most Unaffordable Housing Markets Worldwide. Available from: https://moneytransfers.com/news/2023/11/07/as-uk-house-prices-continue-to-rise-these-are-the-most-unaffordable-housing-markets-worldwide. |
[45] |
Sims CA (1980) Macroeconomics and Reality. Econometrica 48: 1–48. https://doi.org/10.2307/1912017 doi: 10.2307/1912017
![]() |
[46] |
Stover M (1986) The Price Elasticity of the Supply of Single-Family Detached Urban Housing. J Urban Econ 20: 331–340. https://doi.org/10.1016/0094-1190(86)90023-9 doi: 10.1016/0094-1190(86)90023-9
![]() |
[47] |
Taltavull de La Paz P (2003) Determinants of housing prices in Spanish cities. J Prop Invest Financ 21: 109–135. https://doi.org/10.1108/14635780310469102 doi: 10.1108/14635780310469102
![]() |
[48] | Tavares FO, Pereira ET, Moreira AC (2014) The Portuguese residential real estate market. an evaluation of the last decade. Panoeconomicus 61: 739–757. https://doi.org/10.2298/PAN1406739T |
[49] |
Turk A (2015) Housing price and household debt interactions in Sweden. Int Monetary Fund 2015: 1–44. https://doi.org/10.5089/9781513586205.001 doi: 10.5089/9781513586205.001
![]() |
[50] |
Wang S, Chan SH, Xu B (2012) The Estimation and Determinants of the Price Elasticity of Housing Supply: Evidence from China. J Real Estate Res 34: 311–344. https://doi.org/10.1080/10835547.2012.12091336 doi: 10.1080/10835547.2012.12091336
![]() |
[51] | Read S (2022) House prices and rents have soared in the EU since 2010. Will rising interest rates pull them back down? Available from: https://www.weforum.org/agenda/2022/08/house-price-rent-europe/. |
[52] |
Tzeremes P (2021) The Asymmetric Effects of Regional House Prices in the UK: New Evidence from Panel Quantile Regression Framework. Stud Microecon 10: 7–22. https://doi.org/10.1177/2321022220980541 doi: 10.1177/2321022220980541
![]() |
1. | Halyna V. Tkachuk, Pavlo V. Merzlykin, Ivan I. Donchev, STEM project design in computer microelectronics education, 2025, 2833-5473, 10.55056/cte.929 |