[1]
|
Ahelgebey DF, Billio M, Casarin R (2016a) Bayesian Graphical Models for Structural Vector Autoregressive Processes. J Appl Economet 31: 357–386. https://doi.org/10.1002/jae.2443 doi: 10.1002/jae.2443
|
[2]
|
Ahelgebey DF, Billio M, Casarin R (2016b) Sparse Graphical Vector Autoregression: A Bayesian Approach. Ann Econ Stat 123: 333–361. https://doi.org/10.15609/annaeconstat2009.123-124.0333 doi: 10.15609/annaeconstat2009.123-124.0333
|
[3]
|
Artis MJ, Banerjee A, Marcellino M (2005) Factor forecasts for the UK. J Forecasting 28. https://doi.org/10.1002/for.957 doi: 10.1002/for.957
|
[4]
|
Bai J, Ng S (2002) Determining the number of factors in approximate factor models. Econometrica 70: 191–221. https://doi.org/10.1111/1468-0262.00273 doi: 10.1111/1468-0262.00273
|
[5]
|
Bai X, Zheng L (2022) Robust factor models for high-dimensional time series and their forecasting. Commun Stat-Theor M, 1–14.https://doi.org/10.1080/03610926.2022.2033777 doi: 10.1080/03610926.2022.2033777
|
[6]
|
Banbura M, Giannone D, Reichlin L (2010) Large Bayesian vector autoregressions. J Appl Economet 25: 71–92. https://doi.org/10.1002/jae.1137 doi: 10.1002/jae.1137
|
[7]
|
Banbura M, Giannone D, Lenza M (2014) Conditional Forecast and Scenario Analysis with vector autoregressions for large cross-sections. Available from: https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1733.pdf.
|
[8]
|
Barnett V, Lewis T (1994) Outliers in Statistical Data. Int J Forecasting 12. https://doi.org/10.1002/bimj.4710370219 doi: 10.1002/bimj.4710370219
|
[9]
|
Bergstrom P, Edlund O (2014) Robust Registration of point sets using Iteratively Reweighted Least Squares. Comput Optim Appl 58: 543–561. https://doi.org/10.1007/s10589-014-9643-2 doi: 10.1007/s10589-014-9643-2
|
[10]
|
Billio M, Casarin R, Corradin F (2022) Understanding Economic Instability during the Pandemic: A Factor Model Approach. In Baltagi, B. H., Moscone, F., Tosetti, E., The Economics of COVID-19, Emerald Publishing. https://doi.org/10.1108/S0573-855520220000296003
|
[11]
|
Birch J, Jensen W, Woodall WH (2007) High Breakdown Estimation Methods for Phase I Multivariate Control Charts. Qual Reliab Eng Int 23: 615–629. https://doi.org/10.1002/qre.837 doi: 10.1002/qre.837
|
[12]
|
Butler RW, Davies PL, Jhun M (1993) Asymptotic for the Minimum Covariance Estimator. Ann Stat 21: 1385–1400. https://doi.org/10.1214/aos/1176349264 doi: 10.1214/aos/1176349264
|
[13]
|
Casarin R, Corradin F, Ravazzolo F, et al. (2020) A Scoring Rule for Factor and Autoregressive Models Under Misspecification. Adv Decis Sci 2: 66–103. https://doi.org/10.47654/v24y2020i2p66-103 doi: 10.47654/v24y2020i2p66-103
|
[14]
|
Casarin R, Veggente V (2021) Random Projection Methods in Economics and Finance. In Petr, H., Uddin, M.M., Abedin, M. Z., The Essentials of Machine Learning in Finance and Accounting, Routledge. https://doi.org/10.4324/9781003037903-6
|
[15]
|
Cator E, Lopuhaa H (2010) Asymptotic expansion of the minimum covariance determinant estimators, J Multivariate Anal 101: 2372–2388. https://doi.org/10.1016/j.jmva.2010.06.009 doi: 10.1016/j.jmva.2010.06.009
|
[16]
|
Choi H, Varian H (2012) Predicting the present with Google trends. Econ Rec 88: 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x doi: 10.1111/j.1475-4932.2012.00809.x
|
[17]
|
Croux C, Haesbroek G (1999) Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator. J Multivariate Anal 71: 161–190. https://doi.org/10.1006/jmva.1999.1839 doi: 10.1006/jmva.1999.1839
|
[18]
|
Croux C, Filzmoser P, Rousseeuw J, et al. (2003) Robust factor analysis. J Multivariate Anal 84: 145–172. https://doi.org/10.1016/S0047-259X(02)00007-6 doi: 10.1016/S0047-259X(02)00007-6
|
[19]
|
Davidson R, MacKinnon JG (2004) Econometric theory and methods. New York: Oxford University Press.
|
[20]
|
Davies L (1992) The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator. Ann Stat 20: 1828–1843. https://doi.org/10.1214/aos/1176348891 doi: 10.1214/aos/1176348891
|
[21]
|
Daubechies I, DeVore R, Fornasier M, et al. (2009) Iteratively Reweighted Least Squares minimization for sparse recovery. Wiley Pure Appl Math 63: 1–38. https://doi.org/10.1002/cpa.20303 doi: 10.1002/cpa.20303
|
[22]
|
De la Torre F, Black MJ (2004) A framework for robust subspace learning. Int J Comput Vision 54: 117–142. https://doi.org/10.1023/A:1023709501986 doi: 10.1023/A:1023709501986
|
[23]
|
Diebold FX (2003) "Big Data" Dynamic Factor Models for Macroeconomic Measurement and Forecasting: A Discussion of the Papers by Lucrezia Reichlin and by Mark W. Watson. In Dewatripont, M, Hansen, L., Turnovsky S., Advances in Economics and Econometrics: Theory and Applications, Eighth World Congress, Cambridge: Cambridge University Press, 115–122. https://doi.org/10.1017/CBO9780511610264.005
|
[24]
|
Donoho DL (1982) Breakdown Properties of Multivariate Location Estimators. Qualifying paper, Harward University, Boston.
|
[25]
|
Einav L, Levin J (2014) Economics in the age of big data. Science 346: 715–718. https://doi.org/10.1126/science.1243089 doi: 10.1126/science.1243089
|
[26]
|
Eurostat (2020) Guidance on Time Series Treatment in the Context of the COVID–19 Crisis. Available from: https://ec.europa.eu/eurostat/documents/10186/10693286/Time_series_treatment_guidance.pdf.
|
[27]
|
Fabeil NF, Langgat J, Pazim KH (2020) The Impact of COVID–19 Pandemic Crisis on Microenterprises: Entrepreneurs' Perspective on Business Continuity and recovery Strategy. J Econ Bus 3: 837–844. https://doi.org/10.31014/aior.1992.03.02.241 doi: 10.31014/aior.1992.03.02.241
|
[28]
|
Fan J, Wang K, Zhong Y, et al. (2021) Robust High-Dimensional Factor Models with Applications to Statistical Machine Learning. Stat Sci 36: 303–327. https://doi.org/10.1214/20-STS785 doi: 10.1214/20-STS785
|
[29]
|
Fernandes N (2020) Economic Effects of Coronavirus outbreak (COVID–19) on the world economy. IESE Business School working paper. https://doi.org/10.2139/ssrn.3557504 doi: 10.2139/ssrn.3557504
|
[30]
|
Filzmoser P, van Gaans PFM, van Helvoort PJ (2005) Sequential Factor Analysis as a new approach to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical characterization of fluvial deposits (Rhine-Meuse delta, The Netherlands). Appl Geochem 20: 2233–2251. https://doi.org/10.1016/j.apgeochem.2005.08.009 doi: 10.1016/j.apgeochem.2005.08.009
|
[31]
|
Gambacciani M, Paolella MS (2017) Robust Normal mixtures for financial portfolio allocation. Economet Stat 3: 91–111. https://doi.org/10.1016/j.ecosta.2017.02.003 doi: 10.1016/j.ecosta.2017.02.003
|
[32]
|
Geman S, McClure D (1987) Statistical methods for tomographic image reconstruction. Proceedings of the 46th Session of the ISI, Bulletin of the ISI 52: 5–21.
|
[33]
|
George EI, Sun D, Ni S (2008) Bayesian stochastic search for VAR model restrictions. J Economet 142: 553–580. https://doi.org/10.1016/j.jeconom.2007.08.017 doi: 10.1016/j.jeconom.2007.08.017
|
[34]
|
Goldstein S, Pavlovic V, Stolfi J, et al. (2004) Outlier Rejection in Deformable Model Tracking. 2004 Conference on Computer Vision and Pattern Recognition Workshop 19–19. https://doi.org/10.1109/CVPR.2004.415. doi: 10.1109/CVPR.2004.415
|
[35]
|
Granger CWJ (1998) Extracting Information from mega–panels and high frequency data. Stat Neederlanica 52: 257–272. https://doi.org/10.1111/1467-9574.00084 doi: 10.1111/1467-9574.00084
|
[36]
|
Green PJ (1984) Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some Robust and resistant Alternatives. J R Stat Soc 46: 149–170. https://doi.org/10.1111/j.2517-6161.1984.tb01288.x doi: 10.1111/j.2517-6161.1984.tb01288.x
|
[37]
|
Hampel FR, Ronchetti EM, Rousseeuw PJ, et al. (1986) Robust Statistics: The Approach Based on Influence Functions. New York: John Wiley & Sons.
|
[38]
|
Hubert M, Debruyne M, Rousseeuw PJ (2017) Minimum covariance determinant and extension. Wiley Computational Statistics, 101002. https://doi.org/10.1002/wics.1421 doi: 10.1002/wics.1421
|
[39]
|
Hubert M (1981) Robust Statistics. Wiley Series in Probability and Statistics. https://doi.org/10.1002/0471725250 doi: 10.1002/0471725250
|
[40]
|
Kargoll B, Omidalizarandi M, Loth I, et al. (2018) An Iteratively reweighted least squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations. J Geodesy 92: 271–297. https://doi.org/10.1007/s00190-017-1062-6 doi: 10.1007/s00190-017-1062-6
|
[41]
|
Koop G, Korobilis D, Pettenuzzo D (2017) Bayesian compressed VARs. J Economet 1:1–30. https://doi.org/10.1016/j.jeconom.2018.11.009 doi: 10.1016/j.jeconom.2018.11.009
|
[42]
|
Liu K (2021) COVID–19 and the Chinese economy: impacts, policy responses and implications. Int Rev Appl Econ 35: 308–330. https://doi.org/10.1080/02692171.2021.1876641 doi: 10.1080/02692171.2021.1876641
|
[43]
|
Lopuhaa H, Rousseeuw P (1991) Breackdown points of affine equivalent estimators of multivariate location and covariance matrices. Ann Stat 19: 229–248. https://doi.org/10.1214/aos/1176347978 doi: 10.1214/aos/1176347978
|
[44]
|
Lütkepohl H (2005) New introduction to multiple time series analysis. Springer Verlag. https://doi.org/10.1007/978-3-540-27752-1 doi: 10.1007/978-3-540-27752-1
|
[45]
|
Maronna R, Zamar R (2002) Robust Estimates of Location and Dispersion for High–dimensional Datasets. Technometrics 44: 307–317. https://doi.org/10.1198/004017002188618509 doi: 10.1198/004017002188618509
|
[46]
|
Mbamalu GAN, Hawary ME (1993) Load forecasting via suboptimal seasonal autoregressive models and Iteratively Reweighted Least Squares. IEEE T Power Syst 8: 343–348. https://doi.org/10.1109/59.221222 doi: 10.1109/59.221222
|
[47]
|
McKibbin W, Vines D (2020) Global macroeconomic cooperation in response to the COVID-19 pandemic: a roadmap for the G20 and the IMF. Oxford Rev Econ Pol 36: S297–S337. https://doi.org/10.1093/oxrep/graa032 doi: 10.1093/oxrep/graa032
|
[48]
|
McKibbin W, Roshen F (2021) The global macroeconomics impacts of COVID–19: seven scenarios. Asian Econ Pap 20: 1–30. https://doi.org/10.1162/asep_a_00796 doi: 10.1162/asep_a_00796
|
[49]
|
Mohan K, Fazel M (2012) Iterative Reweighted Algorithms for Matrix Rank Minimization. J Mach Learn Res 13: 3441–3473.
|
[50]
|
Neykov NM, Neytchev PN, Todorov V, et al. (2013) Robust detection of discordant sites in regional frequency analysis. Water Resour Res 43: W06417. https://doi.org/10.1029/2006WR005322 doi: 10.1029/2006WR005322
|
[51]
|
Orhan M, Rousseuw PJ, Zaman A (2001) Econometric applications of high- breakdown regression techniques. Econ Lett 1: 1–8. https://doi.org/10.1016/S0165-1765(00)00404-3 doi: 10.1016/S0165-1765(00)00404-3
|
[52]
|
Rousseuw P (1984) Least Median of Squares Regression. J Am Stat Assoc 79: 871–880. https://doi.org/10.1080/01621459.1984.10477105 doi: 10.1080/01621459.1984.10477105
|
[53]
|
Rousseeuw P, Leroy AM (1987) Robust Regression and Outliers Detection. Wiley Series in Probability and Statistics. https://doi.org/10.1002/0471725382 doi: 10.1002/0471725382
|
[54]
|
Rousseeuw P, Van Driessen K (1999) A Fast Algorithm for the minimum Covariance Determinant Estimator. Technometrics 41: 212–223. https://doi.org/10.1080/00401706.1999.10485670 doi: 10.1080/00401706.1999.10485670
|
[55]
|
Stock JH, Watson WM (2002) Forecasting using principal components from a large number of predictors. J Am Stat Assoc 97: 1167–1179. https://doi.org/10.1198/016214502388618960 doi: 10.1198/016214502388618960
|
[56]
|
Stock JH, Watson WM (2004) Combination forecasts of output growth in a seven–country data set. J f Forecasting 23: 405–430. https://doi.org/10.1002/for.928 doi: 10.1002/for.928
|
[57]
|
Stock JH, Watson WM (2005) Implications of dynamic factor models for VAR analysis. Natl Breau Econ Res. https://doi.org/10.3386/w11467 doi: 10.3386/w11467
|
[58]
|
Stock JH, Watson WM (2009) Forecasting in dynamic factor models subject to structural instability. The Methodology and Practice of Econometrics. A Festschrift in Honour of David F. Hendry 173: 205. https://doi.org/10.1093/acprof:oso/9780199237197.001.0001 doi: 10.1093/acprof:oso/9780199237197.001.0001
|
[59]
|
Stock JH, Watson WM (2012) Disentangling the channels of the 2007–09 recession. Brookings Pap Eco Ac, 81–156. https://doi.org/10.1353/eca.2012.0005 doi: 10.1353/eca.2012.0005
|
[60]
|
Stock JH, Watson WM (2014) Estimating turning points using large data sets. J Economet 178: 368–381. https://doi.org/10.1016/j.jeconom.2013.08.034 doi: 10.1016/j.jeconom.2013.08.034
|
[61]
|
Varian H (2014) Machine Learning: New tricks for econometrics. J Econ Perspect 28: 3–28. https://doi.org/10.1257/jep.28.2.3 doi: 10.1257/jep.28.2.3
|
[62]
|
Varian H, Scott S (2014) Predicting the present with Bayesian structural time series. International J Math Model Numer Optim 5: 4–23. https://doi.org/10.1504/IJMMNO.2014.059942 doi: 10.1504/IJMMNO.2014.059942
|
[63]
|
Vidal R, Ma Y, Sastry SS (2016) Generalized Principal Component Analysis, Springer Verlag. https://doi.org/10.1007/978-0-387-87811-9
|
[64]
|
Zou H, Hastie T (2005) Regularization and variable selection via the elastic-net. J R Stat Soc B 67: 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x doi: 10.1111/j.1467-9868.2005.00503.x
|