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Abstract: Outliers can cause significant errors in forecasting, and it is essential to reduce their impact 

without losing the information they store. Information loss naturally arises if observations are dropped 

from the dataset. Thus, two alternative procedures are considered here: the Fast Minimum Covariance 

Determinant and the Iteratively Reweighted Least Squares. The procedures are used to estimate factor 

models robust to outliers, and a comparison of the forecast abilities of the robust approaches is carried 

out on a large dataset widely used in economics. The dataset includes observations relative to the 2009 

crisis and the COVID-19 pandemic, some of which can be considered outliers. The comparison is 

carried out at different sampling frequencies and horizons, in-sample and out-of-sample, on relevant 

variables such as GDP, Unemployment Rate, and Prices for both the US and the EU. 
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1. Introduction 

The increased availability of a large amount of data allows researchers to model and forecast more 

accurately in many fields (e.g., see Choi and Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav 

and Levin, 2014). However, the main issues when dealing with high-dimensional models for large 

datasets are over-parametrization, over-fitting, and high out-of-sample forecasting errors (Granger, 

1998). Various solutions have been proposed, such as regularization (Zou and Hastie, 2005), stochastic 

search variable selection (George et al., 2008), graphical models (Ahelgebey et al., 2016a, 2016b), and 

random projections (Koop et al., 2017; Casarin and Veggente, 2021). This paper considers factor 

models (Stock and Watson, 2002, 2004, 2005, 2012, 2014; Banbura et al., 2010; Casarin et al, 2020; 
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Billio et al., 2022). Relevant information is summarized through a limited number of factors, 

describing the overall economic conditions and providing accurate forecasts of the variables of interest. 

It has been proved, that factor model estimates can be heavily affected by outliers: data points 

that differ significantly from other observations in the sample. An outlier may be due to variability in 

the measurement or significant experimental errors; the latter are sometimes excluded from the data 

set. After the 2009 crisis and the COVID-19 pandemic event, the treatment of outliers attracted the 

attention of both researchers and the institutes of official statistics, which provided some guidelines on 

monitoring the effects of outliers when using their data (e.g., see Eurostat, 2020). In this paper we 

follow Artis et al. (2005), Croux et al. (2003), Bai et al. (2022), Fan et al. (2021) and apply robust 

estimation methods to factor models to limit the effects of the outliers. We contribute to the robust 

factor literature by comparing alternative robust factor models in terms of forecasting performances 

on a set of variables which are central to the economic analysis. Our database includes the 2009 crisis 

and the beginning of COVID-19 pandemic in March 2020 and consider as a last data January 2021; 

the pandemic is potentially the most important source of outliers, and its effects on the economic 

systems have been extensively investigated in some recent studies (Fabeil et al., 2020; Fernandes, 2020; 

McKibbin and Vines, 2020; McKibbin and Roshen, 2021; Liu, 2021). We shall notice that the amount 

of sample information is not large enough to estimate forecasting models with structural breaks since 

adopting them implies that the current model is estimated only using data observed since the most 

recent break. Similarly, it is not possible to test for a break and compare the two models for the period 

before and after the pandemic since the spread of contagion and its effects did not yet come to an end. 

This paper provides an alternative solution and shows that samples from the pandemic period have 

some information content which can still be used to estimate models without breaks provided a proper 

inference technique, such as robust inference for outliers, is applied. 

The structure of the paper is as follows. Section 2 presents some background on robust inference 

for outliers. Section 3 introduces standard factors model and the two methodologies used to treat the 

outliers. Section 4 provides a data description and the empirical results obtained with robust inference 

methods for factor models. Section 5 concludes the chapter. 

2. Background on robust estimation 

The true nature of outliers can be very elusive and dealing with data affected by outliers poses 

some challenges. There is no unanimous definition for what an outlier is. Outliers could be atypical 

samples that have an unusually large influence on the estimated model parameters. Outliers could also 

be perfectly valid samples from the same distribution as the rest of the data that happen to be small-

probability instances. Alternatively, outliers could be samples drawn from a different model, and 

therefore they will likely not be consistent with the model derived from the rest of the data. There is 

no way to tell which is the case for a particular “outlying” sample point, nevertheless some techniques 

can be applied to detect outliers. A standard procedure makes use of the linear projection of the 

dependent variable into the linear space of covariates, the hat matrix of the data. The diagonal of the 

hat matrix is used to detect outlying observations that may have an impact on the inference. Usually, 

outliers are excluded from the dataset when estimating the model (data-trimming). See, for example 

Davidson and McKinnon (2004). In this paper, we compare trimming with two alternative approaches. 

The first approach is based on Mahalanobis distances and can applied for detection and robust 

estimation. We consider robust estimators of multivariate location and scatter computed from the 
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explanatory variables. Many methods for estimating multivariate location and scatter break down in 

the presence of 𝑇/(𝑛 + 1) outliers, where 𝑇 is the number of observations and 𝑛 is the number of 

variables, as was pointed out by Donoho (1982). For the breakdown value of the multivariate F-

estimators of Maronna (1976), see Hampel et al. (1986). In the meantime, several positive breakdown 

estimators of multivariate location and scatter have been proposed. The Minimum Covariance 

Determinant (MCD), a highly robust estimator of multivariate location and scatter (Rousseeuw, 1984) 

which uses only the observations whose covariance matrix has the lowest determinant, was proposed 

by Rousseeuw and Leroy (1987). Consistency and asymptotic normality of the MCD estimator has 

been shown by Butler et al. (1993) and Cator and Lopuhaa (2010), whereas has been demonstrated 

that MVE (Minimum Volume Ellipsoid) has a lower convergence rate (Davies, 1992). The MCD has 

a bounded influence function (Croux and Haesbroeck, 1999) and it has the highest possible breakdown 

value (i.e., 50%) when the number of observations used is ⌊(𝑇 + 𝑛 + 1)/2⌋ (Lopuha and Rousseeuw, 

1991). In addition to being highly resistant to outliers, the MCD is affine equivariant, i.e., the estimates 

behave properly under affine transformations of the data. Although the MCD was already introduced 

in 1984, its practical use only became feasible since the introduction of the computationally efficient 

Fast MCD (FMCD) algorithm of Rousseeuw and Van Driessen (1999), and some extensions have been 

determined (Hubert et al., 2017); in this paper we follow FMCD technique. MCD have been 

successfully applied in many fields such as finance and econometrics (Gambacciani & Paolella, 2017; 

Orhan et al., 2001), quality control (Jensen et al., 2007), geophysics (Neykov, et al., 2007), 

geochemistry (Filzmoser et al., 2005), image analysis (Vogler et al., 2007). MCD has been used for 

robust factor model estimation by Croux et al. (2003) and Filzmoser et al. (2003). 

The second approach considered, is the Iteratively Reweighted Least Squares (IRLS) proposed in 

(De la Torre and Black, 2004), which relies on the residuals of the linear projection of the dependent 

variable on a space generated by a set of factors. The outliers are detected as those that have a large 

residual with respect to the identified subspace. A new subspace is estimated with the outliers 

downweighted, and this process is then repeated until the estimated model stabilizes. With this 

algorithm for every multivariate sample a weight is determined iteratively, reducing the weights related 

to the outliers until the procedure converge. This technique has been used for outliers’ reduction, 

(Bergstrom and Edlund, 2014), outliers afflicted observations (Kargoll et al., 2018) and in forecasting 

(Mbamalu et al., 1993). Other applications are statistical estimation (Green, 1984), matrix rank 

minimization (Mohan and Fazel, 2012), and sparse matrix (Daubechies et al., 2009). 

3. Factor models 

In the following, we introduce Factor Models (FM), data trimming and three approaches to outlier 

handling: i) standard FM (FM Std) where all data are included without any transformation; ii) Fast 

Minimum Covariance Determinant methodology combined with FM (FM FMCD) and iii) Iterated 

Reweighted Least Squares combined with Factors Model (FM IRLS). 

In the empirical analysis, a Vector Autoregressive (VAR) model is used for predicting the factors, 

and according to Lütkepohl (2005), series without unit roots should be used when forecasting with 

VARs. To meet this requirement for the factors, we perform a unit root ADF test on all variables included 

in the factor analysis. If necessary, variables have been differentiated to obtain a stationary time series; 

after this step, we normalize the series and extract the factors. Thus, in the following we assume our 

𝑇 ×  𝑛 data matrix 𝑋 is covariance stationary with null mean and unitary standard deviation. 



170 

National Accounting Review  Volume 4, Issue 2, 167–190. 

3.1. A standard factor model 

3.1.1. Subheading 

In this paper we use factor models, (see, e.g., Stock and Watson, 2002, 2004, 2005, 2012, 2014; 

Banbura et al., 2010; Banbura et al., 2014; Artis et al., 2005), with reduced number of factors (Bai and 

Ng, 2002). See Diebold (2003) and Stock and Watson (2009) for review of factor models. 

Let 𝑋𝑡, t>0, be a random process with 𝑋𝑡 = (𝑥1𝑡 , … , 𝑥𝑛𝑡)′ a (𝑛 × 1) random vector. The time 

index 𝑡 represents months or quarters, and we assume the process is covariance stationary with null 

mean and a standard deviation equal to one. Latent factors extraction relies on the following 

decomposition: 

 𝐸[𝑋𝑡𝑋𝑡
′]𝑎𝑖 = 𝛤𝑋𝑎𝑖 = 𝜆𝑖𝑎𝑖, (1) 

where 𝑎𝑖 and 𝜆𝑖 , 𝑖 = 1, … , 𝑛, are the 𝑛-dimensional eigenvectors and the eigenvalues in decreasing 

order, respectively. Let 𝐴 be an (𝑛 × 𝑛) orthonormal matrix with the normalized eigenvectors in the 

columns, also called factor loading matrix, then: 

 𝛤𝑋𝐴 = 𝐴𝛬, (2) 

where Λ is a diagonal matrix with elements 𝜆𝑖 , 𝑖 = 1, … , 𝑛, on the main diagonal. The vector of 𝑛 

factors 𝐹𝑛,𝑡 = (𝑓1,𝑡 , … , 𝑓𝑛,𝑡)′ is given by the linear transformation: 

 𝐹𝑛,𝑡 = 𝐴′𝑋𝑡 , (3) 

And 𝑓𝑘,𝑡, 𝑡 > 0 is the 𝑘-th factor. Let us denote with Γ𝑛 the expectation of the external product 

of the factor, 𝐸[𝐹𝑛,𝑡𝐹𝑛,𝑡
′ ]; then one obtains the following relationship between Γ𝑛 and the eigenvector 

matrix Λ: 

 𝛤𝑛 = 𝐸[𝐴′𝑋𝑡𝑋𝑡
′𝐴] = 𝐴′𝐸[𝑋𝑡𝑋𝑡

′]𝐴 = 𝐴′𝛤𝑋𝐴 = 𝛬. (4) 

Let 𝐹𝑘,𝑡 = (𝑓1,𝑡 , … , 𝑓𝑘,𝑡)′  be the collection of the first k factors at time t, with 𝑘 < 𝑛, then: 

 𝐹𝑘,𝑡 = 𝐴𝑘
′ 𝑋𝑡 , (5) 

where 𝐴𝑘 is the matrix containing the first k columns of 𝐴. Since the columns of 𝐴 are orthogonal, 

then 𝐴𝑘
′ 𝐴𝑘 = 𝐼𝑘 . The first k factors capture the following proportion of the total variance: 

 𝑉𝑘 = ∑ 𝜆𝑖

𝑘

𝑖=1

∑ 𝜆𝑖

𝑛

𝑖=1

.⁄  (6) 

The collection of factors 𝐹𝑘,𝑡 is customarily called standard FM (FM Std). 

3.2. A robust factor model: the fast minimum covariance determinant estimator 

In 𝑛-variate data, n>2, it is difficult to detect outliers because one can no longer rely on visual 

inspection, nevertheless a set of summary statistics can be used. One of the statistics used in the 

literature is the Mahalanobis distance: 
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 𝐷(𝑥𝑡 , 𝜇̂, 𝛴̂) = 𝐷𝑡 = √(𝑥𝑡 − 𝜇̂)′𝛴̂−1(𝑥𝑡 − 𝜇̂), (7) 

where 𝑥𝑡  is the 𝑡 -th row of the data matrix X, 𝜇̂  is the estimator of the location, and Σ̂  is the 

covariance matrix estimator. Using this distance, one obtains the classical tolerance ellipse defined as 

the set of 𝑛 -dimensional points 𝑥𝑡 , 𝑡 = 1, … , 𝑇 . Detecting outliers by means of the Mahalanobis 

distance no longer suffices for multiple outliers because of the masking effect, by which multiple 

outliers do not necessarily have large Mahalanobis distances (Hubert ET AL., 2017). We consider a 

robust estimator of multivariate location and scatter base on the notion of Minimum Covariance 

Determinant (MCD) (Rousseeuw, 1984; Rousseeuw and Leroy, 1987; Hubert et al., 2017). In the MCD, 

only the r observations, ⌊(𝑇 + 𝑛 + 1)/2⌋ ≤ 𝑟 ≤ 𝑇, whose classical covariance matrix has the lowest 

determinant are considered in the computation of the Mahalanobis distance: 

 𝑅𝐷(𝑥𝑡 , 𝜇̅𝑀𝐶𝐷, 𝛴̂𝑀𝐶𝐷) = √(𝑥𝑡 − 𝜇̂𝑀𝐶𝐷)′𝛴̂𝑀𝐶𝐷
−1 (𝑥𝑡 − 𝜇̂𝑀𝐶𝐷) (8) 

where 𝜇̂𝑀𝐶𝐷  and Σ̂𝑀𝐶𝐷  are the MCD estimator of the mean and the covariance matrix respectively 

defined as follow: 

 𝜇̂𝑀𝐶𝐷 =
∑ 𝑊(𝑑𝑡

2)𝑥𝑡
𝑇
𝑡=1

∑ 𝑊(𝑑𝑡
2)𝑇

𝑡=1

; 𝛴̂𝑀𝐶𝐷 = 𝑐1

1

𝑇
∑ 𝑊(𝑑𝑡

2)(𝑥𝑡 − 𝜇̂𝑀𝐶𝐷)

𝑇

𝑡=1

(𝑥𝑡 − 𝜇̂𝑀𝐶𝐷)′ (9) 

Where 𝑊(𝑑𝑡
2) is an appropriate weight function and 𝑐1 is a consistency factor (e.g., see Lopulhaa 

and Rousseuw, 1991). Note that the MCD estimator can only be computed when r>n, otherwise the 

covariance matrix of any r-subset has determinant 0, so we need at least T>2n. To avoid excessive 

noise, it is recommended that T>5n, so that we have at least five observations per dimension. 

The MCD estimator is computationally expensive as it requires the evaluation of (𝑇
𝑟
) subsets of 

size r and for this reason we use the Fast Minimum Covariance Determinant estimator (FMCD) of 

Rousseeuw and Van Driessen (1999). A major component of the FMCD algorithm is the concentration 

step, C-step, which works as follows. Given the initial estimates 𝜇̂𝑜𝑙𝑑 and 𝛴̂𝑜𝑙𝑑: 

• Compute the distances 𝑑𝑜𝑙𝑑(𝑡) = 𝐷(𝑥𝑡 , 𝜇̂𝑜𝑙𝑑 , 𝛴̂𝑜𝑙𝑑), 𝑡 = 1, … , 𝑇. 

• Sort these distances and yield a permutation 𝜏 such that: 

𝑑𝑜𝑙𝑑(𝜏(1)) ≤ 𝑑𝑜𝑙𝑑(𝜏(2)) ≤ ⋯ ≤ 𝑑𝑜𝑙𝑑(𝜏(𝑛)) and set 𝐻 = {𝜏(1), 𝜏(2), … , 𝜏(𝑟)}. 

• Compute location and scale estimators: 

 𝜇̂𝑛𝑒𝑤 =
1

𝑟
∑ 𝑥𝑡 ,     

𝑡∈𝐻

𝛴̂𝑛𝑒𝑤 =
1

𝑟 − 1
∑(𝑥𝑡 − 𝜇̂𝑛𝑒𝑤)(𝑥𝑡 − 𝜇̂𝑛𝑒𝑤)′

𝑡∈𝐻

 (10) 

In Theorem 1 of Rousseuw and Van Driessen (1999) it is proved that 𝑑𝑒𝑡(Σ̂𝑛𝑒𝑤) ≤ 𝑑𝑒𝑡(Σ̂𝑜𝑙𝑑), with 

equality only if Σ̂𝑛𝑒𝑤 = Σ̂𝑜𝑙𝑑. Thus, if we iterate the C-step, the sequence of determinants obtained in this 

way converges in a finite number of iterations. The FMCD algorithm supplies a sequence of weights, one 

or zero (zero for the outliers), that has length 𝑇, and we repeat this sequence for n column to obtain the 

matrix 𝐻𝑀𝐶𝐷 with dimension 𝑇 ×  𝑛. We multiply the data matrix X by 𝐻𝑀𝐶𝐷: 

 𝐻𝑀𝐶𝐷 ⊙ 𝑋 = 𝑋𝑀𝐶𝐷 (11) 
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where ⊙ denotes the Hadamard’s product. We use 𝑋𝑀𝐶𝐷 to extract the factors (Croux et al., 2003; 

Pison et al., 2003) 𝐹𝑘,𝑡, as described in Section 3.1 and obtain the model FM FMCD. In this paper we 

set 𝑟 = 0.95𝑇. 

3.3. A robust factor model: the iterated reweighted least squares estimator 

The Maximum-Likelihood-Type Estimator (M-Estimator) is another popular robust method for 

estimating the location and scale of a set of points, and its application leads to the Iterated Reweighted 

Least Squares (IRLS) (Bergstrom et al., 2014; Daubechies et al., 2009). Define the residual as follows: 

 𝜀𝑡 = ‖𝑥𝑡 − 𝐴𝑘𝐹𝑘,𝑡‖
2
 (12) 

where 𝐴𝑘 and 𝐹𝑘,𝑡 have been defined in Section 3.1, and ‖⋅‖2 is the Euclidean norm for vectors. 

IRLS assumes continuous weights as a function of the residual: 

 𝑤𝑡 =
𝜌(𝜀𝑡)

𝜀𝑡
2  (13) 

For some given robust loss function 𝜌(⋅) from the set of the real to the positive reals. The objective 

function then becomes: 

 ∑ 𝜌(𝜀𝑡)

𝑇

𝑡=1

 (14) 

Many loss functions have been proposed in the statistics literature (Huber 1981; Barnett and Lewis 

1984). When  𝜌(𝜀𝑡) = 𝜀𝑡
2, all weights are equal to 1, and we obtain the standard least-squares solution, 

which is not robust. Other robust loss functions are described in Vidal et al. (2016), in this work we 

use a Geman-McClure loss (Geman and McClure, 1987): 

 𝜌(𝜀𝑡) =
𝜀𝑡

2

𝜀0
2 + 𝜀𝑡

2 (15) 

where 𝜀0
2 is a parameter that we consider equal to the square root of mean of 𝜀𝑡

2. Following De la 

Torre and Blank (2004), we use a Geman-McClure loss scaled by 𝜀0
2  which yields the following 

procedure. Given an initial parameter 𝜀0
2 and factor loadings and factors, 𝐴𝑘 and 𝐹𝑘,𝑡, respectively, 

obtained from the FM Std of Section 3.1, iterate until convergence the following steps: 

1. Compute the residuals 𝜀𝑡 = ‖𝑥𝑡 − 𝐴𝑘𝐹𝑘,𝑡‖
2
. 

2. Compute the weights 𝑤𝑡 =
𝜀0

2

𝜀0
2+𝜀𝑡

2. 

3. Estimate the covariance 𝛴 ←
∑ 𝑤𝑡

𝑇
𝑡=1 𝑥𝑡𝑥𝑡

′

∑ 𝑤𝑡
𝑇
𝑡=1

. 

4. Extract the first 𝑘 largest eigenvalues of 𝛴 and collect the corresponding eigenvectors in 𝐴𝑘. 

The factor matrix 𝐹𝑘,𝑡 obtained as above is called FM IRLS. 
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3.4. A forecasting model 

Once factors are extracted a forecasting procedure is needed to predict the variables of interest. 

We assume the first 𝑘  latent factors (determined with the three methodologies described above), 

𝐹𝑘,𝑡 = (𝑓1,𝑡 , … , 𝑓𝑘,𝑡)′, with 𝑘 <  𝑛, follow a VAR model. Using only 𝑘 factors, the reconstruction of 

the variables derives from the approximated model: 

 𝑋𝑘,𝑡 = 𝐴𝑘𝐹𝑘,𝑡 (16) 

With the term 𝑋𝑘,𝑡 we mean the approximation of the vector 𝑋𝑡 obtained using the first k factors 

𝐹𝑘,𝑡. Considering the dynamic part related to the 𝑘 factors, our model is thus as follows: 

 𝑋𝑘,𝑡 = 𝐴𝑘𝐹𝑘,𝑡 (17) 

 𝐹𝑘,𝑡 = 𝑐𝑘 + 𝛷𝑘𝐹𝑘,𝑡−1 + 𝜀𝑘,𝑡 ,    𝜀𝑘,𝑡 𝑊𝑁(0, 𝛴𝑘) (18) 

where c𝑘 has dimension k x 1 and Φ𝑘 has dimensions k x k. As shown in Billio et al. (2022), under 

VAR assumption for the factors, the variables of interest 𝑋𝑘,𝑡 follow a VAR model with restrictions. 

Thus, the conditional forecasts  𝑋𝑘,𝑡+ℎ at the horizon ℎ, ℎ =  1, … , H are obtained as follows: 

 𝑋𝑘,𝑡+ℎ|𝑡 = 𝐴𝑘𝐹̂𝑘,𝑡+ℎ|𝑡 (19) 

where: 

 𝐹̂𝑘,𝑡+ℎ|𝑡 = 𝐸[𝐹𝑘,𝑡+ℎ|𝑋1, … , 𝑋𝑡] = 𝑐𝑘 + 𝛷𝑘𝐹̂𝑘,𝑡+ℎ−1|𝑡 (20) 

To summarize, we first estimate the latent factors and then use a VAR model on factors to 

forecast both the factors and the variables of interest. After then, the variables will be reconverted to 

their correct values reversing the procedures of normalization and integrated if they have been 

previously differentiated. 

4. Empirical applications 

4.1. Data description 

We consider a dataset of macroeconomic variables related to the US and the EU economies, 

provided by Bloomberg. It consists of 42 monthly variables and 2 quarterly variables, sampled from 

December 2001 to January 2021, and includes some key variables for policy making: core and headline 

prices, labour market variables, imports, exports, industrial production, consumption, sales, leading 

indicators of interest rates, and the term structure. See Table 1 for a more detailed description. 

Table 1. Macroeconomic variables for two major geographical regions, the US and EU, 

sampled either at monthly or quarterly frequency from December 2001 to January 2021. 

N C Definition L MU F 

1 US Export Ex m/m M 

2 US Import Im m/m M 

3 US Unemployment rate UR % M 

Continued on next page 
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N C Definition L MU F 

4 US Employment (Agricultural sector) EA thousands M 

5 US Employment (Private sector) EP thousands M 

6 US Average hourly wages Ahw m/m M 

7 US PCE PCE y/y M 

8 US PCE core PCEc y/y M 

9 US PPI PPI y/y M 

10 US Industrial Production IP y/y M 

11 US Industrial Orders IO m/m M 

12 US Durable goods orders Dgo m/m M 

13 US Durable goods orders excluding transport Dgoet m/m M 

14 US Stocks S m/m M 

15 US Use of production capacity Upc % M 

16 US ISM manufacturing ISMm level M 

17 US Start of new construction sites Snc m/m M 

18 US Constructions expenditure Cse m/m M 

19 US Existing homes sale Ehs m/m M 

20 US New homes sale Nhs m/m M 

21 US Expenditure (real) Er m/m M 

22 US Income (real) Ir m/m M 

23 US Retail sales RS m/m M 

24 US Conference Board CB level M 

25 US Michigan Consumer Sentiment Index MCSI level M 

26 US RUS10 (Int.Rate Gov.Bond 10Y US) RUS10 Yield M 

27 US DeltaRUS72 (=RUS7-RUS2) DRUS72 Yield M 

28 EU Export Ex m/m M 

29 EU Import Im m/m M 

30 EU Unemployment rate UR % M 

31 EU HCPI HCPI y/y M 

32 EU CPI core CPIc y/y M 

33 EU PPI PPI y/y M 

34 EU Industrial Production IP y/y M 

35 EU Constructions expenditure Cse m/m M 

36 EU PMI manufacturing index PMImI level M 

37 EU ESI ESI level M 

38 EU Leading indicator LeIn level M 

39 EU Retail Sales RS y/y M 

40 EU REMU10 (Int.Rate Gov.Bond 10Y EU) REMU10 Yield M 

41 EU DeltaREMU72 (=REMU7-REMU2) DREMU72 Yield M 

42 EU/US CEUUS CEUUS Ratio €/$ M 

43 US Gross Domestic Product GDPUS q/q Q 

44 EU Gross Domestic Product GDPEU q/q Q 

Note: In the columns, the series: number (N), country (C), description (Definition), label (L), measure unit (MU), and 

frequency (F) that is quarterly (Q) or monthly (M). 

In our dataset, the 2009 financial crisis and the COVID-19 pandemic generated outliers in many 

time series. For example, a graphical inspection of the US unemployment rate series reveals the 

dramatic impact of COVID-19 pandemic after March 2021 (Figure 1). In presence of outliers, the 
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researcher can choose to trim the data, that is to reduce or eliminate the outliers and to run inference 

on a linear model overcoming the inference issues (such as bias) that the outliers can generate. Data 

trimming requires outliers are detected first. To detect the presence of the outliers, a standard procedure 

consists in fitting the linear regression model: 

 𝑌 = 𝑋𝛽 + 𝜀 (21) 

By Least Squares and recovering the hat matrix 𝐻 from the fitted value of Y: 

 𝑌̂ = 𝑋𝛽̂ = 𝑋(𝑋′𝑋)−1𝑋′𝑌 = 𝐻𝑌 (22) 

 

Figure 1. The US Unemployment rate (in percentage) from December 2001 to January 2021. 

The hat matrix 𝐻 is a symmetrical and idempotent T x T projection matrix; it has n eigenvalues 

equal to one and T-n equal to zero. The diagonal elements ℎ𝑡,𝑡 have the following property: 

 0 ≤ ℎ𝑡,𝑡 ≤ 1, 𝑡 = 1, … , 𝑇 (23) 

Points where ℎ𝑡,𝑡  have large values are called leverage points, and it can be proved that the 

presence of leverage points signals that there are observations that might have a decisive influence on 

the estimation of the regression parameters. We consider the leverage points as a proxy for the quick 

survey of presence of the outliers. We can see in Figure 2 the greater values of ℎ𝑡,𝑡 is detected for the 

2009 crisis and COVID-19 pandemic. 
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Figure 2. Outliers’ detection. The Hat matrix diagonal values for the US Unemployment 

rate from December 2001 to January 2021. 

4.2. Factor Analysis 

The factors have been extracted from the monthly variables using three FM methodologies (FM 

Std, FM FMCD, and FM IRLS), and then they supply the forecast using a VAR model as described in 

Section 3.4. As regards to the quarterly variables we follow a nowcasting procedure. First, we derive 

the regression coefficients of the quarterly variables on the nowcasted factors and secondly, we use the 

coefficients and the forecasted factors to forecast the quarterly variables. 

We analyze the stability of the factors and the percentage of explained variance. We follow a 

rolling window estimation approach and analyze the out-of-sample forecast ability of the FM with a 

twelve-months horizon. There are 61 overlapping windows of 170 observations each. The first window 

is from December 2001 to January 2016, the second shift is one month from January 2002 to February 

2016, and the 61st is from December 2006 to January 2021. See Figure 3 for a graphical illustration of 

the procedure (see Figure 3). 

In our empirical applications, the 𝑘 factors are used to forecast the variables of interest, which 

are the Unemployment rate and the Harmonized Index of Consumer Prices (HCPI); with nowcasting 

procedure we produce the forecast also for GDP. Our choice is to explain a given proportion of variance 

𝑉𝑘 < 1 in Eq. (6) with a reduced number of factors in order to limit the dimension of forecast model 

(i.e., the VAR model). For example, in our application we choose to explain at least 80% of the variance, 

𝑉𝑘 = 0.8, with no more than 9 factors. 

Figure 4 reports the values of the leverage point ℎ𝑡,𝑡 estimated from the panel series in some 

relevant windows (see plot labels). The value of ℎ𝑡,𝑡 increases slowly in the observation windows 

where the 2009 crisis is included (e.g., see plots w1, w19, w31, and w43). When the observations 

associated to the COVID-19 pandemic period are included in the samples, then ℎ𝑡,𝑡 reaches much 

larger values, about 1 (see w51, w52, w53, and w58). A double peak appeared in the window w61 

due to the second wave in the CODIV-19 pandemic. 
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In conclusion, we consider COVID-19 as the greater cause of outliers that the researchers are 

facing. For this reason, we choose a percentage of 𝑟 = 0.95𝑇 for the values to be saved in FMCD 

algorithm. 

 

Figure 3. Rolling windows. The window size is 170 observations. We consider 61 

overlapping windows. The first window is from December 2001 to January 2016 (second 

line), the second window is from January 2002 to February 2016 (third line), and the last 

is from December 2012 to January 2021 (last line). The green segments identify the data 

used to produce the factors and the forecast. The forecast’s horizon is twelve months and 

is identified by the orange. Segments. The red segments indicate the 2009 crise and the 

COVID-19 pandemic. 
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Figure 4. Leverage points ht,t for some relevant windows. 

Figure 5 shows the eigenvalues (left column) and the contribution of the first 9 factors (right) to 

the variance for the three FMs. The graphs refer to the data of the last window in Figure 3. The scale 

of the eigenvalues differs across models since the weights used in FMCD and IRLS have different size. 

The decay rate of the spectrum is similar across models, and this indicates small number of factors 

explain a large proportion of variance. The FM FMCD and FM IRLS models intercept a smaller 

proportion of variance than in the FM Std case. 

The green lines in Figure 6 shows the weights used in the FMCD (left) and IRLS (right). Setting 

𝑟 = 0.95𝑇 yields weight equal to one for all windows expect for the COVID-19 pandemic windows 

where the weight is equal to zero. For the IRLS the weights are strictly positive for all estimation 
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windows and below one. The two weight sequences have different impact on the extraction of the 

factors (e.g., see the first factor in the same figure and the three factors in Figure 7). 

The FM Std model factors exhibit at least 2 peaks corresponding to the 2009 crisis and COVID-

19 pandemics windows. In the robust FM procedures, the weight sequences reduce substantially the 

effects of the two sources of outliers. 

 

Figure 5. Eigenvalues (left) and contribution of the factors (right) for the FM Std (top), 

FM FMCD (middle) and FM IRLS (bottom). 
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Figure 6. Factor 1 extracted with the FM Std (magenta line), the FM FMCD (left, blue 

line) and FM IRLS (right, blue line), and the weights used (green line). Due to the 

configuration of the weights, the amplitude of the peak associated with the pandemics (see 

top plot in Figure 7) is reduced in the FM FMCD model, whereas both peaks are largely 

reduced in the IRLS model. 

In Table 2, we illustrate the bias issues induced by the presence of outliers, by comparing the 

correlation between the variables in the dataset (columns) and the first factor of the three models (rows), 

estimated in the last windows (w61). The first factor in the three models explains the 26%, 23%, and 

20% of the variance, respectively. The set of the most correlated variables in the standard FM model 

differs from the one of the FM FMCD and FM IRLS models, which indicates that the bias in the 

estimation of the factor can be large in the FM models if the outliers are not treated properly. 

Table 2. The 10 most correlated variables with the first factors for the three methodologies 

in the 61st (December 2006–January 2021) window. 

FM Std: Correlations between Factors 1 and Variables. 

Country USA USA EU USA EU USA USA EU USA EU 

Indicator EP EA Ex Ex RS Ahw Er Im IP LeIn 

Measure thousands thousands m/m m/m y/y m/m m/m m/m y/y level 

Factor 1 w61 0.835 0.835 0.798 0.785 0.726 –0,724 0.721 0.708 0.686 0.669 

FM FMCD: Correlations between Factors 1 and Variables. 

Country USA EU EU EU EU USA USA USA USA EU 

Indicator PPI PMImI ESI LeIn IP Stocks PCE ISMm Upc PPI 

Measure y/y level level level y/y m/m y/y level % y/y 

Factor 1 w61 –0.847 –0.762 –0.759 –0.730 –0.728 –0.708 –0.707 –0.680 –0.668 –0.600 

FM IRLS: Correlations between Factors 1 and Variables. 

Country EU USA EU USA EU EU USA USA USA EU 

Indicator LeIn PPI ESI Upc IP PPI PCE Stocks PCEc PMImI 

Measure level y/y level % y/y y/y y/y m/m y/y level 

Factor 1 w61 –0.877 –0.852 –0.840 –0.796 –0.794 –0.722 –0.708 –0.674 –0.666 –0.623 



181 

National Accounting Review  Volume 4, Issue 2, 167–190. 

 

Figure 7. The first three factors (blue line), their out-of-sample forecasts (magenta solid 

lines) with the confidence bands (magenta dashed lines), for the FM Std (top), FM FMCD 

(middle) and FM IRLS (bottom). 
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FM FMCD and FM IRLS share 9 common variables, and the correlation levels are similar in the 

two models; the result indicates that the choice of the weights can have an impact on the results, but 

the economic interpretation of the factors is not affected too much. 

4.3. Forecast comparison 

We use the rolling window analysis introduced in the previous section for comparing the three 

models: FM Std, FM FMCD and FM IRLS. For each window, the models produce 12 forecasts out of 

sample (see Figure 3). We measure and compare sequentially the ability of the models to forecast the 

following variables: GDP, Unemployment rate, as well as PCE for both the EU and the US regions. 

For every window, we determine the factors and compute the forecast at the horizon of 12 months 

for the monthly variables and 4 quarters for the quarterly variables. The rolling window of 170 

observations is moved forward by one month, and the forecasts are computed again. We repeat this 

exercise 61 times until the end date of the observation window coincides with January 2021. 

For every series, compute the square of the difference between the forecast and the actual values, 

sum the squared differences, divide them by the total number of forecast points, and take a square root 

to obtain the Root Mean Square Error (RMSE). Let 𝑠𝑡 be the forecast horizon at time 𝑡 for monthly 

data. In our application, it is equal to 12 for all 𝑡 except when the end of the window is close to 

January 2021, when the horizon decreases. Moreover, let 𝑇𝐸𝑝 = 61 be the number of forecasts for 

each one of the 𝑠𝑡 months. 

At time t, we have the following error for every forecast (we omit here the identification of 

the variable): 

 𝑒(𝑡) = ∑[𝑓(𝑡 + 𝑖) − 𝑣(𝑡 + 𝑖)]2

𝑠𝑡

𝑖=1

 (24) 

where 𝑓(𝑡 + 𝑖) indicates the forecast for the variable 𝑣(𝑡 + 𝑖). The forecast is made at time 𝑡 with 

forecasting horizon 𝑖. The RMSE is thus defined as follows: 

 𝑅𝑀𝑆𝐸 = √
1

∑ 𝑠𝑡
𝑇𝐸𝑝
𝑡=1

∑ 𝑒(𝑗)

𝑇𝐸𝑝

𝑗=1

 (25) 

As a first step, we show the RMSE value for the first three factors, that intercept more than 52.5%, 

47.8%, 46.7% of the total variance for FM Std, FM FMCD, FM IRLS respectively.  

The left column of Figure 8 shows the actual values of the three factors (solid blue lines, in the 

rows), the 12-step-ahead FM forecasts (dashed lines), and their envelope (solid red lines), which can 

be considered an approximation of the forecasting error bands. The forecast comparison includes the 

COVID-19 pandemic period, but cannot be made for the 2009 crisis one, due to the choice of the 

rolling window size (see Figure 3). Thus, in the following we focus on the forecast ability during the 

COVID-19 period. 

For the first factor, the actual values belong to the envelope region for all periods except for the 

pandemic crisis periods, which reveal the difficulties in predicting the effects of the pandemic events. 

A similar behavior can be detected for the second factor. The middle and right columns in Figure 8 

show the first three factors for FMCD and IRLS methodologies respectively; their behavior is 
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comparable only by graphical point of view, because they have different scale due to the two applied 

algorithms. Figure 9 shows the forecasts and the RMSEs for our variables of interest and for the three 

methodologies: FM Std (left column), FM FMCD (middle) and FM IRLS (right). 

By using the envelope (solid red lines) as reference lines, it is possible to compare graphically the 

forecast performance of the models. Since the actual data belong to the area delimited by the envelope 

of the FM FMCD and FM IRLS models, we conclude that they usually perform better than FM Std. 

The lower RMSE level of the FM FMCD and FM IRLS model for both the monthly and quarterly 

variables allows us to confirm this result (see panel (a) in Table 3). 

Table 3. Root Mean Square Error (RMSE) for the variables of interest (rows) following 

different forecasting models (columns). 

Panel a. Cross-horizon overall RMSEs. 

RMSE FM Std FM FMCD FM IRLS 

USA GDP 0.42 0.39 0.36 

USA Unemployment rate 40.06 33.62 33.65 

USA PCE 0.83 0.62 0.49 

EU GDP 0.48 0.41 0.42 

EU Unemployment rate 0.80 0.72 0.70 

EU HCPI 0.98 0.81 0.80 

Panel b. RMSEs at different horizons. 

 1 month ahead 5 months ahead 7 months ahead 12 months ahead 

RMSE FM 

Std 

FM 

FMCD 

FM 

IRLS 

FM 

Std 

FM 

FMCD 

FM 

IRLS 

FM 

Std 

FM 

FMCD 

FM 

IRLS 

FM 

Std 

FM 

FMCD 

FM 

IRLS 

USA Unempl. Rate 3.54 3.11 3.11 33.53 27.06 27.08 56.97 47.31 47.35 4.91 3.61 3.32 

USA PCE 0.49 0.46 0.31 0.79 0.60 0.47 0.82 0.69 0.52 1.05 0.67 0.58 

EU Unempl. rate 0.16 0.15 0.14 0.66 0.62 0.65 0.80 0.75 0.68 1.29 1.38 0.98 

EU HCPI 0.51 0.49 0.45 0.91 0.79 0.74 1.00 0.87 0.82 1.25 1.06 1.05 

The effect of outliers on the most impacted variables propagates to the forecast of the other 

variables through the factors, which can explain the bad performance of the standard FM model. The 

variables of interest that are the most difficult to predict are the GDPs and the Unemployment rate. 

Their values have been most affected by the crisis. On the other hand, prices maintain good 

predictability for both regions because this variable was not heavily penalized by the crisis. The impact 

of outliers can be reduced in the FM FMCD and FM IRLS models, nevertheless, for the US 

Unemployment Rate, the effects of COVID-19 on the forecasting performances have been disruptive 

for all the three methodologies. 
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Figure 8. In the rows, the first three factors FM Std (left), FM FMDC (middle) and FM IRLS (right). In each plot, the actual value of 

the factor (blue solid), the forecasts (red dashed) and the forecast envelop (red solid). 
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Figure 9. In the rows, the variables forecasted with the FM Std (left), FM FMDC (middle) and FM IRLS (right) model. In each plot, 

the actual value of the variable (blue solid), the forecasts (red dashed) and the forecast envelop (red solid). 
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In Table 3(b) we can see that RMSE of the 12-month-ahead forecast for USA Unemployment 

Rate is smaller than one of the forecasts at 5 and 7 months ahead. This is mainly due to the error 

magnitude of forecast done in April 2020. This forecast exercise includes in its horizon the first sample 

impacted by the COVID-19 and has a very large forecast error. Since the dataset ends in January 2021, 

the forecast horizon 𝑠𝑡 in this exercise is 9 months (see Figure 3); which implies that for this forecast 

it is possible to measure the errors at 1, 5, 7 months but not at 12. 

Finally, following the guidelines provided by Eurostat (2020) on modelling outliers due to 

COVID-19, we monitor sequentially the forecasting errors. The RMSEs for the one-, two-, seven- and 

twelve-step-ahead forecasts of the three methodologies indicate that the FM FMCD and FM IRLS 

models have better performances than the FM Std model at all the horizons (see Figures 10, 11 and 12 

in Appendix). The numerical results in the panel (b) of Table 3 suggest the FM IRLS model has superior 

forecasting ability at all horizons. 

The bottom line from this section is the following: 

• the sample observations during the 2009 crisis and the 2020 COVID-19 pandemic heavily 

affect factor estimates obtained with the standard procedure; 

• consequently, standard factor models can produce significant forecasting errors in the 

presence of outliers, whereas robust models perform better; 

• the variables most impacted by the 2009 crisis and the pandemic (such as GDP and 

unemployment) exhibit the most significant forecast errors in all estimation procedures; 

• the sequential forecasting comparison between MCD and IRLS showed that the latter 

approach usually leads to superior forecasting performances. 

5. Conclusions 

Outliers can have disruptive effects on inference, biasing the estimates and the conclusion of the 

statistical analysis. Through the lens of factor models we provide evidence of the effects of outliers 

due to the 2009 crisis and the COVID-19 pandemic on the forecast abilities of the models. We applied 

two techniques for robust factor estimation based on robust covariance matrix estimators. The robust 

methodologies that we chose have the advantage of avoiding data deletion or manipulation. We 

compare the standard factor estimation with the robust estimation approaches for an extended period 

and on a set of relevant variables. The choice to include the COVID-19 pandemic period in the 

estimation and forecasting exercises has the scope to highlight the relevance of handling outliers in 

periods of large shocks to the world’s economies. We show that robust estimation can reduce outliers’ 

influence and produce good forecasts. 
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