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Abstract: Outliers can cause significant errors in forecasting, and it is essential to reduce their impact
without losing the information they store. Information loss naturally arises if observations are dropped
from the dataset. Thus, two alternative procedures are considered here: the Fast Minimum Covariance
Determinant and the Iteratively Reweighted Least Squares. The procedures are used to estimate factor
models robust to outliers, and a comparison of the forecast abilities of the robust approaches is carried
out on a large dataset widely used in economics. The dataset includes observations relative to the 2009
crisis and the COVID-19 pandemic, some of which can be considered outliers. The comparison is
carried out at different sampling frequencies and horizons, in-sample and out-of-sample, on relevant
variables such as GDP, Unemployment Rate, and Prices for both the US and the EU.
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1. Introduction

The increased availability of a large amount of data allows researchers to model and forecast more
accurately in many fields (e.g., see Choi and Varian, 2012; Varian, 2014; Varian and Scott, 2014; Einav
and Levin, 2014). However, the main issues when dealing with high-dimensional models for large
datasets are over-parametrization, over-fitting, and high out-of-sample forecasting errors (Granger,
1998). Various solutions have been proposed, such as regularization (Zou and Hastie, 2005), stochastic
search variable selection (George et al., 2008), graphical models (Ahelgebey et al., 2016a, 2016b), and
random projections (Koop et al., 2017; Casarin and Veggente, 2021). This paper considers factor
models (Stock and Watson, 2002, 2004, 2005, 2012, 2014; Banbura et al., 2010; Casarin et al, 2020;
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Billio et al., 2022). Relevant information is summarized through a limited number of factors,
describing the overall economic conditions and providing accurate forecasts of the variables of interest.

It has been proved, that factor model estimates can be heavily affected by outliers: data points
that differ significantly from other observations in the sample. An outlier may be due to variability in
the measurement or significant experimental errors; the latter are sometimes excluded from the data
set. After the 2009 crisis and the COVID-19 pandemic event, the treatment of outliers attracted the
attention of both researchers and the institutes of official statistics, which provided some guidelines on
monitoring the effects of outliers when using their data (e.g., see Eurostat, 2020). In this paper we
follow Artis et al. (2005), Croux et al. (2003), Bai et al. (2022), Fan et al. (2021) and apply robust
estimation methods to factor models to limit the effects of the outliers. We contribute to the robust
factor literature by comparing alternative robust factor models in terms of forecasting performances
on a set of variables which are central to the economic analysis. Our database includes the 2009 crisis
and the beginning of COVID-19 pandemic in March 2020 and consider as a last data January 2021;
the pandemic is potentially the most important source of outliers, and its effects on the economic
systems have been extensively investigated in some recent studies (Fabeil et al., 2020; Fernandes, 2020;
McKibbin and Vines, 2020; McKibbin and Roshen, 2021; Liu, 2021). We shall notice that the amount
of sample information is not large enough to estimate forecasting models with structural breaks since
adopting them implies that the current model is estimated only using data observed since the most
recent break. Similarly, it is not possible to test for a break and compare the two models for the period
before and after the pandemic since the spread of contagion and its effects did not yet come to an end.
This paper provides an alternative solution and shows that samples from the pandemic period have
some information content which can still be used to estimate models without breaks provided a proper
inference technique, such as robust inference for outliers, is applied.

The structure of the paper is as follows. Section 2 presents some background on robust inference
for outliers. Section 3 introduces standard factors model and the two methodologies used to treat the
outliers. Section 4 provides a data description and the empirical results obtained with robust inference
methods for factor models. Section 5 concludes the chapter.

2. Background on robust estimation

The true nature of outliers can be very elusive and dealing with data affected by outliers poses
some challenges. There is no unanimous definition for what an outlier is. Outliers could be atypical
samples that have an unusually large influence on the estimated model parameters. Outliers could also
be perfectly valid samples from the same distribution as the rest of the data that happen to be small-
probability instances. Alternatively, outliers could be samples drawn from a different model, and
therefore they will likely not be consistent with the model derived from the rest of the data. There is
no way to tell which is the case for a particular “outlying” sample point, nevertheless some techniques
can be applied to detect outliers. A standard procedure makes use of the linear projection of the
dependent variable into the linear space of covariates, the hat matrix of the data. The diagonal of the
hat matrix is used to detect outlying observations that may have an impact on the inference. Usually,
outliers are excluded from the dataset when estimating the model (data-trimming). See, for example
Davidson and McKinnon (2004). In this paper, we compare trimming with two alternative approaches.

The first approach is based on Mahalanobis distances and can applied for detection and robust
estimation. We consider robust estimators of multivariate location and scatter computed from the
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explanatory variables. Many methods for estimating multivariate location and scatter break down in
the presence of T/(n + 1) outliers, where T is the number of observations and n is the number of
variables, as was pointed out by Donoho (1982). For the breakdown value of the multivariate F-
estimators of Maronna (1976), see Hampel et al. (1986). In the meantime, several positive breakdown
estimators of multivariate location and scatter have been proposed. The Minimum Covariance
Determinant (MCD), a highly robust estimator of multivariate location and scatter (Rousseeuw, 1984)
which uses only the observations whose covariance matrix has the lowest determinant, was proposed
by Rousseeuw and Leroy (1987). Consistency and asymptotic normality of the MCD estimator has
been shown by Butler et al. (1993) and Cator and Lopuhaa (2010), whereas has been demonstrated
that MVE (Minimum Volume Ellipsoid) has a lower convergence rate (Davies, 1992). The MCD has
a bounded influence function (Croux and Haesbroeck, 1999) and it has the highest possible breakdown
value (i.e., 50%) when the number of observations used is |(T' + n + 1)/2]| (Lopuha and Rousseeuw,
1991). In addition to being highly resistant to outliers, the MCD is affine equivariant, i.e., the estimates
behave properly under affine transformations of the data. Although the MCD was already introduced
in 1984, its practical use only became feasible since the introduction of the computationally efficient
Fast MCD (FMCD) algorithm of Rousseeuw and Van Driessen (1999), and some extensions have been
determined (Hubert et al., 2017); in this paper we follow FMCD technique. MCD have been
successfully applied in many fields such as finance and econometrics (Gambacciani & Paolella, 2017,
Orhan et al., 2001), quality control (Jensen et al., 2007), geophysics (Neykov, et al., 2007),
geochemistry (Filzmoser et al., 2005), image analysis (Vogler et al., 2007). MCD has been used for
robust factor model estimation by Croux et al. (2003) and Filzmoser et al. (2003).

The second approach considered, is the Iteratively Reweighted Least Squares (IRLS) proposed in
(De la Torre and Black, 2004), which relies on the residuals of the linear projection of the dependent
variable on a space generated by a set of factors. The outliers are detected as those that have a large
residual with respect to the identified subspace. A new subspace is estimated with the outliers
downweighted, and this process is then repeated until the estimated model stabilizes. With this
algorithm for every multivariate sample a weight is determined iteratively, reducing the weights related
to the outliers until the procedure converge. This technique has been used for outliers’ reduction,
(Bergstrom and Edlund, 2014), outliers afflicted observations (Kargoll et al., 2018) and in forecasting
(Mbamalu et al., 1993). Other applications are statistical estimation (Green, 1984), matrix rank
minimization (Mohan and Fazel, 2012), and sparse matrix (Daubechies et al., 2009).

3. Factor models

In the following, we introduce Factor Models (FM), data trimming and three approaches to outlier
handling: 1) standard FM (FM Std) where all data are included without any transformation; ii) Fast
Minimum Covariance Determinant methodology combined with FM (FM FMCD) and iii) Iterated
Reweighted Least Squares combined with Factors Model (FM IRLS).

In the empirical analysis, a Vector Autoregressive (VAR) model is used for predicting the factors,
and according to Liitkepohl (2005), series without unit roots should be used when forecasting with
VARs. To meet this requirement for the factors, we perform a unit root ADF test on all variables included
in the factor analysis. If necessary, variables have been differentiated to obtain a stationary time series;
after this step, we normalize the series and extract the factors. Thus, in the following we assume our
T X n data matrix X is covariance stationary with null mean and unitary standard deviation.
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3.1. A standard factor model
3.1.1.  Subheading

In this paper we use factor models, (see, e.g., Stock and Watson, 2002, 2004, 2005, 2012, 2014;
Banbura et al., 2010; Banbura et al., 2014; Artis et al., 2005), with reduced number of factors (Bai and
Ng, 2002). See Diebold (2003) and Stock and Watson (2009) for review of factor models.

Let X;, £>0, be a random process with X; = (X1, ..., Xp:)" @ (n X 1) random vector. The time
index t represents months or quarters, and we assume the process is covariance stationary with null
mean and a standard deviation equal to one. Latent factors extraction relies on the following
decomposition:

E[XtXt']ai = ani = /L-ai, (1)

where a; and A;, i = 1,...,n, are the n-dimensional eigenvectors and the eigenvalues in decreasing
order, respectively. Let A be an (n X n) orthonormal matrix with the normalized eigenvectors in the
columns, also called factor loading matrix, then:

I A = AA, (2)

where A is a diagonal matrix with elements A;, i = 1, ...,n, on the main diagonal. The vector of n
factors F, ¢ = (fie ., fne)' is given by the linear transformation:

Fpe = A'X,, (3)

And fi;, t > 0 isthe k-thfactor. Letus denote with I}, the expectation of the external product
of the factor, E [Fn’tF,’l_t] ; then one obtains the following relationship between I, and the eigenvector
matrix A:

I, = E[A'X. X{A] = A'E[X.X[]A = A'TxA = A. (4)
Let Frr = (fue, - fre)'  be the collection of the first & factors at time ¢, with k < n, then:
Fir = AX,, (5)

where Aj, is the matrix containing the first £ columns of A. Since the columns of A are orthogonal,
then AjA; = Ii. The first k factors capture the following proportion of the total variance:

k n
=y uf Y ©
i=1 i=1
The collection of factors Fy . is customarily called standard FM (FM Std).
3.2. A robust factor model: the fast minimum covariance determinant estimator
In n-variate data, n>2, it is difficult to detect outliers because one can no longer rely on visual

inspection, nevertheless a set of summary statistics can be used. One of the statistics used in the
literature is the Mahalanobis distance:
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D ,5) = Dy = G~ ' 5-1x, = ), ™)

where x, is the t-th row of the data matrix X, 4 is the estimator of the location, and ¥ is the
covariance matrix estimator. Using this distance, one obtains the classical tolerance ellipse defined as
the set of n-dimensional points x;,t = 1,...,T. Detecting outliers by means of the Mahalanobis
distance no longer suffices for multiple outliers because of the masking effect, by which multiple
outliers do not necessarily have large Mahalanobis distances (Hubert ET AL., 2017). We consider a
robust estimator of multivariate location and scatter base on the notion of Minimum Covariance
Determinant (MCD) (Rousseeuw, 1984; Rousseeuw and Leroy, 1987; Hubert et al., 2017). In the MCD
only the r observations, [(T +n+ 1)/2] < r < T, whose classical covariance matrix has the lowest
determinant are considered in the computation of the Mahalanobis distance:

5

RD (xtr/jMCDrfMCD) = \/(xt - ﬁMCD)'f&éD (x¢ — fimcp) (8)

where fiycp and £4cp are the MCD estimator of the mean and the covariance matrix respectively
defined as follow:

n = W(dDxe 1 2 . R /
Upmep = W;ZMCD =G ?Z W(dg) (e — fimep) (¢ — Amep) )

T
t=1

Where W (d?) is an appropriate weight function and ¢, is a consistency factor (e.g., see Lopulhaa
and Rousseuw, 1991). Note that the MCD estimator can only be computed when r>n, otherwise the
covariance matrix of any r-subset has determinant 0, so we need at least 7>2n. To avoid excessive
noise, it is recommended that 7> 5n, so that we have at least five observations per dimension.

The MCD estimator is computationally expensive as it requires the evaluation of (D subsets of

size r and for this reason we use the Fast Minimum Covariance Determinant estimator (FMCD) of
Rousseeuw and Van Driessen (1999). A major component of the FMCD algorithm is the concentration
step, C-step, which works as follows. Given the initial estimates fi,;; and 5,4

« Compute the distances dy1q(t) = D(x¢, Aoitr Zo1a), t =1,...,T.
* Sort these distances and yield a permutation 7 such that:

dold(r(l)) < dold(T(Z)) < < dold(r(n)) and set H = {r(1),7(2), ..., t(r)}.

» Compute location and scale estimators:

1 o 1 . . ,
Hnew = ;Z Xt)  Znew = :zoct — Anew) (Xt — Anew) (10)

teH teH

In Theorem 1 of Rousseuw and Van Driessen (1999) it is proved that det(inew) < det(fold), with
equality only if %,,,,, = £,,4. Thus, if we iterate the C-step, the sequence of determinants obtained in this
way converges in a finite number of iterations. The FMCD algorithm supplies a sequence of weights, one
or zero (zero for the outliers), that has length T, and we repeat this sequence for #» column to obtain the
matrix Hy-p with dimension T X n. We multiply the data matrix X by Hycp:

Hycp OX= Xmcp (11)
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where O denotes the Hadamard’s product. We use Xy cp to extract the factors (Croux et al., 2003;
Pison et al., 2003) Fj ;, as described in Section 3.1 and obtain the model FM FMCD. In this paper we
set r = 0.95T.

3.3. A robust factor model: the iterated reweighted least squares estimator

The Maximum-Likelihood-Type Estimator (M-Estimator) is another popular robust method for
estimating the location and scale of a set of points, and its application leads to the Iterated Reweighted
Least Squares (IRLS) (Bergstrom et al., 2014; Daubechies et al., 2009). Define the residual as follows:

& = ”xt - Aka,t”2 (12)

where A4, and F,, have been defined in Section 3.1, and ||-]|, is the Euclidean norm for vectors.
IRLS assumes continuous weights as a function of the residual:
p(er)

We="0 (13)

For some given robust loss function p(-) from the set of the real to the positive reals. The objective

function then becomes:
T
> ote 09
t=1

Many loss functions have been proposed in the statistics literature (Huber 1981; Barnett and Lewis
1984). When p(e,) = €2, all weights are equal to 1, and we obtain the standard least-squares solution,
which is not robust. Other robust loss functions are described in Vidal et al. (2016), in this work we
use a Geman-McClure loss (Geman and McClure, 1987):

2

p(e) = (15)

&2 +¢2
where €2 is a parameter that we consider equal to the square root of mean of &2. Following De la
Torre and Blank (2004), we use a Geman-McClure loss scaled by &2 which yields the following
procedure. Given an initial parameter £§ and factor loadings and factors, Ay and Fy ., respectively,
obtained from the FM Std of Section 3.1, iterate until convergence the following steps:

1. Compute the residuals & = ||xt - A"Fk'tnz'

£8

2 2°
80+£t

2. Compute the weights w, =

T !
V=1 WeXeXt

3. Estimate the covariance X « == .
Lt=1Wt

4. Extract the first k largest eigenvalues of 2 and collect the corresponding eigenvectors in Ay,.
The factor matrix F . obtained as above is called FM IRLS.
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3.4. A forecasting model

Once factors are extracted a forecasting procedure is needed to predict the variables of interest.
We assume the first k latent factors (determined with the three methodologies described above),
Fir = (fuer - fre)'s with k < n, follow a VAR model. Using only k factors, the reconstruction of
the variables derives from the approximated model:

Xk,t = Aka,t (16)

With the term X, ; we mean the approximation of the vector X; obtained using the firstk factors
Fy . Considering the dynamic part related to the k factors, our model is thus as follows:

Xk,t = Aka,t (17)

Fir =+ PpFpr—1 + &xrs Exe WN(O, Zy) (18)

where ¢, has dimension k x / and @, has dimensions & x k. As shown in Billio et al. (2022), under
VAR assumption for the factors, the variables of interest X, follow a VAR model with restrictions.
Thus, the conditional forecasts Xj .4p at the horizon h, h = 1,...,H are obtained as follows:

Xirne = APy ringe (19)

where:
Fk,t+h|t = E|FirsnlX1, . Xe| = ¢ + (pkﬁk,t+h—1|t (20)

To summarize, we first estimate the latent factors and then use a VAR model on factors to
forecast both the factors and the variables of interest. After then, the variables will be reconverted to
their correct values reversing the procedures of normalization and integrated if they have been
previously differentiated.

4. Empirical applications
4.1. Data description

We consider a dataset of macroeconomic variables related to the US and the EU economies,
provided by Bloomberg. It consists of 42 monthly variables and 2 quarterly variables, sampled from
December 2001 to January 2021, and includes some key variables for policy making: core and headline
prices, labour market variables, imports, exports, industrial production, consumption, sales, leading
indicators of interest rates, and the term structure. See Table 1 for a more detailed description.

Table 1. Macroeconomic variables for two major geographical regions, the US and EU,
sampled either at monthly or quarterly frequency from December 2001 to January 2021.

N C Definition L MU F

1 Us Export Ex m/m M
2 US Import Im m/m M
3 US Unemployment rate UR % M

Continued on next page
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N C Definition L MU F

4 US Employment (Agricultural sector) EA thousands M
5 US Employment (Private sector) EP thousands M
6 US Average hourly wages Ahw m/m M
7 US PCE PCE yly M
8 UsS PCE core PCEc yly M
9 US PPI PPI yly M
10 US Industrial Production 1P yly M
11 US Industrial Orders 10 m/m M
12 US Durable goods orders Dgo m/m M
13 US Durable goods orders excluding transport Dgoet m/m M
14 US Stocks S m/m M
15 US Use of production capacity Upc % M
16 US ISM manufacturing ISMm level M
17 US Start of new construction sites Snc m/m M
18 US Constructions expenditure Cse m/m M
19 US Existing homes sale Ehs m/m M
20 US New homes sale Nhs m/m M
21 US Expenditure (real) Er m/m M
22 US Income (real) Ir m/m M
23 US Retail sales RS m/m M
24 US Conference Board CB level M
25 US Michigan Consumer Sentiment Index MCSI level M
26 US RUSI10 (Int.Rate Gov.Bond 10Y US) RUSI10 Yield M
27 US DeltaRUS72 (=RUS7-RUS2) DRUS72 Yield M
28 EU Export Ex m/m M
29 EU Import Im m/m M
30 EU Unemployment rate UR % M
31 EU HCPI HCPI yly M
32 EU CPI core CPIc yly M
33 EU PPI PPI yly M
34 EU Industrial Production IP vy M
35 EU Constructions expenditure Cse m/m M
36 EU PMI manufacturing index PMImI level M
37 EU ESI ESI level M
38 EU Leading indicator Leln level M
39 EU Retail Sales RS vy M
40 EU REMUI10 (Int.Rate Gov.Bond 10Y EU) REMU10 Yield M
41 EU DeltaREMU72 (=REMU7-REMU2) DREMU72 Yield M
42  EU/US CEUUS CEUUS Ratio €/$ M
43 US Gross Domestic Product GDPUS q/q Q
44 EU Gross Domestic Product GDPEU q/q Q

Note: In the columns, the series: number (N), country (C), description (Definition), label (L), measure unit (MU), and

frequency (F) that is quarterly (Q) or monthly (M).
In our dataset, the 2009 financial crisis and the COVID-19 pandemic generated outliers in many
time series. For example, a graphical inspection of the US unemployment rate series reveals the

dramatic impact of COVID-19 pandemic after March 2021 (Figure 1). In presence of outliers, the
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researcher can choose to trim the data, that is to reduce or eliminate the outliers and to run inference
on a linear model overcoming the inference issues (such as bias) that the outliers can generate. Data
trimming requires outliers are detected first. To detect the presence of the outliers, a standard procedure
consists in fitting the linear regression model:

Y=XB+¢ (21)
By Least Squares and recovering the hat matrix H from the fitted value of Y:

Y =XB=XX'X)"'X'Y = HY (22)

1 USA Unemployment rate%

14

12

2
0’\'01

® P
N M o

Figure 1. The US Unemployment rate (in percentage) from December 2001 to January 2021.

The hat matrix H is a symmetrical and idempotent 7 x T projection matrix; it has n eigenvalues
equal to one and 7T-n equal to zero. The diagonal elements h;, have the following property:

0<h,<1t=1,.,T (23)

Points where h,, have large values are called leverage points, and it can be proved that the
presence of leverage points signals that there are observations that might have a decisive influence on
the estimation of the regression parameters. We consider the leverage points as a proxy for the quick
survey of presence of the outliers. We can see in Figure 2 the greater values of h.. is detected for the
2009 crisis and COVID-19 pandemic.
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Figure 2. Outliers’ detection. The Hat matrix diagonal values for the US Unemployment
rate from December 2001 to January 2021.

4.2. Factor Analysis

The factors have been extracted from the monthly variables using three FM methodologies (FM
Std, FM FMCD, and FM IRLS), and then they supply the forecast using a VAR model as described in
Section 3.4. As regards to the quarterly variables we follow a nowcasting procedure. First, we derive
the regression coefficients of the quarterly variables on the nowcasted factors and secondly, we use the
coefficients and the forecasted factors to forecast the quarterly variables.

We analyze the stability of the factors and the percentage of explained variance. We follow a
rolling window estimation approach and analyze the out-of-sample forecast ability of the FM with a
twelve-months horizon. There are 61 overlapping windows of 170 observations each. The first window
is from December 2001 to January 2016, the second shift is one month from January 2002 to February
2016, and the 61st is from December 2006 to January 2021. See Figure 3 for a graphical illustration of
the procedure (see Figure 3).

In our empirical applications, the k factors are used to forecast the variables of interest, which
are the Unemployment rate and the Harmonized Index of Consumer Prices (HCPI); with nowcasting
procedure we produce the forecast also for GDP. Our choice is to explain a given proportion of variance
Vi <1 in Eq. (6) with a reduced number of factors in order to limit the dimension of forecast model
(i.e., the VAR model). For example, in our application we choose to explain at least 80% of the variance,
Vi = 0.8, with no more than 9 factors.

Figure 4 reports the values of the leverage point h,, estimated from the panel series in some
relevant windows (see plot labels). The value of h;, increases slowly in the observation windows
where the 2009 crisis is included (e.g., see plots wl, w19, w31, and w43). When the observations
associated to the COVID-19 pandemic period are included in the samples, then h;, reaches much
larger values, about 1 (see w51, w52, w53, and w58). A double peak appeared in the window w61
due to the second wave in the CODIV-19 pandemic.
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In conclusion, we consider COVID-19 as the greater cause of outliers that the researchers are
facing. For this reason, we choose a percentage of r = 0.95T for the values to be saved in FMCD
algorithm.

12/01 230 observation B8~ o121

170 | 12 |

170 | 12 |

170 8l 1 |
170 - R

Figure 3. Rolling windows. The window size is 170 observations. We consider 61
overlapping windows. The first window is from December 2001 to January 2016 (second
line), the second window is from January 2002 to February 2016 (third line), and the last
is from December 2012 to January 2021 (last line). The green segments identify the data
used to produce the factors and the forecast. The forecast’s horizon is twelve months and
is identified by the orange. Segments. The red segments indicate the 2009 crise and the
COVID-19 pandemic.
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Figure 4. Leverage points hy; for some relevant windows.

Figure 5 shows the eigenvalues (left column) and the contribution of the first 9 factors (right) to
the variance for the three FMs. The graphs refer to the data of the last window in Figure 3. The scale
of the eigenvalues differs across models since the weights used in FMCD and IRLS have different size.
The decay rate of the spectrum is similar across models, and this indicates small number of factors
explain a large proportion of variance. The FM FMCD and FM IRLS models intercept a smaller

proportion of variance than in the FM Std case.

The green lines in Figure 6 shows the weights used in the FMCD (left) and IRLS (right). Setting
r = 0.95T yields weight equal to one for all windows expect for the COVID-19 pandemic windows
where the weight is equal to zero. For the IRLS the weights are strictly positive for all estimation

National Accounting Review

Volume 4, Issue 2, 167-190.



179

windows and below one. The two weight sequences have different impact on the extraction of the
factors (e.g., see the first factor in the same figure and the three factors in Figure 7).

The FM Std model factors exhibit at least 2 peaks corresponding to the 2009 crisis and COVID-
19 pandemics windows. In the robust FM procedures, the weight sequences reduce substantially the
effects of the two sources of outliers.
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Figure 5. Eigenvalues (left) and contribution of the factors (right) for the FM Std (top),
FM FMCD (middle) and FM IRLS (bottom).
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Figure 6. Factor 1 extracted with the FM Std (magenta line), the FM FMCD (left, blue
line) and FM IRLS (right, blue line), and the weights used (green line). Due to the
configuration of the weights, the amplitude of the peak associated with the pandemics (see
top plot in Figure 7) is reduced in the FM FMCD model, whereas both peaks are largely

reduced in the IRLS model.

In Table 2, we illustrate the bias issues induced by the presence of outliers, by comparing the
correlation between the variables in the dataset (columns) and the first factor of the three models (rows),
estimated in the last windows (w61). The first factor in the three models explains the 26%, 23%, and
20% of the variance, respectively. The set of the most correlated variables in the standard FM model
differs from the one of the FM FMCD and FM IRLS models, which indicates that the bias in the

estimation of the factor can be large in the FM models if the outliers are not treated properly.

Table 2. The 10 most correlated variables with the first factors for the three methodologies
in the 61st (December 2006—January 2021) window.

FM Std: Correlations between Factors 1 and Variables.

Country USA USA EU USA EU USA USA EU USA EU
Indicator EP EA Ex Ex RS Ahw Er Im IP Leln
Measure thousands  thousands m/m m/m yly m/m m/m m/m  yly level
Factor 1w61  0.835 0.835 0.798 0785 0.726 0,724  0.721 0.708 0.686  0.669
FM FMCD: Correlations between Factors 1 and Variables.

Country USA EU EU EU EU USA USA USA USA EU
Indicator PPI PMImI ESI Leln IP Stocks PCE ISMm  Upc PPI
Measure yly level level level yly m/m yly level % yly
Factor 1w61  -0.847 -0.762 -0.759 -0.730 -0.728 -0.708  -0.707 -0.680 -0.668 -0.600
FM IRLS: Correlations between Factors 1 and Variables.

Country EU USA EU USA EU EU USA USA USA EU
Indicator Leln PPI ESI Upc IP PPI PCE Stocks PCEc PMImI
Measure level yly level % yly yly yly m/m  yly level
Factor Lw6l  -0.877 -0.852 -0.840 -0.796 -0.794 -0.722  -0.708 -0.674 -0.666 -0.623
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Figure 7. The first three factors (blue line), their out-of-sample forecasts (magenta solid
lines) with the confidence bands (magenta dashed lines), for the FM Std (top), FM FMCD
(middle) and FM IRLS (bottom).
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FM FMCD and FM IRLS share 9 common variables, and the correlation levels are similar in the
two models; the result indicates that the choice of the weights can have an impact on the results, but
the economic interpretation of the factors is not affected too much.

4.3. Forecast comparison

We use the rolling window analysis introduced in the previous section for comparing the three
models: FM Std, FM FMCD and FM IRLS. For each window, the models produce 12 forecasts out of
sample (see Figure 3). We measure and compare sequentially the ability of the models to forecast the
following variables: GDP, Unemployment rate, as well as PCE for both the EU and the US regions.

For every window, we determine the factors and compute the forecast at the horizon of 12 months
for the monthly variables and 4 quarters for the quarterly variables. The rolling window of 170
observations is moved forward by one month, and the forecasts are computed again. We repeat this
exercise 61 times until the end date of the observation window coincides with January 2021.

For every series, compute the square of the difference between the forecast and the actual values,
sum the squared differences, divide them by the total number of forecast points, and take a square root
to obtain the Root Mean Square Error (RMSE). Let s; be the forecast horizon at time t for monthly
data. In our application, it is equal to 12 for all t except when the end of the window is close to
January 2021, when the horizon decreases. Moreover, let TEp = 61 be the number of forecasts for
each one of the s; months.

At time t, we have the following error for every forecast (we omit here the identification of
the variable):

St

e(t) = Z[f(t + i) —v(t+ D] (24)

=1

where f(t + i) indicates the forecast for the variable v(t + i). The forecast is made at time t with
forecasting horizon i. The RMSE is thus defined as follows:

TEp

1
=15t 21

As a first step, we show the RMSE value for the first three factors, that intercept more than 52.5%,
47.8%, 46.7% of the total variance for FM Std, FM FMCD, FM IRLS respectively.

The left column of Figure 8 shows the actual values of the three factors (solid blue lines, in the
rows), the 12-step-ahead FM forecasts (dashed lines), and their envelope (solid red lines), which can
be considered an approximation of the forecasting error bands. The forecast comparison includes the
COVID-19 pandemic period, but cannot be made for the 2009 crisis one, due to the choice of the
rolling window size (see Figure 3). Thus, in the following we focus on the forecast ability during the
COVID-19 period.

For the first factor, the actual values belong to the envelope region for all periods except for the
pandemic crisis periods, which reveal the difficulties in predicting the effects of the pandemic events.
A similar behavior can be detected for the second factor. The middle and right columns in Figure 8
show the first three factors for FMCD and IRLS methodologies respectively; their behavior is
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comparable only by graphical point of view, because they have different scale due to the two applied
algorithms. Figure 9 shows the forecasts and the RMSEs for our variables of interest and for the three
methodologies: FM Std (left column), FM FMCD (middle) and FM IRLS (right).

By using the envelope (solid red lines) as reference lines, it is possible to compare graphically the
forecast performance of the models. Since the actual data belong to the area delimited by the envelope
of the FM FMCD and FM IRLS models, we conclude that they usually perform better than FM Std.
The lower RMSE level of the FM FMCD and FM IRLS model for both the monthly and quarterly
variables allows us to confirm this result (see panel (a) in Table 3).

Table 3. Root Mean Square Error (RMSE) for the variables of interest (rows) following
different forecasting models (columns).

Panel a. Cross-horizon overall RMSEs.

RMSE FM Std FM FMCD FM IRLS
USA GDP 0.42 0.39 0.36
USA Unemployment rate 40.06 33.62 33.65
USA PCE 0.83 0.62 0.49

EU GDP 0.48 0.41 0.42

EU Unemployment rate 0.80 0.72 0.70

EU HCPI 0.98 0.81 0.80

Panel b. RMSEs at different horizons.

1 month ahead 5 months ahead 7 months ahead 12 months ahead
RMSE FM FM FM FM FM FM FM FM FM FM FM FM

Std FMCD IRLS Std FMCD IRLS Std FMCD IRLS Std FMCD IRLS
USA Unempl. Rate 3.54  3.11 3.11 33.53 27.06 27.08 5697 4731 4735 491 3.61 3.32
USA PCE 049  0.46 031 079 060 047 082 0.69 052 1.05 0.67 0.58
EU Unempl. rate  0.16  0.15 0.14 0.66 0.62 0.65 080 0.75 0.68 129 1.38 0.98
EU HCPI 0.51 049 045 091 0.79 0.74 1.00 0.87 0.82 1.25 1.06 1.05

The effect of outliers on the most impacted variables propagates to the forecast of the other
variables through the factors, which can explain the bad performance of the standard FM model. The
variables of interest that are the most difficult to predict are the GDPs and the Unemployment rate.
Their values have been most affected by the crisis. On the other hand, prices maintain good
predictability for both regions because this variable was not heavily penalized by the crisis. The impact
of outliers can be reduced in the FM FMCD and FM IRLS models, nevertheless, for the US
Unemployment Rate, the effects of COVID-19 on the forecasting performances have been disruptive
for all the three methodologies.
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Figure 8. In the rows, the first three factors FM Std (left), FM FMDC (middle) and FM IRLS (right). In each plot, the actual value of

the factor (blue solid), the forecasts (red dashed) and the forecast envelop (red solid).
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In Table 3(b) we can see that RMSE of the 12-month-ahead forecast for USA Unemployment
Rate is smaller than one of the forecasts at 5 and 7 months ahead. This is mainly due to the error
magnitude of forecast done in April 2020. This forecast exercise includes in its horizon the first sample
impacted by the COVID-19 and has a very large forecast error. Since the dataset ends in January 2021,
the forecast horizon s, in this exercise is 9 months (see Figure 3); which implies that for this forecast
it is possible to measure the errors at 1, 5, 7 months but not at 12.

Finally, following the guidelines provided by Eurostat (2020) on modelling outliers due to
COVID-19, we monitor sequentially the forecasting errors. The RMSEs for the one-, two-, seven- and
twelve-step-ahead forecasts of the three methodologies indicate that the FM FMCD and FM IRLS
models have better performances than the FM Std model at all the horizons (see Figures 10, 11 and 12
in Appendix). The numerical results in the panel (b) of Table 3 suggest the FM IRLS model has superior
forecasting ability at all horizons.

The bottom line from this section is the following:

» the sample observations during the 2009 crisis and the 2020 COVID-19 pandemic heavily

affect factor estimates obtained with the standard procedure;

» consequently, standard factor models can produce significant forecasting errors in the

presence of outliers, whereas robust models perform better;

* the variables most impacted by the 2009 crisis and the pandemic (such as GDP and

unemployment) exhibit the most significant forecast errors in all estimation procedures;

» the sequential forecasting comparison between MCD and IRLS showed that the latter

approach usually leads to superior forecasting performances.

5. Conclusions

Outliers can have disruptive effects on inference, biasing the estimates and the conclusion of the
statistical analysis. Through the lens of factor models we provide evidence of the effects of outliers
due to the 2009 crisis and the COVID-19 pandemic on the forecast abilities of the models. We applied
two techniques for robust factor estimation based on robust covariance matrix estimators. The robust
methodologies that we chose have the advantage of avoiding data deletion or manipulation. We
compare the standard factor estimation with the robust estimation approaches for an extended period
and on a set of relevant variables. The choice to include the COVID-19 pandemic period in the
estimation and forecasting exercises has the scope to highlight the relevance of handling outliers in
periods of large shocks to the world’s economies. We show that robust estimation can reduce outliers’
influence and produce good forecasts.

Conflict of interest
All authors declare no conflicts of interest in this paper.
References

Ahelgebey DF, Billio M, Casarin R (2016a) Bayesian Graphical Models for Structural Vector
Autoregressive Processes. J Appl Economet 31: 357-386. https://doi.org/10.1002/jae.2443

National Accounting Review Volume 4, Issue 2, 167-190.


https://doi.org/10.1002/jae.2443

187

Ahelgebey DF, Billio M, Casarin R (2016b) Sparse Graphical Vector Autoregression: A Bayesian
Approach. Ann Econ Stat 123: 333-361. https://doi.org/10.15609/annaeconstat2009.123-
124.0333

Artis MJ, Banerjee A, Marcellino M (2005) Factor forecasts for the UK. J Forecasting 28.
https://doi.org/10.1002/for.957

Bai J, Ng S (2002) Determining the number of factors in approximate factor models. Econometrica 70:
191-221. https://doi.org/10.1111/1468-0262.00273

Bai X, Zheng L (2022) Robust factor models for high-dimensional time series and their forecasting.
Commun Stat-Theor M, 1-14. https://doi.org/10.1080/03610926.2022.2033777

Banbura M, Giannone D, Reichlin L (2010) Large Bayesian vector autoregressions. J Appl Economet
25: 71-92. https://doi.org/10.1002/jae.1137

Banbura M, Giannone D, Lenza M (2014) Conditional Forecast and Scenario Analysis with vector
autoregressions for large cross-sections. Available from:
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1733.pdf.

Barnett V, Lewis T (1994) Outliers in Statistical Data. [Int J Forecasting 12.
https://doi.org/10.1002/bimj.4710370219

Bergstrom P, Edlund O (2014) Robust Registration of point sets using Iteratively Reweighted Least
Squares. Comput Optim Appl 58: 543—-561. https://doi.org/10.1007/s10589-014-9643-2

Billio M, Casarin R, Corradin F (2022) Understanding Economic Instability during the Pandemic: A
Factor Model Approach. In Baltagi, B. H., Moscone, F., Tosetti, E., The Economics of COVID-19,
Emerald Publishing. https://doi.org/10.1108/S0573-855520220000296003

Birch J, Jensen W, Woodall WH (2007) High Breakdown Estimation Methods for Phase I Multivariate
Control Charts. Qual Reliab Eng Int 23: 615-629. https://doi.org/10.1002/qre.837

Butler RW, Davies PL, Jhun M (1993) Asymptotic for the Minimum Covariance Estimator. Ann Stat
21: 1385-1400. https://doi.org/10.1214/a0s/1176349264

Casarin R, Corradin F, Ravazzolo F, et al. (2020) A Scoring Rule for Factor and Autoregressive Models
Under Misspecification. Adv Decis Sci 2: 66—103. https://doi.org/10.47654/v24y2020i2p66-103

Casarin R, Veggente V (2021) Random Projection Methods in Economics and Finance. In Petr, H.,
Uddin, M.M., Abedin, M. Z., The Essentials of Machine Learning in Finance and Accounting,
Routledge. https://doi.org/10.4324/9781003037903-6

Cator E, Lopuhaa H (2010) Asymptotic expansion of the minimum covariance determinant estimators,
J Multivariate Anal 101: 2372-2388. https://doi.org/10.1016/j.jmva.2010.06.009

Choi H, Varian H (2012) Predicting the present with Google trends. Econ Rec 88: 2-9.
https://doi.org/10.1111/j.1475-4932.2012.00809.x

Croux C, Haesbroek G (1999) Influence Function and Efficiency of the Minimum Covariance Determinant
Scatter Matrix Estimator. J Multivariate Anal 71: 161-190. https://doi.org/10.1006/jmva.1999.1839

Croux C, Filzmoser P, Rousseeuw J, et al. (2003) Robust factor analysis. J Multivariate Anal 84:
145-172. https://doi.org/10.1016/S0047-259X(02)00007-6

Davidson R, MacKinnon JG (2004) Econometric theory and methods. New York: Oxford University Press.

Davies L (1992) The Asymptotics of Rousseeuw’s Minimum Volume Ellipsoid Estimator. Ann Stat 20:
1828-1843. https://doi.org/10.1214/a0s/1176348891

Daubechies I, DeVore R, Fornasier M, et al. (2009) Iteratively Reweighted Least Squares minimization
for sparse recovery. Wiley Pure App! Math 63: 1-38. https://doi.org/10.1002/cpa.20303

National Accounting Review Volume 4, Issue 2, 167-190.


https://doi.org/10.15609/annaeconstat2009.123-124.0333
https://doi.org/10.15609/annaeconstat2009.123-124.0333
https://doi.org/10.1002/for.957
https://doi.org/10.1111/1468-0262.00273
https://doi.org/10.1080/03610926.2022.2033777
https://doi.org/10.1002/jae.1137
https://www.ecb.europa.eu/pub/pdf/scpwps/ecbwp1733.pdf
https://doi.org/10.1002/bimj.4710370219
https://doi.org/10.1007/s10589-014-9643-2
https://doi.org/10.1108/S0573-855520220000296003
https://doi.org/10.1002/qre.837
https://doi.org/10.1214/aos/1176349264
https://doi.org/10.47654/v24y2020i2p66-103
https://doi.org/10.4324/9781003037903-6
https://doi.org/10.1016/j.jmva.2010.06.009
https://doi.org/10.1111/j.1475-4932.2012.00809.x
https://doi.org/10.1006/jmva.1999.1839
https://doi.org/10.1016/S0047-259X(02)00007-6
https://doi.org/10.1214/aos/1176348891
https://doi.org/10.1002/cpa.20303

188

De la Torre F, Black MJ (2004) A framework for robust subspace learning. Int J Comput Vision 54:
117-142. https://doi.org/10.1023/A:1023709501986

Diebold FX (2003) “Big Data” Dynamic Factor Models for Macroeconomic Measurement and
Forecasting: A Discussion of the Papers by Lucrezia Reichlin and by Mark W. Watson. In
Dewatripont, M, Hansen, L., Turnovsky S., Advances in Economics and Econometrics: Theory
and Applications, Eighth World Congress, Cambridge: Cambridge University Press, 115-122.
https://doi.org/10.1017/CBO9780511610264.005

Donoho DL (1982) Breakdown Properties of Multivariate Location Estimators. Qualifying paper,
Harward University, Boston.

Einav L, Levin J (2014) Economics in the age of big data. Science 346: 715-718.
https://doi.org/10.1126/science.1243089

Eurostat (2020) Guidance on Time Series Treatment in the Context of the COVID-19 Crisis. Available from:
https://ec.europa.eu/eurostat/documents/10186/10693286/Time series treatment guidance.pdf.

Fabeil NF, Langgat J, Pazim KH (2020) The Impact of COVID-19 Pandemic Crisis on
Microenterprises: Entrepreneurs’ Perspective on Business Continuity and recovery Strategy. J
Econ Bus 3: 837-844. https://doi.org/10.31014/ai0r.1992.03.02.241

Fan J, Wang K, Zhong Y, et al. (2021) Robust High-Dimensional Factor Models with Applications to
Statistical Machine Learning. Stat Sci 36: 303—327. https://doi.org/10.1214/20-STS785

Fernandes N (2020) Economic Effects of Coronavirus outbreak (COVID-19) on the world economy.
IESE Business School working paper. https://doi.org/10.2139/ssrn.3557504

Filzmoser P, van Gaans PFM, van Helvoort PJ (2005) Sequential Factor Analysis as a new approach
to multivariate analysis of heterogeneous geochemical datasets: An application to a bulk chemical
characterization of fluvial deposits (Rhine-Meuse delta, The Netherlands). Appl Geochem 20:
2233-2251. https://doi.org/10.1016/j.apgeochem.2005.08.009

Gambacciani M, Paolella MS (2017) Robust Normal mixtures for financial portfolio allocation.
Economet Stat 3: 91-111. https://doi.org/10.1016/j.ecosta.2017.02.003

Geman S, McClure D (1987) Statistical methods for tomographic image reconstruction. Proceedings
of the 46th Session of the ISI, Bulletin of the ISI 52: 5-21.

George EI, Sun D, Ni S (2008) Bayesian stochastic search for VAR model restrictions. J Economet
142: 553-580. https://doi.org/10.1016/j.jeconom.2007.08.017

Goldstein S, Pavlovic V, Stolfi J, et al. (2004) Outlier Rejection in Deformable Model Tracking. 2004
Conference on  Computer Vision and Pattern Recognition  Workshop  19-19.
https://doi.org/10.1109/CVPR.2004.415.

Granger CWIJ (1998) Extracting Information from mega—panels and high frequency data. Stat
Neederlanica 52: 257-272. https://doi.org/10.1111/1467-9574.00084

Green PJ (1984) Iteratively Reweighted Least Squares for Maximum Likelihood Estimation, and some
Robust and resistant Alternatives. J R Stat Soc 46: 149-170. https://doi.org/10.1111/5.2517-
6161.1984.tb01288.x

Hampel FR, Ronchetti EM, Rousseeuw PJ, et al. (1986) Robust Statistics: The Approach Based on
Influence Functions. New York: John Wiley & Sons.

Hubert M, Debruyne M, Rousseeuw PJ (2017) Minimum covariance determinant and extension. Wiley
Computational Statistics, 101002. https://doi.org/10.1002/wics.1421

Hubert M (1981) Robust Statistics. Wiley Series in Probability and Statistics.
https://doi.org/10.1002/0471725250

National Accounting Review Volume 4, Issue 2, 167-190.


https://doi.org/10.1023/A:1023709501986
https://doi.org/10.1126/science.1243089
https://ec.europa.eu/eurostat/documents/10186/10693286/Time_series_treatment_guidance.pdf
https://doi.org/10.31014/aior.1992.03.02.241
https://doi.org/10.1214/20-STS785
https://doi.org/10.2139/ssrn.3557504
https://doi.org/10.1016/j.apgeochem.2005.08.009
https://doi.org/10.1016/j.ecosta.2017.02.003
https://doi.org/10.1016/j.jeconom.2007.08.017
https://doi.org/10.1111/1467-9574.00084
https://doi.org/10.1111/j.2517-6161.1984.tb01288.x
https://doi.org/10.1111/j.2517-6161.1984.tb01288.x
https://doi.org/10.1002/wics.1421
https://doi.org/10.1002/0471725250

189

Kargoll B, Omidalizarandi M, Loth I, et al. (2018) An Iteratively reweighted least squares approach to
adaptive robust adjustment of parameters in linear regression models with autoregressive and t-
distributed deviations. J Geodesy 92: 271-297. https://doi.org/10.1007/s00190-017-1062-6

Koop G, Korobilis D, Pettenuzzo D (2017) Bayesian compressed VARs. J Economet 1:1-30.
https://doi.org/10.1016/j.jeconom.2018.11.009

Liu K (2021) COVID-19 and the Chinese economy: impacts, policy responses and implications. Int
Rev Appl Econ 35: 308-330. https://doi.org/10.1080/02692171.2021.1876641

Lopuhaa H, Rousseeuw P (1991) Breackdown points of affine equivalent estimators of multivariate
location and covariance matrices. Ann Stat 19: 229-248. https://doi.org/10.1214/a0s/1176347978

Litkepohl H (2005) New introduction to multiple time series analysis. Springer Verlag.
https://doi.org/10.1007/978-3-540-27752-1

Maronna R, Zamar R (2002) Robust Estimates of Location and Dispersion for High—dimensional
Datasets. Technometrics 44: 307-317. https://doi.org/10.1198/004017002188618509

Mbamalu GAN, Hawary ME (1993) Load forecasting via suboptimal seasonal autoregressive models
and [Iteratively Reweighted Least Squares. [EEE T Power Syst 8: 343-348.
https://doi.org/10.1109/59.221222

McKibbin W, Vines D (2020) Global macroeconomic cooperation in response to the COVID-19
pandemic: a roadmap for the G20 and the IMF. Oxford Rev Econ Pol 36: S297-S337.
https://doi.org/10.1093/oxrep/graa032

McKibbin W, Roshen F (2021) The global macroeconomics impacts of COVID—-19: seven scenarios.
Asian Econ Pap 20: 1-30. https://doi.org/10.1162/asep _a 00796

Mohan K, Fazel M (2012) Iterative Reweighted Algorithms for Matrix Rank Minimization. J Mach
Learn Res 13: 3441-3473.

Neykov NM, Neytchev PN, Todorov V, et al. (2013) Robust detection of discordant sites in regional
frequency analysis. Water Resour Res 43: W06417. https://doi.org/10.1029/2006 WR 005322
Orhan M, Rousseuw PJ, Zaman A (2001) Econometric applications of high- breakdown regression

techniques. Econ Lett 1: 1-8. https://doi.org/10.1016/S0165-1765(00)00404-3

Rousseuw P (1984) Least Median of Squares Regression. J Am Stat Assoc 79: 871-880.
https://doi.org/10.1080/01621459.1984.10477105

Rousseeuw P, Leroy AM (1987) Robust Regression and Outliers Detection. Wiley Series in Probability
and Statistics. https://doi.org/10.1002/0471725382

Rousseeuw P, Van Driessen K (1999) A Fast Algorithm for the minimum Covariance Determinant
Estimator. Technometrics 41: 212-223. https://doi.org/10.1080/00401706.1999.10485670

Stock JH, Watson WM (2002) Forecasting using principal components from a large number of
predictors. J Am Stat Assoc 97: 1167-1179. https://doi.org/10.1198/016214502388618960

Stock JH, Watson WM (2004) Combination forecasts of output growth in a seven—country data set. J
f Forecasting 23: 405-430. https://doi.org/10.1002/for.928

Stock JH, Watson WM (2005) Implications of dynamic factor models for VAR analysis. Natl Breau
Econ Res. https://doi.org/10.3386/w11467

Stock JH, Watson WM (2009) Forecasting in dynamic factor models subject to structural instability.
The Methodology and Practice of Econometrics. A Festschrift in Honour of David F. Hendry 173:
205. https://doi.org/10.1093/acprot:0s0/9780199237197.001.0001

Stock JH, Watson WM (2012) Disentangling the channels of the 2007-09 recession. Brookings Pap
Eco Ac, 81-156. https://doi.org/10.1353/eca.2012.0005

National Accounting Review Volume 4, Issue 2, 167-190.


https://doi.org/10.1007/s00190-017-1062-6
https://doi.org/10.1016/j.jeconom.2018.11.009
https://doi.org/10.1080/02692171.2021.1876641
https://doi.org/10.1214/aos/1176347978
https://doi.org/10.1007/978-3-540-27752-1
https://doi.org/10.1198/004017002188618509
https://doi.org/10.1109/59.221222
https://doi.org/10.1093/oxrep/graa032
https://doi.org/10.1162/asep_a_00796
https://doi.org/10.1029/2006WR005322
https://doi.org/10.1016/S0165-1765(00)00404-3
https://doi.org/10.1080/01621459.1984.10477105
https://doi.org/10.1002/0471725382
https://doi.org/10.1080/00401706.1999.10485670
https://doi.org/10.1198/016214502388618960
https://doi.org/10.1002/for.928
https://doi.org/10.3386/w11467
https://doi.org/10.1093/acprof:oso/9780199237197.001.0001
https://doi.org/10.1353/eca.2012.0005

190

Stock JH, Watson WM (2014) Estimating turning points using large data sets. J Economet 178: 368-381.
https://doi.org/10.1016/j.jeconom.2013.08.034

Varian H (2014) Machine Learning: New tricks for econometrics. J Econ Perspect 28: 3-28.
https://doi.org/10.1257/jep.28.2.3

Varian H, Scott S (2014) Predicting the present with Bayesian structural time series. International J
Math Model Numer Optim 5: 4-23. https://doi.org/10.1504/IIMMNO.2014.059942

Vidal R, Ma Y, Sastry SS (2016) Generalized Principal Component Analysis, Springer Verlag.
https://doi.org/10.1007/978-0-387-87811-9

Zou H, Hastie T (2005) Regularization and variable selection via the elastic-net. J R Stat Soc B 67:
301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

+ © 2022 the Author(s), licensee AIMS Press. This is an open access
AaivMs AIMS Press article distributed under the terms of the Creative Commons
> Attribution License (http://creativecommons.org/licenses/by/4.0)

National Accounting Review Volume 4, Issue 2, 167-190.


https://doi.org/10.1016/j.jeconom.2013.08.034
https://doi.org/10.1257/jep.28.2.3
https://doi.org/10.1504/IJMMNO.2014.059942
https://doi.org/10.1007/978-0-387-87811-9
https://doi.org/10.1111/j.1467-9868.2005.00503.x

