Citation: Yunlei Zhan. Large time behavior of a bipolar hydrodynamic model with large data andvacuum[J]. AIMS Mathematics, 2018, 3(1): 56-65. doi: 10.3934/Math.2018.1.56
[1] | Shang Mengmeng . Large time behavior framework for the time-increasing weak solutions of bipolar hydrodynamic model of semiconductors. AIMS Mathematics, 2017, 2(1): 102-110. doi: 10.3934/Math.2017.1.102 |
[2] | Yingying Chen, Lan Huang, Jianwei Yang . Large time behavior of the Euler-Poisson system coupled to a magnetic field. AIMS Mathematics, 2023, 8(5): 11460-11479. doi: 10.3934/math.2023580 |
[3] | Shenghu Xu, Xiaojuan Li . Global behavior of solutions to an SI epidemic model with nonlinear diffusion in heterogeneous environment. AIMS Mathematics, 2022, 7(4): 6779-6791. doi: 10.3934/math.2022377 |
[4] | Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607 |
[5] | Anam Habib, Zareen A. Khan, Nimra Jamil, Muhammad Riaz . A decision-making strategy to combat CO$ _2 $ emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input. AIMS Mathematics, 2023, 8(7): 15092-15128. doi: 10.3934/math.2023771 |
[6] | Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286 |
[7] | Dhuha Saleh Aldhuhayyan, Kholood Mohammad Alsager . Multi-criteria evaluation of tree species for afforestation in arid regions using a hybrid cubic bipolar fuzzy soft rough set framework. AIMS Mathematics, 2025, 10(5): 11813-11841. doi: 10.3934/math.2025534 |
[8] | Xiangqi Zheng . On the extinction of continuous-state branching processes in random environments. AIMS Mathematics, 2021, 6(1): 156-167. doi: 10.3934/math.2021011 |
[9] | Chaohong Pan, Yan Tang, Hongyong Wang . Global stability of traveling waves in monostable stream-population model. AIMS Mathematics, 2024, 9(11): 30745-30760. doi: 10.3934/math.20241485 |
[10] | Rizwan Gul, Muhammad Shabir, Tareq M. Al-shami, M. Hosny . A Comprehensive study on $ (\alpha, \beta) $-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation. AIMS Mathematics, 2023, 8(11): 25888-25921. doi: 10.3934/math.20231320 |
Consider the following Euler-Poisson system for the bipolar hydrodynamical model of semi-conductor devices:
{n1t+j1x=0,j1t+(j21n1+p(n1))x=n1E−j1,n2t+j2x=0,j2t+(j22n2+q(n2))x=−n2E−j2,Ex=n1−n2−D(x), | (1) |
in the region Ω=(0,1)×R+. In this paper, n1(x,t), n2(x,t), j1(x,t), j2(x,t) and E(x,t) represent the electron density, the hole density, the electron current density, the hole current density and the electric field, respectively. In this note, we assume that the p and q satisfy the γ-law:p(n1)=n21 and q(n2)=n22 (γ=2), which denote the pressures of the electrons and the holes. The function D(x), called the doping profile, stands for the density of impurities in semiconductor devices.
For system (1), the initial conditions are
ni(x,0)=ni0(x)≥0,ji(x,0)=ji0(x),i=1,2, | (2) |
and the boundary conditions at x=0 and x=1 are
ji(0,t)=ji(1,t)=0,i=1,2,E(0,t)=0. | (3) |
So, we can get the compatibility condition
ji0(0)=ji0(1)=0,i=1,2. | (4) |
Moreover, in this paper, we assume the doping profile D(x) satisfies
D(x)∈C[0,1] and D∗=supxD(x)≥infxD(x)=D∗. | (5) |
Now, the definition of entropy solution to problem (1)−(4) is given. We consider the locally bounded measurable functions n1(x,t), j1(x,t), n2(x,t), j2(x,t), E(x,t), where E(x,t) is continuous in x, a.e. in t.
Definition 1.1. The vector function (n1,n2,j1,j2,E) is a weak solution of problem (1)−(4), if it satisfies the equation (1) in the distributional sense, verifies the restriction (2) and (3). Furthermore, a weak solution of system (1)−(4) is called an entropy solution if it satisfies the entropy inequality
ηet+qex+j21n1+j22n2−j1E+j2E≤0, | (6) |
in the sense of distribution. And the (ηe,qe) are mechanical entropy-entropy flux pair which satisfy
{ηe(n1,n2,j1,j2)=j212n1+n21+j222n2+n22,qe(n1,n2,j1,j2)=j312n21+2n1j1+j322n22+2n2j2. | (7) |
For bipolar hydrodynamic model, the studies on the existence of solutions and the large time behavior as well as relaxation-time limit have been extensively carried out, for example, see [1][2][3][4][5][6] etc. Now, we make it into a semilinear ODE about the potential and the pressures with the exponent γ=2. We can get the existence, uniqueness and some bounded estimates of the steady solution. Then, using a technical energy method and a entropy dissipation estimate, we present a framework for the large time behavior of bounded weak entropy solutions with vacuum. It is shown that the weak solutions converge to the stationary solutions in L2 norm with exponential decay rate.
The organization of this paper is as follows. In Section 2, the existence, uniqueness and some bounded estimates of stationary solutions are given. we present a framework for the large time behavior of bounded weak entropy solutions with vacuum in Section 3.
In this part, we will prove the existence and uniqueness of steady solution to problem (1)−(4). Moreover, we can obtain some important estimates on the steady solution (N1,N2,E).
The steady equation of (1)−(4) is as following
{J1=J2=0,2N1N1x=N1E,2N2N2x=−N2E,Ex=N1−N2−D(x), | (8) |
and the boundary condition
E(0)=0. | (9) |
We only concern the classical solutions in the region where the density
infxN1>0 and infxN2>0. | (10) |
hold.
Now, we introduce a new variation Φ(x), and make Φ′(x): = E(x). To eliminate the additive constants, we set ∫10Φ(x)dx=0. Then (2.1) turns into
{2N1x=Φx,2N2x=−Φx,Φxx=N1−N2−D(x). | (11) |
Obviously, (11)1 and (11)2 indicate
{N1(x)=12Φ(x)+C1,N2(x)=−12Φ(x)+C2,Φxx(x)=12Φ(x)+C1+12Φ(x)−C2−D(x). | (12) |
where C1 and C2 are two unknown positive constants. To calculate these two constants, we suppose*
*Using the conservation of the total charge: integrating (1)1 and (1)3 from 0 to 1
(∫10nidx)t=−∫10jixdx=0, for i=1,2, |
we see this assumption is right.
∫10(ni(x,0)−Ni(x))dx=0 for i=1,2, | (13) |
then
ˉn1:=∫10n1(x,0)dx=∫10N1(x)dx=∫10(Φ(x)2+C1)dx=C1,ˉn2:=∫10n2(x,0)dx=∫10N2(x)dx=∫10(−Φ(x)2+C2)dx=C2. | (14) |
Substituting (14) into (12)3, we have
Φxx=Φ(x)+ˉn1−ˉn2−D(x). | (15) |
Clearly, we can prove the existence and uniqueness of solutions to (15) with the Neumann boundary condition
Φx(0)=Φx(1)=0. | (16) |
Integrate(15) from x=0 to x=1, we get
ˉn1−ˉn2=∫10D(x)dx. | (17) |
Suppose Φ(x) attains its maximum in x0∈[0,1], then we get Φxx(x0)≤0† and
† If x0∈(0,1), then Φx(x0)=0, Φxx(x0)≤0 clearly. If x0=0 or x0=1, the Taylor expansion
Φ(x)=Φ(x0)+Φ′(x0)(x−x0)+Φ″(x0)2(x−x0)2+o(x−x0)2, |
the boundary condition (16) indicates Φ″(x0)≤0.
Φ(x0)+ˉn1−ˉn2−D(x0)≤0. |
So we get
Φ(x0)≤D∗+ˉn2−ˉn1. | (18) |
Similarly, if Φ attains its minimum in x1∈[0,1], we obtain
Φ(x1)≥D∗+ˉn2−ˉn1. | (19) |
Moreover, from (12),(14),(15),(18), and (19), we have
D∗+ˉn2+ˉn12≤N1(x)≤D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12≤N2(x)≤−D∗+ˉn2+ˉn12, | (20) |
D∗≤(N1−N2)(x)≤D∗ for any x∈[0,1]. | (21) |
Above that, the theorem of existence and uniqueness of steady equation is given.
Theorem 2.1. Assume that (5) holds, then problem (8), (9) has an unique solution (N1,N2,E), such that for any x∈[0,1]
n∗≤N1(x)≤n∗, n∗≤N2(x)≤n∗, | (22) |
and
D∗≤(N1−N2)(x)≤D∗, | (23) |
satisfy, where
n∗:=max{D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12},n∗:=min{D∗+ˉn2+ˉn12,−D∗+ˉn2+ˉn12}, | (24) |
ˉn1, ˉn2 are defined in (14).
Now, our aim is to prove the weak-entropy solution of (1)−(4) convergences to corresponding stationary solution in L2 norm with exponential decay rate. For this purpose, we introduce the relative entropy-entropy flux pair:
η∗(x,t)=2∑i=1(j2i2ni+n2i−N2i−2Ni(ni−Ni))(x,t)=(ηe−2∑i=1Qi)(x,t)≥0, | (25) |
q∗(x,t)=2∑i=1(j3i2n2i+2niji−2Niji)(x,t)=(qe−2∑i=1Pi)(x,t), | (26) |
where
Qi=N2i+2Ni(ni−Ni),Pi=2Niji, |
ηe and qe are the entropy-entropy flux pair defined in (1.7).
The following theorem is our main result in section 3.
Theorem 3.1(Large time behavior) Suppose (n1,n2,j1,j2,E)(x,t) be any weak entropy solution of problem (1.1)−(1.4) satisfying
2(2D∗−ˉn1−ˉn2)<(n1−n2)(x,t)<2(2D∗+ˉn1+ˉn2), | (27) |
for a.e. x∈[0,1] and t>0. (N1,N2,E)(x) is its stationary solution obtained in Theorem 2.1. If
∫10η∗(x,0)dx<∞, ∫10(ni(s,0)−Ni(s))ds=0, | (28) |
then for any t>0, we have
∫10[j21+j22+(E−E)2+(n1−N1)2+(n2−N2)2](x,t)dx≤C0e−˜C0t∫10η∗(x,0)dx. | (29) |
holds for some positive constant C0 and ˜C0 .
Proof. We set
yi(x,t)=−∫x0(ni(s,t)−Ni(s))ds, i=1,2, x∈[0,1], t>0. | (30) |
Clearly, yi(i=1,2) is absolutely continuous in x for a.e. t>0. And
yix=−(ni−Ni),yit=ji,y2−y1=E−E,yi(0,t)=yi(1,t)=0, | (31) |
following (1.1), (2.1), and (2.1). From (1.1)2 and (2.1)2, we get y1 satisfies the equation
y1tt+(y21tn1)x−y1xx+y1t=n1E−N1E. | (32) |
Multiplying y1 with (32) and integrating over (0,1)‡, we have
‡For weak solutions, (1) satisfies in the sense of distribution. We choose test function φn(x,t)∈C∞0((0,1)×[0,T)) and let φn(x,t)→yi(x,t) as n→+∞ for i=1,2.
ddt∫10(y1y1t+12y21) dx−∫10(y21tn1)y1x dx−∫10(n21−N21)y1xdx−∫10y21t dx=∫10(N1(y2−y1)y1+Ex2y21)dx. | (33) |
In above calculation, we have used the integration by part. Similarly, from (1.1)4 and (2.1)3, we get
ddt∫10(y2y2t+12y22) dx−∫10(y22tn2)y2x dx−∫10(n22−N22)y2x dx−∫10y22t dx=−∫10(N2(y2−y1)y2+Ex2y22) dx. | (34) |
Add (33) and (34), we have
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx−∫10(n21−N21)y1xdx−∫10(n22−N22)y2x dx=∫10((y21tn1)y1x +(y22tn2)y2x) dx+∫10(y21t+y22t) dx+∫10(N1(y2−y1)y1+Ex2y21−N2(y2−y1)y2−Ex2y22) dx. | (35) |
Since
∫10(N1(y2−y1)y1+Ex2y21−N2(y2−y1)y2−Ex2y22) dx=∫10n1−N1−n2+N2−D(x)2y21dx+∫10n2−N2−n1+N1+D(x)2y22dx−∫10N1+N22(y1−y2)2dx, | (36) |
then, from (31)1 and (36) we get
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx+∫10(N1+n1)y21x+∫10(N2+n2)y22xdx+∫10N1+N22(y1−y2)2dx=∫10((y21tn1)y1x+(y22tn2)y2x) dx+∫10(y21t+y22t) dx+∫10(n1−N1−n2+N2−D(x)2y21+n2−N2−n1+N1+D(x)2y22)dx. | (37) |
Moreover, since
|yi(x)|=|∫x0yis(s)ds|≤x12(∫x0y2isds)12≤x12(∫10y2isds)12,x∈[0,1], | (38) |
we can obtain
‖yi‖2L2=∫10|yi|2dx≤12‖yix‖2L2, | (39) |
verifies for i=1,2. If the weak solutions n1(x,t) and n2(x,t) satisfy (27) then
infx{N1+n1}>supx{n1−N1−n2+N2−D(x)4}, | (40) |
and
infx{N2+n2}>supx{n2−N2−n1+N1+D(x)4}, | (41) |
hold, where we have used the assumption (5) and the estimate (23).
Following (39), (40) and (41), we have
∫10n1−N1−n2+N2−D(x)2y21dx<∫10(N1+n1)y21xdx, | (42) |
and
∫10n2−N2−n1+N1+D(x)2y22dx<∫10(N2+n2)y22xdx. | (43) |
Thus (36), (42), and (43) indicate there is a positive constant β>0, such that
ddt∫10(y1y1t+12y21+y2y2t+12y22) dx+β∫10(y21x+y22x)dx+∫10N1+N22(y1−y2)2dx≤∫10((y21tn1)y1x+(y22tn2)y2x) dx+∫10(y21t+y22t) dx=∫10(N1y21tn1+N2y22tn2) dx. | (44) |
In view of the entropy inequality (6), and the definition of η∗ and q∗ in (25) and (26), the following inequality holds in the sense of distribution.
ηet+qex+j21n1+j22n2−j1E+j2E=η∗t+2∑i=1Qit+q∗x+2∑i=1Pix+j21n1+j22n2−j1E+j2E=η∗t+q∗x+j21n1+j22n2−j1E+j2E+j1E−j2E≤0. | (45) |
Since
−j1E+j2E+j1E−j2E=(E−E)(j2−j1)=(y2−y1)(y2t−y1t), | (46) |
then (44) turns into
η∗t+q∗x+y21tn1+y22tn2+(y2−y1)(y2t−y1t)≤0. | (47) |
We use the theory of divergence-measure fields, then
ddt∫10(η∗+12(y2−y1)2)dx+∫10(y21tn1+y22tn2) dx ≤0, | (48) |
where we use the fact
∫10q∗x dx =0. | (49) |
Let λ>2+2n∗>0. Then, we multiply (48) by λ and add the result to (44) to get
ddt∫10(λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22)dx+β∫10(y21x+y22x)dx+∫10N1+N22(y1−y2)2dx+∫10((λ−N1)y21tn1+(λ−N2)y22tn2)dx≤0. | (50) |
Using the estimate (22) in Theorem 2.1. and the Poincˊare inequality (39), we have
ddt∫10(λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22)dx+β2∫10(y21x+y22x)dx+β2∫10(y21+y22)dx+n∗∫10(y1−y2)2dx+∫10(y21tn1+y22tn2)dx≤0. | (51) |
Now, we consider η∗ in (25). Clearly
n2i−N2i−2Ni(ni−Ni), | (52) |
is the quadratic remainder of the Taylor expansion of the function n2i around Ni>n∗>0 for i=1,2. And then, there exist two positive constants C1 and C2 such that
C1y2ix≤n2i−N2i−2Ni(ni−Ni)≤C2y2ix. | (53) |
Making C3=min{C1,12} and C4=max{C2,12}, then we get
C3(y21tn1+y22tn2+y21x+y22x)≤η∗≤C4(y21tn1+y22tn2+y21x+y22x). | (54) |
Let
F(x,t)=λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22, |
then there exist positive constants C5, C6, and C7, depending on λ,n∗,β, such that
∫10F(x,t)dx=∫10[λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22]dx≤C5∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤C6∫10η∗dx, | (55) |
and
0<C7∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤∫10[λη∗+λ2(y2−y1)2+y1y1t+12y21+y2y2t+12y22]dx=∫10F(x,t)dx. | (56) |
Then
ddt∫10F(x,t) dx+1C5∫10F(x,t)dx≤0, | (57) |
and
∫10[(y21tn1+y22tn2)+n∗(y2−y1)2+β2(y21x+y22x) +β2(y21+y22)]dx≤1C7∫10F(x,t)dx≤1C7e−tC5∫10F(x,0)dx≤C8e−tC5∫10η∗(x,0)dx. | (58) |
are given, following the Growall inequality and the estimates (55) and (56). Up to now, we finish the proof of Theorem 3.1.
In the process of the selected topic and write a paper, I get the guidance from my tutor: Huimin Yu. In the teaching process, my tutor helps me develop thinking carefully. The spirit of meticulous and the rigorous attitude of my tutor gives me a lot of help. Gratitude to my tutor is unable to express in words. And this paper supported in part by Shandong Provincial Natural Science Foundation (Grant No. ZR2015AM001).
The author declare no conflicts of interest in this paper.
[1] | L. Yeping, Relaxation limit and initial layer analysis of a bipolar hydrodynamic model for semiconductors, Math. Comput. Model., 50 (2009), 470-480. |
[2] | T. Naoki, Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic model of semiconductors, Nonlinear Anal-Theor, 73 (2010), 779-787. |
[3] | L. Xing and Y. Yan, Large time behavior of solutions to 1-dimensional bipolar quantum hydrodynamic model for semiconductors, Acta Math. Sci., 37 (2017), 806-835. |
[4] | Y. Huimin, On the stationary solutions of multi-dimensional bipolar hydrodynamic model of semiconductors, Appl. Math. Lett., 64 (2017), 108-112. |
[5] | H. Haifeng, M. Ming and Z. Kaijun, Relaxation limit in bipolar semiconductor hydrodynamic model with non-constant doping profile, J. Math. Anal. Appl., 448 (2017), 1175-1203. |
[6] | L. Jing, Y. Huimin, Large time behavior of solutions to a bipolar hydrodynamic model with big Data and vacuum, Nonlinear Anal-Real., 34 (2017), 446-458. |