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Abstract: In this paper, it is considered a hydrodynamic model for the bipolar semiconductor device
in the case of a pressure with the exponent γ = 2. The model has a non-flat doping profile and
insulating boundary conditions. Firstly, the existence and uniqueness of the corresponding steady
solutions which satisfy some bounded estimates are proved. Then,using a technical energy method and
an entropy dissipation estimate,we present a framework for the large time behavior of bounded weak
entropy solutions with vacuum. It is shown that the weak solutions converge to the stationary solutions
in L2 norm with exponential decay rate. No smallness and regularity conditions are assumed.
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1. Introduction

Consider the following Euler-Poisson system for the bipolar hydrodynamical model of semi-
conductor devices: 

n1t + j1x = 0,

j1t + (
j2
1

n1
+ p(n1))x = n1E − j1,

n2t + j2x = 0,

j2t + (
j2
2

n2
+ q(n2))x = −n2E − j2,

Ex = n1 − n2 − D(x),

(1)

in the region Ω = (0, 1) × R+. In this paper, n1(x, t), n2(x, t), j1(x, t), j2(x, t) and E(x, t) represent the
electron density, the hole density,the electron current density, the hole current density and the electric
field, respectively. In this note, we assume that the p and q satisfy the γ-law:p(n1) = n2

1 and q(n2) = n2
2
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(γ = 2),which denote the pressures of the electrons and the holes. The function D(x), called the doping
profile, stands for the density of impurities in semiconductor devices.

For system (1), the initial conditions are

ni(x, 0) = ni0(x) ≥ 0, ji(x, 0) = ji0(x), i = 1, 2, (2)

and the boundary conditions at x = 0 and x = 1 are

ji(0, t) = ji(1, t) = 0, i = 1, 2, E(0, t) = 0. (3)

So,we can get the compatibility condition

ji0(0) = ji0(1) = 0, i = 1, 2. (4)

Moreover, in this paper, we assume the doping profile D(x) satisfies

D(x) ∈ C[0, 1] and D∗ = sup
x

D(x) ≥ inf
x

D(x) = D∗. (5)

Now, the definition of entropy solution to problem (1) − (4) is given. We consider the locally
bounded measurable functions n1(x, t), j1(x, t), n2(x, t), j2(x, t), E(x, t), where E(x, t) is continuous in
x, a.e. in t.
Definition 1.1. The vector function (n1, n2, j1, j2, E) is a weak solution of problem (1)−(4), if it satisfies
the equation (1) in the distributional sense, verifies the restriction (2) and (3). Furthermore, a weak
solution of system (1) − (4) is called an entropy solution if it satisfies the entropy inequality

ηet + qex +
j2
1

n1
+

j2
2

n2
− j1E + j2E ≤ 0, (6)

in the sense of distribution. And the (ηe, qe) are mechanical entropy-entropy flux pair which satisfy
ηe(n1, n2, j1, j2) =

j2
1

2n1
+ n2

1 +
j2
2

2n2
+ n2

2,

qe(n1, n2, j1, j2) =
j3
1

2n2
1

+ 2n1 j1 +
j3
2

2n2
2

+ 2n2 j2.

(7)

For bipolar hydrodynamic model, the studies on the existence of solutions and the large time behav-
ior as well as relaxation-time limit have been extensively carried out, for example, see[1][2][3][4][5][6]
etc. Now, we make it into a semilinear ODE about the potential and the pressures with the exponent
γ = 2. We can get the existence, uniqueness and some bounded estimates of the steady solution.
Then, using a technical energy method and a entropy dissipation estimate, we present a framework for
the large time behavior of bounded weak entropy solutions with vacuum. It is shown that the weak
solutions converge to the stationary solutions in L2 norm with exponential decay rate.

The organization of this paper is as follows. In Section 2, the existence, uniqueness and some
bounded estimates of stationary solutions are given. we present a framework for the large time behavior
of bounded weak entropy solutions with vacuum in Section 3.
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2. Steady solutions

In this part, we will prove the existence and uniqueness of steady solution to problem (1) − (4).
Moreover, we can obtain some important estimates on the steady solution (N1,N2,E).

The steady equation of (1) − (4) is as following
J1 = J2 = 0,
2N1N1x = N1E,

2N2N2x = −N2E,

Ex = N1 − N2 − D(x),

(8)

and the boundary condition
E(0) = 0. (9)

We only concern the classical solutions in the region where the density

inf
x

N1 > 0 and inf
x

N2 > 0. (10)

hold.
Now, we introduce a new variation Φ(x),and make Φ′(x):=E(x). To eliminate the additive con-

stants,we set
∫ 1

0
Φ(x)dx = 0. Then (2.1) turns into

2N1x = Φx,

2N2x = −Φx,

Φxx = N1 − N2 − D(x).
(11)

Obviously, (11)1 and (11)2 indicate
N1(x) =

1
2

Φ(x) + C1,

N2(x) = −
1
2

Φ(x) + C2,

Φxx(x) =
1
2

Φ(x) + C1 +
1
2

Φ(x) −C2 − D(x).

(12)

where C1 and C2 are two unknown positive constants. To calculate these two constants, we suppose ∗∫ 1

0

(
ni(x, 0) − Ni(x)

)
dx = 0 for i = 1, 2, (13)

then

n̄1 :=
∫ 1

0
n1(x, 0)dx =

∫ 1

0
N1(x)dx =

∫ 1

0

(Φ(x)
2

+ C1
)
dx = C1,

n̄2 :=
∫ 1

0
n2(x, 0)dx =

∫ 1

0
N2(x)dx =

∫ 1

0

(
−

Φ(x)
2

+ C2
)
dx = C2.

(14)

∗Using the conservation of the total charge: integrating (1)1 and (1)3 from 0 to 1

( ∫ 1

0
nidx

)
t = −

∫ 1

0
jixdx = 0, for i = 1, 2,

we see this assumption is right.
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Substituting (14) into (12)3, we have

Φxx = Φ(x) + n̄1 − n̄2 − D(x). (15)

Clearly, we can prove the existence and uniqueness of solutions to (15) with the Neumann boundary
condition

Φx(0) = Φx(1) = 0. (16)

Integrate(15) from x = 0 to x = 1, we get

n̄1 − n̄2 =

∫ 1

0
D(x)dx. (17)

Suppose Φ(x) attains its maximum in x0 ∈ [0, 1], then we get Φxx(x0) ≤ 0† and

Φ(x0) + n̄1 − n̄2 − D(x0) ≤ 0.

So we get
Φ(x0) ≤ D∗ + n̄2 − n̄1. (18)

Similarly, if Φ attains its minimum in x1 ∈ [0, 1], we obtain

Φ(x1) ≥ D∗ + n̄2 − n̄1. (19)

Moreover, from (12), (14), (15), (18), and (19), we have
D∗ + n̄2 + n̄1

2
≤ N1(x) ≤

D∗ + n̄2 + n̄1

2
,

−D∗ + n̄2 + n̄1

2
≤ N2(x) ≤

−D∗ + n̄2 + n̄1

2
,

(20)

D∗ ≤ (N1 − N2)(x) ≤ D∗ for any x ∈ [0, 1]. (21)

Above that, the theorem of existence and uniqueness of steady equation is given.
Theorem 2.1. Assume that (5) holds, then problem (8), (9) has an unique solution (N1,N2,E), such
that for any x ∈ [0, 1]

n∗ ≤ N1(x) ≤ n∗, n∗ ≤ N2(x) ≤ n∗, (22)

and
D∗ ≤ (N1 − N2)(x) ≤ D∗, (23)

satisfy, where

n∗ := max
{D∗ + n̄2 + n̄1

2
,
−D∗ + n̄2 + n̄1

2

}
,

n∗ := min
{D∗ + n̄2 + n̄1

2
,
−D∗ + n̄2 + n̄1

2

}
,

(24)

n̄1, n̄2 are defined in (14).
†If x0 ∈ (0, 1), then Φx(x0) = 0, Φxx(x0) ≤ 0 clearly. If x0 = 0 or x0 = 1, the Taylor expansion

Φ(x) = Φ(x0) + Φ′(x0)(x − x0) +
Φ′′(x0)

2
(x − x0)2 + o(x − x0)2,

the boundary condition (16) indicates Φ′′(x0) ≤ 0.

AIMS Mathematics Volume 3, Issue 1, 56–65



60

3. Large time behavior

Now, our aim is to prove the weak-entropy solution of (1) − (4) convergences to corresponding
stationary solution in L2 norm with exponential decay rate. For this purpose, we introduce the relative
entropy-entropy flux pair:

η∗(x, t) =

2∑
i=1

( j2
i

2ni
+ n2

i − N2
i − 2Ni(ni − Ni)

)
(x, t)

=

(
ηe −

2∑
i=1

Qi

)
(x, t) ≥ 0,

(25)

q∗(x, t) =

2∑
i=1

( j3
i

2n2
i

+ 2ni ji − 2Ni ji

)
(x, t)

=

(
qe −

2∑
i=1

Pi

)
(x, t),

(26)

where
Qi = N2

i + 2Ni(ni − Ni), Pi = 2Ni ji,

ηe and qe are the entropy-entropy flux pair defined in (1.7).

The following theorem is our main result in section 3.
Theorem 3.1(Large time behavior) Suppose (n1, n2, j1, j2, E)(x, t) be any weak entropy solution of
problem (1.1) − (1.4) satisfying

2(2D∗ − n̄1 − n̄2) < (n1 − n2)(x, t) < 2(2D∗ + n̄1 + n̄2), (27)

for a.e. x ∈ [0, 1] and t > 0. (N1,N2,E)(x) is its stationary solution obtained in Theorem 2.1. If∫ 1

0
η∗(x, 0)dx < ∞,

∫ 1

0

(
ni(s, 0) − Ni(s)

)
ds = 0, (28)

then for any t > 0, we have∫ 1

0
[ j2

1 + j2
2 + (E − E)2 + (n1 − N1)2 + (n2 − N2)2](x, t)dx

≤ C0e−C̃0t
∫ 1

0
η∗(x, 0)dx.

(29)

holds for some positive constant C0 and C̃0 .

Proof. We set
yi(x, t) = −

∫ x

0

(
ni(s, t) − Ni(s)

)
ds, i = 1, 2, x ∈ [0, 1], t > 0. (30)
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Clearly, yi(i = 1, 2) is absolutely continuous in x for a.e. t > 0. And

yix = −(ni − Ni), yit = ji,

y2 − y1 = E − E, yi(0, t) = yi(1, t) = 0,
(31)

following (1.1), (2.1), and (28). From (1.1)2 and (2.1)2, we get y1 satisfies the equation

y1tt + (
y2

1t

n1
)x − y1xx + y1t = n1E − N1E. (32)

Multiplying y1 with (32) and integrating over (0, 1) ‡, we have

d
dt

∫ 1

0
(y1y1t +

1
2

y2
1) dx −

∫ 1

0
(
y2

1t

n1
)y1x dx −

∫ 1

0
(n2

1 − N2
1 )y1xdx −

∫ 1

0
y2

1t dx

=

∫ 1

0
(N1(y2 − y1)y1 +

Ex

2
y2

1)dx.

(33)

In above calculation, we have used the integration by part. Similarly, from (1.1)4 and (2.1)3, we get

d
dt

∫ 1

0
(y2y2t +

1
2

y2
2) dx −

∫ 1

0
(
y2

2t

n2
)y2x dx −

∫ 1

0
(n2

2 − N2
2 )y2x dx −

∫ 1

0
y2

2t dx

= −

∫ 1

0
(N2(y2 − y1)y2 +

Ex

2
y2

2) dx.

(34)

Add (33) and (34) , we have

d
dt

∫ 1

0
(y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2) dx −

∫ 1

0
(n2

1 − N2
1 )y1xdx −

∫ 1

0
(n2

2 − N2
2 )y2x dx

=

∫ 1

0

(
(
y2

1t

n1
)y1x + (

y2
2t

n2
)y2x

)
dx +

∫ 1

0
(y2

1t + y2
2t) dx

+

∫ 1

0

(
N1(y2 − y1)y1 +

Ex

2
y2

1 − N2(y2 − y1)y2 −
Ex

2
y2

2

)
dx.

(35)

Since ∫ 1

0

(
N1(y2 − y1)y1 +

Ex

2
y2

1 − N2(y2 − y1)y2 −
Ex

2
y2

2

)
dx

=

∫ 1

0

n1 − N1 − n2 + N2 − D(x)
2

y2
1dx +

∫ 1

0

n2 − N2 − n1 + N1 + D(x)
2

y2
2dx

−

∫ 1

0

N1 + N2

2
(y1 − y2)2dx,

(36)

‡For weak solutions, (1) satisfies in the sense of distribution. We choose test function ϕn(x, t) ∈ C∞0
(
(0, 1) × [0,T )

)
and let ϕn(x, t)→

yi(x, t) as n→ +∞ for i = 1, 2.
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then, from (31)1 and (36) we get

d
dt

∫ 1

0
(y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2) dx +

∫ 1

0
(N1 + n1)y2

1x

+

∫ 1

0
(N2 + n2)y2

2xdx +

∫ 1

0

N1 + N2

2
(y1 − y2)2dx

=

∫ 1

0

(
(
y2

1t

n1
)y1x + (

y2
2t

n2
)y2x

)
dx +

∫ 1

0
(y2

1t + y2
2t) dx

+

∫ 1

0

(n1 − N1 − n2 + N2 − D(x)
2

y2
1 +

n2 − N2 − n1 + N1 + D(x)
2

y2
2

)
dx.

(37)

Moreover, since

|yi(x)| = |
∫ x

0
yis(s)ds| ≤ x

1
2 (
∫ x

0
y2

isds)
1
2 ≤ x

1
2 (
∫ 1

0
y2

isds)
1
2 , x ∈ [0, 1], (38)

we can obtain

‖yi‖
2
L2 =

∫ 1

0
|yi|

2dx ≤
1
2
‖yix‖

2
L2 , (39)

verifies for i = 1, 2. If the weak solutions n1(x, t) and n2(x, t) satisfy (27) then

inf
x
{N1 + n1} > sup

x

{n1 − N1 − n2 + N2 − D(x)
4

}
, (40)

and
inf

x
{N2 + n2} > sup

x

{n2 − N2 − n1 + N1 + D(x)
4

}
, (41)

hold, where we have used the assumption (5) and the estimate (23).
Following (39), (40) and (41), we have∫ 1

0

n1 − N1 − n2 + N2 − D(x)
2

y2
1dx <

∫ 1

0
(N1 + n1)y2

1xdx, (42)

and ∫ 1

0

n2 − N2 − n1 + N1 + D(x)
2

y2
2dx <

∫ 1

0
(N2 + n2)y2

2xdx. (43)

Thus (36), (42), and (43) indicate there is a positive constant β > 0, such that

d
dt

∫ 1

0
(y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2) dx + β

∫ 1

0
(y2

1x + y2
2x)dx +

∫ 1

0

N1 + N2

2
(y1 − y2)2dx

≤

∫ 1

0

(
(
y2

1t

n1
)y1x + (

y2
2t

n2
)y2x

)
dx +

∫ 1

0
(y2

1t + y2
2t) dx

=

∫ 1

0

(
N1

y2
1t

n1
+ N2

y2
2t

n2

)
dx.

(44)
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In view of the entropy inequality (6), and the definition of η∗ and q∗ in (25) and (26), the following
inequality holds in the sense of distribution.

ηet + qex +
j2
1

n1
+

j2
2

n2
− j1E + j2E

= η∗t +

2∑
i=1

Qit + q∗x +

2∑
i=1

Pix +
j2
1

n1
+

j2
2

n2
− j1E + j2E

= η∗t + q∗x +
j2
1

n1
+

j2
2

n2
− j1E + j2E + j1E − j2E

≤ 0.

(45)

Since
− j1E + j2E + j1E − j2E = (E − E)( j2 − j1) = (y2 − y1)(y2t − y1t), (46)

then (44) turns into

η∗t + q∗x +
y2

1t

n1
+

y2
2t

n2
+ (y2 − y1)(y2t − y1t) ≤ 0. (47)

We use the theory of divergence-measure fields , then

d
dt

∫ 1

0
(η∗ +

1
2

(y2 − y1)2)dx +

∫ 1

0
(
y2

1t

n1
+

y2
2t

n2
) dx ≤ 0, (48)

where we use the fact ∫ 1

0
q∗x dx = 0. (49)

Let λ > 2 + 2n∗ > 0. Then, we multiply (48) by λ and add the result to (44) to get

d
dt

∫ 1

0
(λη∗ +

λ

2
(y2 − y1)2 + y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2)dx + β

∫ 1

0
(y2

1x + y2
2x)dx

+

∫ 1

0

N1 + N2

2
(y1 − y2)2dx +

∫ 1

0

(
(λ − N1)

y2
1t

n1
+ (λ − N2)

y2
2t

n2

)
dx ≤ 0.

(50)

Using the estimate (22) in Theorem 2.1. and the Poincáre inequality (39), we have

d
dt

∫ 1

0
(λη∗ +

λ

2
(y2 − y1)2 + y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2)dx +

β

2

∫ 1

0
(y2

1x + y2
2x)dx

+
β

2

∫ 1

0
(y2

1 + y2
2)dx + n∗

∫ 1

0
(y1 − y2)2dx +

∫ 1

0

(y2
1t

n1
+

y2
2t

n2

)
dx ≤ 0.

(51)

Now,we consider η∗ in (25). Clearly

n2
i − N2

i − 2Ni(ni − Ni), (52)
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is the quadratic remainder of the Taylor expansion of the function n2
i around Ni > n∗ > 0 for i = 1, 2.

And then, there exist two positive constants C1 and C2 such that

C1y2
ix ≤ n2

i − N2
i − 2Ni(ni − Ni) ≤ C2y2

ix. (53)

Making C3 = min{C1,
1
2
} and C4 = max{C2,

1
2
}, then we get

C3(
y2

1t

n1
+

y2
2t

n2
+ y2

1x + y2
2x) ≤ η

∗ ≤ C4(
y2

1t

n1
+

y2
2t

n2
+ y2

1x + y2
2x). (54)

Let
F(x, t) = λη∗ +

λ

2
(y2 − y1)2 + y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2,

then there exist positive constants C5, C6, and C7, depending on λ, n∗, β, such that∫ 1

0
F(x, t)dx =

∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 + y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2]dx

≤ C5

∫ 1

0
[(

y2
1t

n1
+

y2
2t

n2
) + n∗(y2 − y1)2 +

β

2
(y2

1x + y2
2x) +

β

2
(y2

1 + y2
2)]dx

≤ C6

∫ 1

0
η∗dx,

(55)

and

0 < C7

∫ 1

0
[(

y2
1t

n1
+

y2
2t

n2
) + n∗(y2 − y1)2 +

β

2
(y2

1x + y2
2x) +

β

2
(y2

1 + y2
2)]dx

≤

∫ 1

0
[λη∗ +

λ

2
(y2 − y1)2 + y1y1t +

1
2

y2
1 + y2y2t +

1
2

y2
2]dx =

∫ 1

0
F(x, t)dx.

(56)

Then
d
dt

∫ 1

0
F(x, t) dx +

1
C5

∫ 1

0
F(x, t)dx ≤ 0, (57)

and ∫ 1

0
[(

y2
1t

n1
+

y2
2t

n2
) + n∗(y2 − y1)2 +

β

2
(y2

1x + y2
2x) +

β

2
(y2

1 + y2
2)]dx

≤
1

C7

∫ 1

0
F(x, t)dx ≤

1
C7

e−
t

C5

∫ 1

0
F(x, 0)dx

≤ C8e−
t

C5

∫ 1

0
η∗(x, 0)dx.

(58)

are given, following the Growall inequality and the estimates (55) and (56). Up to now, we finish the
proof of Theorem 3.1.
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