In this paper, we introduce two new subclasses of p-valent spirallike functions of order α : We prove necessary and suffcient conditions for these newly defined classes and also point out some known consequences of our results.
Citation: Nazar Khan, Qazi Zahoor Ahmad, Tooba Khalid, Bilal Khan. Results on spirallike p-valent functions[J]. AIMS Mathematics, 2018, 3(1): 12-20. doi: 10.3934/Math.2018.1.12
[1] | Aleksa Srdanov . Fractal form of the partition functions p (n). AIMS Mathematics, 2020, 5(3): 2539-2568. doi: 10.3934/math.2020167 |
[2] | Chuang Wang, Junzhe Mo, Zhihong Liu . On univalent spirallike log-harmonic mappings. AIMS Mathematics, 2024, 9(11): 30515-30528. doi: 10.3934/math.20241473 |
[3] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[4] | Chunyan Luo, Tingsong Du, Muhammad Uzair Awan, Yao Zhang . Estimation-type results with respect to the parameterized (p, q)-integral inequalities. AIMS Mathematics, 2020, 5(1): 568-586. doi: 10.3934/math.2020038 |
[5] | Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403 |
[6] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[7] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[8] | Nazar Khan, Ajmal Khan, Qazi Zahoor Ahmad, Bilal Khan, Shahid Khan . Study of Multivalent Spirallike Bazilevic Functions. AIMS Mathematics, 2018, 3(3): 353-364. doi: 10.3934/Math.2018.3.353 |
[9] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[10] | Zitong He, Xiaolin Ma, Ghulam Farid, Absar Ul Haq, Kahkashan Mahreen . Bounds of a unified integral operator for (s,m)-convex functions and their consequences. AIMS Mathematics, 2020, 5(6): 5510-5520. doi: 10.3934/math.2020353 |
In this paper, we introduce two new subclasses of p-valent spirallike functions of order α : We prove necessary and suffcient conditions for these newly defined classes and also point out some known consequences of our results.
Let A(p) denote the class of all functions f defined by
f(z)=zp+∞∑n=1an+pzn+p (p∈N=1,2,3...) | (1.1) |
which are analytic and p-valent in the unit disk
E={z∈C:|z|<1}. |
For a real number α (0≤α<p) the well-known subclasses S∗p(α), p-valently starlike functions of order α and Cp(α), p-valently convex functions of order α of A(p) are given by
S∗(α,p)={f∈A(p):ℜ(zf′(z)f(z))>α,(z∈E)},C(α,p)={f∈A(p):ℜ(1+zf′′(z)f′(z))>α,(z∈E)}. |
For |β| <π2 and 0≤α<1, a function f∈A is said to be β-spirallike of order α in E if
ℜ{eιβzf′(z)f(z)}>αcosβ (z∈E). | (1.2) |
The class of all such functions is denoted by Sβ(α) [3], (also see [5,14,15]). In recent years many interesting subclasses of analytic univalent, multivalent and spirallike functions and their many special cases were investigated, see for example [1,2,6,7,8,9,10].
Motivated and inspired by the above mention work, we here define the following.
Definition 1.1. A function f∈A(p) belongs to the class Sβ(α,p) if it satisfies the inequality
|f(p−1)(z)eιβzf(p)(z)−12α|<12α, z∈E, |
for some real β and 0<α<1, where f(p)(z) is the pth derivative of f(z).
Remark 1.2. First of all, it is easily seen that, for
p=1andβ=0,S0(α,1)=M(α), |
where M(α) is a function class introduced and studied in [12]. Secondly, we have
p=1,Sβ(α,1)=Sβ(α), |
where Sβ(α) is a function class introduced by Owa and Kamali [13].
Definition 1.3. A function f∈A(p) is said to be in the class Cβ(α,p) if it satisfies the inequality
|f(p)(z)eιβ(zf(p)(z))′−12α|<12α, z∈E, | (1.3) |
for some real β and 0<α<1, where f(p)(z) is the pth derivative of f(z).
As a special case, the class Cβ(α,1)=Kβ(α), is introduced by Owa and Kamali [13]. Using essentially their technique, we prove the main results for the classes Sβ(α,p) and Cβ(α,p) which is the main motivation of this paper.
Lemma 2.1. [4]. Let ϕ(u,υ) be a complex-valued function such that
ϕ:D→C, D⊂C×C |
C being the complex plane and let u=u1+ιu2 and v=v1+ιv2. Suppose that the function ϕ(u,υ) satisfies each of the following conditions
1. ϕ(u,υ) is continuous in D;
2. (1,0)∈D and ℜ{ϕ(1,0)}>0;
3. ℜ{ϕ(ιu2,v1)}≤0 for all (ιu2,v1)∈D such that v1≤−(1+u22)2. Let
p(z)=1+p1z+p2z2+... |
be analytic (regular) in the unit disk E such that
(p(z),zp′(z))∈D, for all z∈E. |
If
ℜ{ϕ(p(z),zp′(z))}>0,thenℜ{p(z)}>0(z∈E). |
Theorem 3.1. A function f∈Sβ(α,p) if and only if, ℜ(eιβzf(p)(z)f(p−1)(z))>α.
Proof. Let f(z)∈Sβ(α,p), then we can write
|1eιβF(z)−12α|<12α (z∈E) |
where F(z)=zf(p)(z)f(p−1)(z). From above, we have
|2α−eιβF(z)2αeιβF(z)|<(12α)⇔|2α−eιβF(z)|2<(eιβF(z))2 ⇔[2α−eιβF(z)][¯2α−eιβF(z)]<(eιβF(z))[¯eιβF(z)]⇔[2α−eιβF(z)][2α−e−ιβ¯F(z)]<(eιβF(z))[e−ιβ¯F(z)]⇔4α2−2αe−ιβ¯F(z)−2αeιβF(z)+F(z)¯F(z)<F(z)¯F(z)⇔4α2−2α(e−ιβ¯F(z)+eιβF(z))<0⇔2α−2ℜ(eιβF(z))<0⇔−2ℜ(eιβF(z))<−2α⇔ℜ(eιβzf(P)(z)f(P−1)(z))>α. |
This complete the proof.
When p=1 we have the following known result proved by Owa and Kamali [13].
Corollary 3.2. f(z)∈Sβ(α) iff ℜ(eiβzf′(z)f(z))>α.
Theorem 3.3. If f(z)∈A(p) satisfies
∞∑n=1(p+n)!(n+1)!(n+1+|(n+1)−2αe−ιβ|)|an+p|≤1−|1−2αe−ιβ| | (3.1) |
for some |β|<π2 and 0<α<cosβ, then f(z)∈Sβ(α,p).
Proof. If f(z)∈Sβ(α,p) then, it suffices to show that
|2α−eιβF(z)eιβF(z)|<1 |
for some |β|<π2 and 0<α<cosβ, where F(z)=zf(p)(z)f(p−1)(z).
Now we have
|2α−eιβF(z)eιβF(z)|=|2αe−ιβf(p−1)(z)−zf(p)(z)zf(p)(z)|=|2αe−ιβ−1+∑∞n=1(p+n)!(n+1)!(2αe−ιβ−(n+1))an+pzn1+∑∞n=1(p+n)!(n+1)!(n+1)an+pzn|≤|2αe−ιβ−1|+∑∞n=1(p+n)!(n+1)!|(2αe−ιβ−(n+1))||an+p||zn|1−∑∞n=1(p+n)!(n+1)!(n+1)|an+p||zn|<|1−2αe−ιβ|+∑∞n=1(p+n)!(n+1)!|(n+1)−2αe−ιβ||an+p|1−∑∞n=1(p+n)!(n+1)!(n+1)|an+p|. | (3.2) |
The last expression in (3.2) is bounded above by 1 if
|1−2αe−ιβ|+∞∑n=1(p+n)!(n+1)!|(n+1)−2αe−ιβ||an+p|≤1−∞∑n=1(p+n)!(n+1)!|(n+1)an+p|. | (3.3) |
After simplification of (3.3) we have
∞∑n=1(p+n)!(n+1)!{(n+1+|(n+1)−2αe−ιβ|)}|an+p|≤1−|1−2αe−ιβ|. |
Therefore, f(z)∈Sβ(α,p) for some |β|<π2 and 0<α<cosβ.
When β=0 and p=1, we have the following result proved by Owa et al. [12].
Corollary 3.4. Let 0<α<1. If f(z)∈A satisfies the following coefficient inequality
∞∑n=2(n−α)|an|≤12(1−|1−2α|)={α;(0<α≤12)1−α;(12<α<1) |
then f(z)∈M(α).
Taking β=π4 in above Theorem we have the following result.
Corollary 3.5. If f(z)∈A(p) satisfies
∞∑n=1(p+n)!(n+1)!(n+1+√(n+1)2−2√2α(n+1)+4α2)|an+p|≤1−√1−2√2α+4α2 |
for some 0<α<√22, then f(z)∈Sπ4(α,p).
Theorem 3.6. Let the function f(z) defined by (1.1) be in the class Sβ(α,p) and let
0<λ≤12(cosβ−α),0<α<cosβ. | (3.4) |
Then we have
ℜ{(f(p−1)(z)z)λeιβ}>(p!)−λeιβ2λ(cosβ−α)+1 (z∈E). | (3.5) |
Proof. If we put
A=12λ(cosβ−α)+1 |
and
(f(p−1)(z)p!z)λeιβ=(1−A)p(z)+A | (3.6) |
where λ satisfies (3.4) then p(z) is regular in the unit disk E and p(z)=1+p1z+p2z2+...
Logarithmic differentiation of (3.6) yields
λeιβ[f(p)(z)f(p−1)(z)−1z]=(1−A)p′(z)(1−A)p(z)+A. |
This can be written as
eιβzf(p)(z)f(p−1)(z)−eιβ=(1−A)zp′(z)λ{(1−A)p(z)+A}, |
equivalently
eιβzf(p)(z)fp−1(z)−α=eιβ−α+(1−A)zp′(z)λ{(1−A)p(z)+A}. | (3.7) |
Since f(z)∈Sβ(α,p) then from (3.7) we have
ℜ{eιβ−α+(1−A)zp′(z)λ{(1−A)p(z)+A}}>0, (z∈E,0<α<cosβ). |
Let us consider the functional θ(u,v) defined by
θ(u,v)=eιβ−α+(1−A)vλ{(1−A)u+A}, |
where u=p(z) and v=zp′(z). Then θ(u,v) is continuous in D=(C−{AA−1})×C.
Also, (1,0)∈D and ℜ{θ(1,0)}=cosβ−α>0. Furthermore, for all (ιu2,v1)∈D such that v1≤−(1+u22)2, we have
ℜ{θ(ιu2,v1)}=cosβ−α+ℜ{(1−A)v1[λ(1−A)ιu2+A]}=cosβ−α+A(1−A)v1λ[(1−A)2u22+A2]<cosβ−α−A(1−A)(1+u22)2λ[(1−A)2u22+A2]=(cosβ−α)A2[4λ2(cosβ−α)2−1]u22[(1−A)2u22+A2]≤0, |
because 0<α<cosβ and 4λ2(cosβ−α)2−1≤0 implies that λ≤12(cosβ−α).
Therefore, the functional θ(u,v) satisfies all the conditions of Lemma 2.1.This proves that ℜ{p(z)} >0, that is from (3.6)
ℜ(f(p−1)(z)p!z)λeιβ>Aℜ(f(p−1)(z)z)λeιβ>(p!)−λeιβ2λ(cosβ−α)+1. |
This completes the proof.
For β=0 and p=1, in above theorem we have the following known result given by [11].
Corollary 3.7. Let f∈A be in the class S0(α,1) and 0<λ≤12(1−α), 0<α<0 then
ℜ(f(z)z)λ>12λ(1−α)+1,z∈E. |
Theorem 3.8. A function f∈Cβ(α,p) if and only if
ℜ{eιβ(1+zf(p+1)(z)f(p)(z))}>α. |
Proof. Let f(z)∈Cβ(α,p), then we can write
|1eιβG(z)−12α|<12α. |
This can be written as
|1eιβG(z)−12α|<12α⇔|2α−eιβG(z)2αeιβG(z)|<12α⇔|2α−eιβG(z)|2<(eιβG(z))2⇔(2α−eιβG(z))¯(2α−eιβG(z))<(eιβG(z))¯(eιβG(z))⇔(2α−eιβG(z))(2α−e−ιβ¯G(z))<(eιβG(z))(e−ιβ¯G(z))⇔4α2−2α[e−ιβ¯G(z)+eιβG(z)]+G(z)¯G(z)<G(z)¯G(z)⇔4α2−2α[e−ιβ¯G(z)+eιβG(z)]<0⇔2α[2α−ℜ(eιβG(z))]<0⇔2α−2ℜ(eιβG(z))<0 ⇔ℜ{eιβ(1+zf(p+1)(z)f(p)(z))}>α. |
This completes the proof.
Theorem 3.9. If f(z)∈A(p) satisfies
∞∑n=1(p+n)!n!{n+1+|(n+1)−2αe−ιβ|}|an+p|≤1−|1−2αe−ιβ| | (3.8) |
for some |β|<π2 and 0<α<cosβ, then f(z)∈Cβ(α,p).
Proof. To prove that f(z)∈Cβ(α,p) we need to prove that
|2α−eιβG(z)eιβG(z)|<1 | (3.9) |
for some |β|<π2,0<α<1, where G(z)=1+zf(p+1)(z)f(p)(z).
For this consider the left hand side of (3.9), we have
|2α−eιβG(z)eιβG(z)|=|2αe−ιβf(p)(z)−(f(p)(z)+zf(p+1)(z))(f(p)(z)+zf(p+1)(z))|=|2αe−ιβ−1+∑∞n=1(p+n)!(n+1)!(n+1)an+p2αe−ιβ−(n+1)1+∑∞n=1(p+n)!(n+1)!(n+1)2|an+p||=|1−2αe−ιβ|+∑∞n=1(p+n)!(n+1)!|(n+1)an+p||(n+1)−2αe−ιβ|1−∑∞n=1(p+n)!(n+1)!(n+1)2|an+p|. |
The last expression is bounded above by 1 if
|1−2αe−ιβ|+∞∑n=1(p+n)!(n+1)!|(n+1)an+p||(n+1)−2αe−ιβ|≤1−∞∑n=1(p+n)!(n+1)!(n+1)2|an+p| |
for some |β|<π2 and 0<α<1. After simplification, inequality (3.10) can be written as
∞∑n=1(p+n)!n!{n+1+|(n+1)−2αe−ιβ|}|an+p|≤1−|1−2αe−ιβ|. |
This completes the proof.
When we take p=1, we have the following known result given in [13].
Corollary 3.10. If f∈A satisfies
∞∑n=2{n(n+|n−2αe−ιβ|)}|an|≤1−|1−2αe−ιβ| |
for some |β|<π2 and 0<α<cosβ, then f∈Kβ(α).
Taking p=1, β=0 in above theorem we have the following result given in [12].
Corollary 3.11. Let 0<α<1. If f∈A satisfies the following coefficient inequality
∞∑n=2n(n−α)|an|≤12(1−|1−2α|)={α;(0<α≤12)1−α;(12<α<1) |
then f(z)∈N(α).
Taking β=π4 in above Theorem we have the following result.
Corollary 3.12. If f(z)∈A(p) satisfies
∞∑n=1(p+n)!n!(n+1+√(n+1)2−2√2α(n+1)+4α2)|an+p|≤1−√1−2√2α+4α2 |
for some 0<α<√22, then f(z)∈Sπ4(α,p).
The authors are grateful to the referees for their helpful comments and suggestions which improved the presentation of the paper. This research is carried out under the HEC projects grant No. 21-1235/SRGP/R & D/HEC/2016 and 21-1193/SRGP/R & D/HEC/2016.
No potential conflict of interest was reported by the authors.
[1] | M. Arif, J. Dziok, M. Raza, et al. On products of multivalent close-to-star functions, J. Ineq. appl., 2015 (2015), 1-14. |
[2] | N. Khan, B. Khan, Q. Z. Ahmad, et al. Some Convolution properties of multivalent analytic functions, AIMS Math., 2 (2017), 260-268. |
[3] | R. J. Libera, Univalent spiral functions, Cand. J. Math., 19 (1967), 725-733. |
[4] | S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex Plane, J. Math. Anal. Appl., 65 (1978), 289-305. |
[5] | K. I. Noor, N. Khan and M. A. Noor, On generalized spiral-like analytic functions, Filomat, 28 (2014), 1493-1503. |
[6] | K. I. Noor and N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol., 9 (2015), 181-192. |
[7] | K. I. Noor, N. Khan and Q. Z. Ahmad, Coeffcient bounds for a subclass of multivalent functions of reciprocal order, AIMS Math., 2 (2017), 322-335. |
[8] | K. I. Noor, Q. Z. Ahmad and N. Khan, On a subclasses of meromorphic function define by fractional derivative opretor, Italian J. Pure Appl. Math., 38 (2017), 127-136. |
[9] | M. Nunokawa, J. Sokoł, On the multivalency of certain analytic functions, J. Ineq. appl., 2014 (2014), 1-9. |
[10] | M. Nunokawa, S. Hussain, N. Khan, et al. A subclass of analytic functions related with conic domain, J. Clas. Anal., 9 (2016), 137-149. |
[11] | M. Obradovic and S. Owa, On some results for spiral functions of order α , Internat. J. Math. Math. Sci., 9 (1986), 439-446. |
[12] | S. Owa, K. Ochiai and H. M.Srivastava, Some coeffcients inequalities and distortion bounds associated with certain new subclasses of analytic functions, Math. Ineq. Appl., 9 (2006), 125-135. |
[13] | S. Owa and F. S. M. Kamali, On some results for subclass of β -spirallike functions of order α , Tamsui Oxford J. Inf. Math. Sci., 28 (2012), 79-93. |
[14] | Y. Polatoglu and A. Sen, Some results on subclasses of Janowski λ -spirallike functions of complex order, Gen. Math., 15 (2007), 88-97. |
[15] | L. Špaček, Příspĕvek k teorii funkcí prostých, Časopis pro pĕstováni matematiky a fysiky, 62 (1933), 12-19. |
1. | Ying Cheng, Rekha Srivastava, Jin-Lin Liu, Applications of the q-Derivative Operator to New Families of Bi-Univalent Functions Related to the Legendre Polynomials, 2022, 11, 2075-1680, 595, 10.3390/axioms11110595 | |
2. | Sercan Kazımoğlu, Erhan Deniz, Luminiţa-Ioana Cotîrlă, Certain Subclasses of Analytic and Bi-Univalent Functions Governed by the Gegenbauer Polynomials Linked with q-Derivative, 2023, 15, 2073-8994, 1192, 10.3390/sym15061192 |