As an emerging country preoccupied with preserving its resources for the future, Brazil aims to find the right balance between economic advancement and sustainability goals. In this context, we tackled the link between sustainable economic development and macroeconomic indicators related to domestic credit granted to the private sector, CO2 emissions from industries, and annual inflation rate. By means of time series data analysis run for the period 1996‒2022 via three estimation methods (i.e., least squares, fully modified least squares, dynamic least squares), we found that annual GDP growth rate, control of corruption, and rule of law (as proxies for sustainable economic development) are significantly impacted by GDP growth rate and emissions. Therefore, access to financial resources and intensive industrial activities yielding emissions trigger economic growth, tend to strengthen control of corruption and the rule of law. Additionally, policy implications and future research directions are addressed.
Citation: Larissa M. Batrancea, Anca Nichita, Horia Tulai, Mircea-Iosif Rus, Ema Speranta Masca. Fueling economies through credit and industrial activities. A way of financing sustainable economic development in Brazil[J]. Green Finance, 2025, 7(1): 24-39. doi: 10.3934/GF.20250002
[1] | Victor Zhenyu Guo . Almost primes in Piatetski-Shapiro sequences. AIMS Mathematics, 2021, 6(9): 9536-9546. doi: 10.3934/math.2021554 |
[2] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[3] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[4] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[5] | Xiaoqing Zhao, Yuan Yi . High-dimensional Lehmer problem on Beatty sequences. AIMS Mathematics, 2023, 8(6): 13492-13502. doi: 10.3934/math.2023684 |
[6] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[7] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[8] | Rui Wang, Jiangtao Peng . On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups Ⅱ. AIMS Mathematics, 2021, 6(2): 1706-1714. doi: 10.3934/math.2021101 |
[9] | Jinyan He, Jiagui Luo, Shuanglin Fei . On the exponential Diophantine equation (a(a−l)m2+1)x+(alm2−1)y=(am)z. AIMS Mathematics, 2022, 7(4): 7187-7198. doi: 10.3934/math.2022401 |
[10] | Baria A. Helmy, Amal S. Hassan, Ahmed K. El-Kholy, Rashad A. R. Bantan, Mohammed Elgarhy . Analysis of information measures using generalized type-Ⅰ hybrid censored data. AIMS Mathematics, 2023, 8(9): 20283-20304. doi: 10.3934/math.20231034 |
As an emerging country preoccupied with preserving its resources for the future, Brazil aims to find the right balance between economic advancement and sustainability goals. In this context, we tackled the link between sustainable economic development and macroeconomic indicators related to domestic credit granted to the private sector, CO2 emissions from industries, and annual inflation rate. By means of time series data analysis run for the period 1996‒2022 via three estimation methods (i.e., least squares, fully modified least squares, dynamic least squares), we found that annual GDP growth rate, control of corruption, and rule of law (as proxies for sustainable economic development) are significantly impacted by GDP growth rate and emissions. Therefore, access to financial resources and intensive industrial activities yielding emissions trigger economic growth, tend to strengthen control of corruption and the rule of law. Additionally, policy implications and future research directions are addressed.
Let q be an integer. For each integer a with
1⩽a<q, (a,q)=1, |
we know that [1] there exists one and only one ˉa with
1⩽ˉa<q |
such that
aˉa≡1(q). |
Define
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}, |
r(q):=#R(q). |
The work [2] posed the problem of investigating a nontrivial estimation for r(q) when q is an odd prime. Zhang [3,4] gave several asymptotic formulas for r(q), one of which is:
r(q)=12ϕ(q)+O(q12d2(q)log2q), |
where ϕ(q) is the Euler function and d(q) is the divisor function. Lu and Yi [5] studied a generalization of the Lehmer problem over short intervals. Let n⩾2 be a fixed positive integer, q⩾3 and c be integers with
(nc,q)=1. |
They defined
rn(θ1,θ2,c;q)=#{(a,b)∈[1,θ1q]×[1,θ2q]∣ab≡c( mod q),n∤a+b}, |
where 0<θ1,θ2⩽1, and obtained
rn(θ1,θ2,c;q)=(1−1n)θ1θ2φ(q)+O(q1/2τ6(q)log2q), |
where the O constant depends only on n. In addition, Xi and Yi [6] considered generalized Lehmer problem over short intervals. Han and Liu [7] gave an upper bound estimation for another generalization of the Lehmer problem over incomplete interval.
Guo and Yi [8] also found the Lehmer problem has good distribution properties on Beatty sequences. For fixed real numbers α and β, defined by
Bα,β:=(⌊αn+β⌋)∞n=1. |
Beatty sequences are linear sequences. Based on the results obtained, we conjecture the Lehmer problem also has good distribution properties in some non-linear sequences.
The Piatetski-Shapiro sequence is a non-linear sequence, defined by
Nc={⌊nc⌋:n∈N}, |
where c∈R is non-integer with c>1 and z∈R. This sequence was first introduced by Piatetski-Shapiro [9] to study prime numbers in sequences of the form ⌊f(n)⌋, where f(n) is a polynomial. A positive integer is called square-free if it is a product of distinct primes. The distribution of square-free numbers in the Piatetski-Shapiro sequence has been studied extensively. Stux [10] found that, as x tends to infinity,
∑n≤x⌊nc⌋ is square-free 1=(6π2+o(1))x, for 1<c<43. | (1.1) |
In 1978, Rieger [11] improved the range to 1<c<3/2 and obtained
6xπ2+O(x(2c+1)/4+ε), for 1<c<32. |
Considering the results obtained, we develop this problem by investigating
R(c;q):=∑n∈Nc∩R(q)n is square-free 1 |
and range of c when q tends to infinity. By methods of exponential sum and Kloosterman sums and fairly detailed calculations, we get the following result, which is significant for understanding the distribution properties of the Lehmer problem.
Theorem 1.1. Let q be an odd integer and large enough,
γ:=1/candc∈(1,43), |
we obtain
R(c;q)=3π2∏p∣q(1+p−1)−1qγ+O(∑p∣q(1−p−12)−1qγ−12)+O(q713γ+413∏p∣q(1−p−12)−1logq)+O(q34d3(q)logq)+O(qγ−16d2(q)log3q), |
where the O constant only depends on c.
This paper consists of three main sections. Introduction covers the origins and developments of the Lehmer problem, along with several interesting results. It also presents relevant findings related to the Piatetski-Shapiro sequences. The second section includes some definitions and lemmas throughout the paper. The third section outlines the calculation process, where we use additive characteristics to convert the congruence equations into exponential sum problems. We then employ the Kloosterman sums and exponential sums methods to derive an interesting asymptotic formula.
To complete the proof of the theorem, we need the following several definitions and lemmas.
In this paper, we denote by ⌊t⌋ and {t} the integral part and the fractional part of t, respectively. As is customary, we put
e(t):=e2πitand{t}:=t−⌊t⌋. |
The notation ‖t‖ is used to denote the distance from the real number t to the nearest integer; that is,
‖t‖:=minn∈Z|t−n|. |
And ∑′ indicates that the variable summed over takes values coprime to the number q. Throughout the paper, ε always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O,≪, and ≫ may depend (where obvious) on the parameters c and ε, but are absolute otherwise. For given functions F and G, the notations
F≪G, G≫F andF=O(G) |
are all equivalent to the statement that the inequality
|F|⩽C|G| |
holds with some constant C>0.
Lemma 2.1. Let 1c(m) denote the characteristic function of numbers in a Piatetski-Shapiro sequence, then
1c(m)=γmγ−1+O(mγ−2)+ψ(−(m+1)γ)−ψ(−mγ), |
where
ψ(t)=t−⌊t⌋−12 andγ=1/c. |
Proof. Note that an integer m has the form
m=⌊nc⌋ |
for some integer n if and only if
m⩽nc<m+1,−(m+1)γ<−n⩽−mγ. |
So
1c(m)=⌊−mγ⌋−⌊−(m+1)γ⌋=−mγ−ψ(−mγ)+(m+1)γ+ψ(−(m+1)γ)=γmγ−1+O(mγ−2)+ψ(−(m+1)γ)−ψ(−mγ). |
Thie completes the proof.
Lemma 2.2. Let H⩾1 be an integer, ah,bh be real numbers, we have
|ψ(t)−∑0<|h|⩽Hahe(th)|⩽∑|h|⩽Hbhe(th),ah≪1|h|,bh≪1H. |
Proof. In 1985, Vaaler showed how Beurling's function could be used to construct a trigonometric polynomial approximation to ψ(x). For each positive integer N, Vaaler's construction yields a trigonometric polynomial ψ∗ of degree N which satisfies
|ψ∗(x)−ψ(x)|≤12N+2∑|n|≤N(1−|n|N+1)e(nx), |
where
ψ∗(x)=−∑1≤|n|≤N(2πin)−1ˆJN+1(n)e(nx),H(z)=sin2πzπ2{∞∑n=−∞sgn(n)(z−n)2+2z},J(z)=12H′(z),HN(z)=sin2πzπ2{∑|n|≤Nsgn(n)(z−n)2+2z},JN(z)=12H′N(z), |
and sgn(n) is the sign of n. The Fourier transform ˆJ(t) satisfies
ˆJ(t)={1,t=0;πt(1−|t|)cotπt+|t|,0<|t|<1;0,t≥1. |
To be short, we denote
ah=−(2πih)−1ˆJH+1(h)≪1|h|,bh=12H+2(1−|h|H+1)≪1H. |
There are more details in Appendix Theorem A.6. of [12].
Lemma 2.3. Denote
Kl(m,n;q)=q∑a=1q∑b=1ab≡1(modq)e(ma+nbq), |
then
Kl(m,n;q)≪(m,n,q)12q12d(q), |
where (m,n,q) is the greatest common divisor of m,n and q and d(q) is the number of positive divisors of q.
Proof. The proof is given in [13].
Lemma 2.4. (Korobov [14]) Let α be a real number, Q be an integer, and P be a positive integer, then
|Q+P∑x=Q+1e(αx)|⩽min(P,12‖α‖). |
Lemma 2.5. (Karatsuba [15]) For any number b, U<0, K⩾1, let
a=sr+θr2,(r,s)=1, r⩾1, |θ|⩽1, |
then
∑k⩽Kmin(U,1‖ak+b‖)≪(Kr+1)(U+rlogr). |
Lemma 2.6. Suppose f is continuously differentiable, f′(n) is monotonic, and
‖f′(n)‖⩾λ1>0 |
on I, then
∑n∈Ie(f(n))≪λ−11. |
Proof. See [12, Theorem 2.1].
Lemma 2.7. Let k be a positive integer, k⩾2. Suppose that f(n) is a real-valued function with k continuous derivatives on [N,2N], Further suppose that
0<F⩽f(k)(n)⩽hF. |
Then
|∑N<x⩽2Ne(f(n))|≪FκNλ+F−1, |
where the implied constant is absolute.
Proof. See [12, Chapter 3].
By the definition of Mobius function
μ(n)={(−1)ω(n),∀p|n,p2∤n,0,∃p2|n, |
it is clear that n is square-free if and only if
μ2(n)=1, |
where ω(n) is the number of prime divisor of n. So
R(c;q)=12q∑′n=1(1−(−1)n+ˉn)μ2(n)1c(n)=12(R1−R2), | (3.1) |
where
R1=q∑′n=1μ2(n)1c(n) |
and
R2=q∑′n=1(−1)n+ˉnμ2(n)1c(n). |
From Lemma 2.1, we have
R1=q∑′n=1μ2(n)1c(n)=q∑′n=1μ2(n)(γnγ−1+O(nγ−2)+ψ(−(n+1)γ)−ψ(−nγ))=R11+R12, | (3.2) |
where
R11:=q∑′n=1μ2(n)(γnγ−1+O(nγ−2))=q∑′n=1μ2(n)γnγ−1+O(q∑′n=1μ2(n)nγ−2). |
Let
D={d:p|d⇒p|q} |
and λ(n) is Liouville function. When n∈R(q),
μ2(n)={∑dm=n,d∈Dλ(d)μ2(m),(n,q)=1,0,(n,q)>1. | (3.3) |
We just consider the first term of R11. Applying Euler summuation [1],
q∑′n=1μ2(n)γnγ−1=q∑n=1∑dm=nd∈Dλ(d)μ2(m)γ(dm)γ−1=∑d∈Dλ(d)dγ−1∑m⩽qdμ2(m)γmγ−1=∑d∈Dλ(d)dγ−1∑m⩽qd(∑l2∣mμ(l))γmγ−1=∑d∈Dλ(d)dγ−1∑l⩽(qd)12μ(l)l2γ−2∑m⩽qdl2γmγ−1=∑d∈Dλ(d)dγ−1∑l⩽(qd)12μ(l)l2γ−2((qdl2)γ+O((qdl2)γ−1))=qγ∑d∈Dλ(d)d−1∑l⩽(qd)12μ(l)l−2+O(∑d∈D∑l⩽(qd)12qγ−1)=qγ∑d∈Dλ(d)d−1(∑lμ(l)l−2+O((qd)−12))+O(∏p∣q(1−p−12)−1qγ−12)=6π2∏p∣q(1+p−1)−1qγ+O(∏p∣q(1−p−12)−1qγ−12), |
thus
R11=6π2∏p∣q(1+p−1)−1qγ+O(∏p∣q(1−p−12)−1qγ−12). | (3.4) |
For R12, by Lemma 2.2, we have
R12:=q∑′n=1μ2(n)(ψ(−(n+1)γ)−ψ(−nγ))=R121+O(R122), | (3.5) |
where
R121:=q∑′n=1μ2(n)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))) |
and
R122:=q∑′n=1μ2(n)(∑|h|⩽Hbh(e(−(n+1)γh)+e(−nγh))). |
Define
f(t)=e(((dt)γ−(dt+1)γ)h)−1, |
then
f(t)≪ |h|(dt)γ−1,∂f(t)∂t≪|h|dγ−1tγ−2. |
By Lemma 2.2 and Eq (3.3),
R121=∑0<|h|⩽Hah∑d∈Dλ(d)(∑1<m⩽qdμ2(m)e(−(dm)γh)f(m))≪∑0<|h|⩽H|h|−1∑d∈D|∫qd0f(t)d(∑1<m⩽tμ2(m)e(−(dm)γh))|≪∑0<|h|⩽H|h|−1∑d∈D|f(qd)(∑1<m⩽qdμ2(m)e(−(dm)γh))|+∑0<|h|⩽H|h|−1∑d∈D|∫qd0∂f(t)∂t∑1<m⩽tμ2(m)e(−(dm)γh)dt|. |
Let
(κ,λ)=(16,23) |
be an exponential pair. Applying Lemma 2.7, it's easy to see
∑1<m⩽tμ2(m)e(−(dm)γh)=∑m⩽t(∑l2∣mμ(l))e(−(dm)γh)≪∑l⩽t12|∑m⩽tl2e(−(dl2m)γh)|≪∑l⩽t12logq(((dl2)γ|h|(tl2)γ−1)16(tl2)23+((dl2)γ|h|(tl2)γ−1)−1)≪logq∑l⩽t12((dγ|h|)16t16γ+12l−1+(dγ|h|)−1t1−γl−2)≪(dγ|h|)16t16γ+12log2q+(dγ|h|)−1t1−γlogq≪(dγ|h|)16t16γ+12log2q, |
thus
R121≪∑0<|h|⩽H|h|−1∑d∈D|h|qγ−1(dγ|h|)16(qd)16γ+12log2q+∑0<|h|⩽H|h|−1∑d∈D∫qd0|h|dγ−1tγ−2(dγ|h|)16t16γ+12log2qdt≪∑0<|h|⩽H|h|16∑d∈Dd−12q76γ−12log2q+∑0<|h|⩽H|h|16∑d∈Dd76γ−1log2q∫qd0t76γ−32dt≪H76∏p∣q(1−p−12)−1q76γ−12log2q. | (3.6) |
For R122, the contribution from h≠0 can be bounded by similar methods of Eq (3.6). Taking
H=q913−713γ⩾1, |
we obtain
R122=b0q∑′n=1μ2(n)+∑0<|h|⩽Hbhq∑′n=1μ2(n)(e(−(n+1)γh)+e(−nγh))≪H−1q+H76∏p∣q(1−p−12)−1q76γ−12logq≪q713γ+413∏p∣q(1−p−12)−1log2q. | (3.7) |
It follows from Eqs (3.5)–(3.7),
R12≪q713γ+413∏p∣q(1−p−12)−1log2q. |
Hence
R1=6π2∏p∣q(1+p−1)−1qγ+O(∑p∣q(1−p−12)−1qγ−12)+O(q713γ+413∏p∣q(1−p−12)−1log2q). | (3.8) |
Similarly,
R2=q∑′n=1(−1)n+ˉnμ2(n)1c(n)=RP21+RP22, | (3.9) |
where
R21=q∑′n=1(−1)n+ˉnμ2(n)(γnγ−1+O(nγ−2)) |
and
R22=q∑′n=1(−1)n+ˉnμ2(n)(ψ(−(n+1)γ)−ψ(−nγ)). |
We also just consider the first term of R21.
q∑′n=1(−1)n+ˉnμ2(n)γnγ−1=q∑′n=1(−1)n+ˉn(∑d2∣nμ(d))γnγ−1=q∑′n=1(−1)n+ˉn∑d2∣nd⩽q14μ(d)γnγ−1+q∑′n=1(−1)n+ˉn∑d2∣nq14<d⩽q12μ(d)γnγ−1. | (3.10) |
It is easy to see
q∑′n=1(−1)n+ˉn∑d2∣nq14<d⩽q12μ(d)γnγ−1≪q∑′n=1∑d2∣nq14<d⩽q12γnγ−1≪qγ−14. | (3.11) |
Since for integers m and a, one has
1qq∑s=1e(s(m−a)q)={1,m≡a( mod q);0,m≢a( mod q). |
This gives
q∑′n=1(−1)n+ˉn∑d2∣nd⩽q14μ(d)γnγ−1=q∑n=1q∑m=1nm≡1(modq)(−1)n+m∑d2∣nd⩽q14μ(d)γnγ−1q−1∑a=1a=mq−1∑b=1b=n1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1a=mq−1∑b=1b=n(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1a≡m(modq)q−1∑b=1b≡n(modq)(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1=q∑n=1q∑m=1nm≡1(modq)q−1∑a=1q−1∑b=1(−1)a+b∑d2∣bd⩽q14μ(d)γbγ−1×(1qq∑s=1e(s(m−a)q))(1qq∑t=1e(t(n−b)q))=1q2q∑s=1q∑t=1(∑nm≡1(modq)e(sm+tnq))×(q−1∑a=1(−1)ae(−saq))(q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q14μ(d)γbγ−1). | (3.12) |
From Lemma 2.3,
∑nm≡1(modq)e(sm+tnq)=Kl(s,t;q)≪(s,t,q)12q12d(q). | (3.13) |
Note the estimate
|q−1∑a=1(−1)ae(−saq)|≪1|e(12−sq)−1|≪1|cossqπ| | (3.14) |
holds. By Abel summation and Lemma 2.4, we have
q−1∑b=1(−1)be(−tbq)∑d2∣bd⩽q14μ(d)γbγ−1=∑d⩽q14μ(d)⌊q−1d2⌋∑b=1(−1)d2be(−td2bq)γ(d2b)γ−1≪∑d⩽q14d2(γ−1)|⌊q−1d2⌋∑b=1(−1)d2be(−td2bq)γbγ−1|≪∑d⩽q14d2(γ−1)γ(qd2)γ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1(−1)d2be(−td2bq)|≪∑d⩽q142∣dγqγ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1e(−td2bq)|+∑d⩽q142∤dγqγ−1max1⩽β⩽⌊q−1d2⌋|β∑b=1(−1)be(−td2bq)|≪∑d⩽q142∣dqγ−1min(⌊q−1d2⌋,12‖d2qt‖)+∑d⩽q142∤dqγ−1min(⌊q−1d2⌋,12‖12−d2qt‖). | (3.15) |
To be short, combining Eqs (3.13)–(3.15), we denote
R211:=q−2q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q142∣dqγ−1min(⌊q−1d2⌋,12‖d2qt‖)≪qγ−3q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q14min(q−1d2,12‖d2qt‖)≪qγ−3∑u∣qu12d(q)q12qu∑s=11|cossuqπ|∑d⩽q14qu∑t=1min(q−1d2,12‖d2qut‖) |
and
R212:=q−2q∑s=1q∑t=1(s,t,q)12d(q)q121|cossqπ|∑d⩽q142∤dqγ−1min(⌊q−1d2⌋,12‖12−d2qt‖). |
Let
(d2,qu)=r, (d2r,qur)=1, |
making use of Lemma 2.5, we have
qu∑t=1min(q−1d2,12‖d2qut‖)≪(ququr+1)(q−1d2+qurlogq)≪qrd2+qulogq. |
Insert it to R211, then
R211≪qγ−3∑u∣qu12d(q)q12qu∑s=11|1−2suq|∑d⩽q14∑(d2,qu)=r(qrd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq∑d⩽q14∑r|d2r|qu(qrd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq∑r|qu∑d⩽q14r12(qd2+qulogq)≪qγ−3∑u∣qu12d(q)q12qulogq(qd(q)+q54ud(q)logq)≪qγ−14d3(q)log3q. |
By the same method of R211,
R212≪qγ−14d3(q)log3q. |
Following from Eqs (3.10) and (3.11), estimations of R211 and R212,
R21≪qγ−14+RP211+RP212≪qγ−14d3(q)log3q. | (3.16) |
By the similar method of R12 and R21,
R22=R221+O(R222), | (3.17) |
where
R221:=q∑′n=1(−1)n+ˉnμ2(n)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))) |
and
R222:=q∑′n=1(−1)n+ˉnμ2(n)(∑|h|⩽Hbh(e(−(n+1)γh)+e(−nγh))). |
It is obvious that
R221=q∑′n=1(−1)n+ˉn(∑d2∣nμ(d))(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))=q∑′n=1(−1)n+ˉn∑d2∣nd⩽q16μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))+q∑′n=1(−1)n+ˉn∑d2∣nq16<d⩽q12μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh))). | (3.18) |
From the estimate
e(nγh−(n+1)γh)−1≪(nγ−(n+1)γ)h≪γnγ−1h, |
by partial summation,
q∑′n=1(−1)n+ˉn∑d2∣nq16<d⩽q12μ(d)(∑0<|h|⩽Hah(e(−(n+1)γh)−e(−nγh)))≪q∑′n=1∑d2∣nq16<d⩽q12|∑0<|h|⩽Hahe(−nγh)(e(nγh−(n+1)γh)−1)|≪q∑′n=1∑d2∣nq16<d⩽q12γnγ−1HlogH≪qγ−16HlogH. | (3.19) |
For another term of R_{221} ,
\begin{align} &\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mathop{\sum\limits_{d^{2} \mid n}}_{d \leqslant q^{\frac{1}{6}} }\mu(d) \left( \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(n+1)^{\gamma}h\right)-\mathbf{e}(-n^{\gamma}h)\right)\right)\\ & = \mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mathop{\sum\limits_{d^{2} \mid n}}_{d \leqslant q^{\frac{1}{6}} }\mu(d) \left( \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(n+1)^{\gamma}h\right)-\mathbf{e}(-n^{\gamma}h)\right)\right) \\ &\quad\times \left(\frac{1}{q}\sum\limits_{a = 1}^{q}\sum\limits_{s = 1}^{q}\mathbf{e}(\frac{s(m-a)}{q}) \right)\left(\frac{1}{q}\sum\limits_{b = 1}^{q}\sum\limits_{t = 1}^{q}\mathbf{e}(\frac{t(n-b)}{q})\right) \\ & = \frac{1}{q^{2}}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q} \left( \mathop{\sum}_{nm \equiv 1 (\bmod q)} \mathbf{e}(\frac{sm+tn}{q}) \right)\left(\sum\limits_{a = 1}^{q-1}(-1)^{a}\mathbf{e}(-\frac{sa}{q})\right)\\ &\quad\times \left(\sum\limits_{b = 1}^{q-1}(-1)^{b}\mathbf{e}(-\frac{tb}{q}) \mathop{\sum\limits_{d^{2} \mid b}}_{d \leqslant q^{\frac{1}{6} } }\mu(d) \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(b+1)^{\gamma}h\right)-\mathbf{e}(-b^{\gamma}h)\right) \right ). \end{align} | (3.20) |
We just need to give an estimation of the last part in (3.20). Similarly, let
g (x) = \mathbf{e}\left(\left((d^{2}x)^{\gamma}-(d^{2}x+1)^{\gamma}\right)h \right)-1, |
then
\begin{align} g (x) &\ll\ |h| (d^2x)^{\gamma-1}, \\ \frac{\partial g(x)}{\partial x} &\ll |h| d^{2\gamma-2}x^{\gamma-2}. \end{align} |
By partial summation,
\begin{align} &\sum\limits_{b = 1}^{q-1}(-1)^{b}\mathbf{e}(-\frac{tb}{q}) \mathop{\sum\limits_{d^{2} \mid b}}_{d \leqslant q^{\frac{1}{6} } }\mu(d) \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(b+1)^{\gamma}h\right)-\mathbf{e}(-b^{\gamma}h)\right) \\ & = \sum\limits_{0 < |h|\leqslant H}a_{h} \sum\limits_{d \leqslant q^{ \frac{1}{6} }}\mu(d)\sum\limits_{1 \leqslant b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right)g(b), \\ & \ll\sum\limits_{0 < |h|\leqslant H}|h|^{-1} \sum\limits_{d \leqslant q^{ \frac{1}{6} }} \left|\int_{ 1}^{ \lfloor\frac{q-1}{d^2}\rfloor} g(x) \mathrm{d}\left(\sum\limits_{1 < b \leqslant x} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right) \right) \right|\\ & \ll\sum\limits_{0 < |h|\leqslant H}|h|^{-1} \sum\limits_{d \leqslant q^{ \frac{1}{6} }} \left|g( \lfloor\frac{q-1}{d^2}\rfloor) \sum\limits_{ 1 \leqslant b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right)\right|\\ &\quad +\sum\limits_{0 < |h|\leqslant H}|h|^{-1} \sum\limits_{d \leqslant q^{ \frac{1}{6} }} \left|\int_{ 1}^{ \lfloor\frac{q-1}{d^2}\rfloor}\frac{\partial g(x)}{\partial x} \sum\limits_{ 1 \leqslant b \leqslant x} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right) \mathrm{d}x\right|, \end{align} |
where
g( \lfloor\frac{q-1}{d^2}\rfloor) \ll |h|q^{\gamma-1} |
and
\begin{align} &\sum\limits_{ 1 \leqslant b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right) \\ & = \sum\limits_{ 1 \leqslant b \leqslant q^{\frac{1}{6}} } \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right)+\sum\limits_{ q^{\frac{1}{6}} < b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right). \end{align} |
It is obvious that
\begin{align} \sum\limits_{ 1 \leqslant b \leqslant q^{\frac{1}{6}} } \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right)\ll q^{\frac{1}{6}}. \end{align} |
Suppose q be large enough and for b > q^{\frac{1}{6}} , when 2 \nmid d or q \nmid td^2 ,
\left\| (\frac{d^{2}}{2}-\frac{td^{2}}{q})-\gamma d^{2\gamma}b^{\gamma-1}h\right\|^{-1} \geqslant \frac{1}{2} \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1} > 0, |
and applying Lemma 2.6, we have
\begin{align} \sum\limits_{q^{\frac{1}{6}} < b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right) \ll& \left\| (\frac{d^{2}}{2}-\frac{td^{2}}{q})-\gamma d^{2\gamma}b^{\gamma-1}h\right\|^{-1} \\ \ll& \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1} . \end{align} |
So
\sum\limits_{ 1 \leqslant b \leqslant \lfloor\frac{q-1}{d^2}\rfloor} \mathbf{e}\left((\frac{d^{2}}{2}-\frac{td^{2}}{q})b-(d^{2}b)^{\gamma}h\right) \ll \begin{cases} q^{\frac{1}{6}}+ \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1} , & 2 \nmid d \text{ or } q \nmid td^2;\\ \frac{q}{d^2}, & 2 \mid d \text{ and } q \mid td^2 ;\end{cases} |
which means
\begin{align} &\sum\limits_{b = 1}^{q-1}(-1)^{b}\mathbf{e}(-\frac{tb}{q}) \mathop{\sum\limits_{d^{2} \mid b}}_{d \leqslant q^{\frac{1}{6} } }\mu(d) \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(b+1)^{\gamma}h\right)-\mathbf{e}(-b^{\gamma}h)\right) \\ &\ll\sum\limits_{0 < |h|\leqslant H} |h|^{-1}\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \nmid d \text{ or } q \nmid td^2} |h|q^{\gamma-1} \left(q^{\frac{1}{6}}+ \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1}\right) +\sum\limits_{0 < |h|\leqslant H} |h|^{-1}\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \mid d \text{ and } q \mid td^2} |h|q^{\gamma} d^{-2} \\ &\ll H q^{ \gamma -1 }\left(q^{\frac{1}{3}}+ \mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \nmid d \text{ or } q \nmid td^2}\left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1}\right)+ H q^{ \gamma }\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \mid d \text{ and } q \mid td^2}d^{-2} . \end{align} |
We denote
\begin{align} T(c)&: = \sum\limits_{d\leqslant q^{\frac{1}{6} }} \# \left\{ (\frac{q}{u}-2t)d^{2} \equiv c (\bmod 2\frac{q}{u}), t\leqslant \frac{q}{u}\right\} \\ &\ll \sum\limits_{d\leqslant q^{\frac{1}{6} }} (\frac{q}{u}, d^{2}) \\ &\ll q^{\frac{1}{3} }d(q), \end{align} |
thus,
\begin{align} &\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mathop{\sum\limits_{d^{2} \mid n}}_{d \leqslant q^{\frac{1}{6}} }\mu(d) \left( \sum\limits_{0 < |h|\leqslant H}a_{h} \left(\mathbf{e}\left(-(n+1)^{\gamma}h\right)-\mathbf{e}(-n^{\gamma}h)\right)\right)\\ & \ll q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma- 1}}{|\cos\frac{s}{q}\pi|}\left(q^{\frac{1}{ 3}}+ \mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \nmid d \text{ or } q \nmid td^2} \left\| (\frac{1}{2}-\frac{t }{q})d^{2}\right\|^{-1}\right) \\ &\quad+q^{-2}\sum\limits_{s = 1}^{q}\sum\limits_{t = 1}^{q}(s,t,q)^{\frac{1}{2}}d(q)q^{\frac{1}{2}}\frac{H q^{ \gamma}}{|\cos\frac{s}{q}\pi|}\mathop{\sum\limits_{d \leqslant q^{ \frac{1}{6} }}}_{2 \mid d \text{ and } q \mid td^2}d^{-2} \\ & \ll Hq^{ \gamma-\frac{5}{2}}\sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{t = 1}^{\frac{q}{u}} \left(q^{\frac{1}{3}}+ \sum\limits_{d \leqslant q^{\frac{1}{6} }} \left\| (\frac{1}{2}-\frac{ut }{q})d^{2}\right\|^{-1} \right) \\ &\quad+Hq^{ \gamma-\frac{3}{2}} \sum\limits_{u\mid q}u^{\frac{1}{2}} d(q) \sum\limits_{s = 1}^{\frac{q}{u}}\frac{1}{|1-2 \frac{su}{q} |} \sum\limits_{d \leqslant q^{ \frac{1}{6} }}\mathop{\sum\limits_{t = 1}^{\frac{q}{u}}}_{ q \mid td^2}d^{-2} \\ & \ll H q^{ \gamma-\frac{1}{6}} d^2(q) \log q+ Hq^{ \gamma-\frac{1}{3}}d^2(q) \log q \\ &\quad+ Hq^{ \gamma- \frac{3}{2}}\sum\limits_{u\mid q}u^{-\frac{1}{2}} d(q) \log^{2}q \max\limits_{C} \sum\limits_{C < c\leqslant2C} \|\frac{C}{2\frac{q}{u}}\|^{-1} T(c) \\ &\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q. \end{align} | (3.21) |
With Eqs (3.18) and (3.19), we have
\begin{align} R_{221}&\ll Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q+H q^{ \gamma -\frac{1}{6}} \log H. \end{align} | (3.22) |
For R_{222} , the contribution from h = 0 can be bounded by similar methods of R_{21} , and the contribution from h \neq 0 can be bounded by similar methods of R_{221} . Taking
H = \log q , |
we obtain
\begin{align} R_{222}& = b_{0} \mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}} \mu^{2}(n) +\mathop{{\sum}^{\prime}}_{n = 1}^{q} (-1)^{n+\bar{n}}\mu^{2}(n)\left(\sum\limits_{0 < |h|\leqslant H}b_{h} \left(e\left(-(n+1)^{\gamma}h\right)+e\left(-n^{\gamma}h\right)\right)\right) \\ &\ll H^{-1}q^{\frac{3}{4}}d^{3}(q)\log^2 q +Hq^{ \gamma -\frac{1}{6}}d^2(q) \log^2 q\\ &\ll q^{\frac{3}{4}}d^{3}(q)\log q+ q^{ \gamma -\frac{1}{6}}d^{2}(q) \log^3 q . \end{align} | (3.23) |
Following from Eqs (3.16), (3.22), and (3.23),
\begin{align} R_{2}\ll q^{\gamma-\frac{1}{6}} d^{2}(q) \log^3 q+ q^{\frac{3}{4}}d^{3}(q)\log q . \end{align} | (3.24) |
Hence, from Eqs (3.1), (3.8), and (3.24), we derive that
\begin{align} R(c;q) = &\frac{3}{\pi^{2}}\prod\limits_{p\mid q}(1+p^{-1})^{-1}q^{\gamma}+O\left( \sum\limits_{p\mid q}(1-p^{-\frac{1}{2}}) ^{-1} q^{\gamma-\frac{1}{2}}\right)\\ &+O\left(q^{\frac{7}{13}\gamma+\frac{4}{13}}\prod\limits_{p\mid q}(1-p^{-\frac{1}{2}})^{-1}\log q\right)+O\left( q^{\frac{3}{4}}d^{3}(q)\log q \right)+O(q^{ \gamma -\frac{1}{6}} d^{2}(q)\log^3 q). \end{align} |
We need the error terms to be smaller than the main term, so
\begin{cases} \frac{7}{13}\gamma+\frac{4}{13} < \gamma ,\\ \frac{3}{4} < \gamma ,\end{cases} |
which means the range of c is (1, \frac{4}{3}) . The reason why the range of c is changed is that R(c; q) requires q large enough.
In this paper, we generalize the Lehmer problem by considering the count of square-free numbers in the intersection of the Lehmer set and Piatetski-Shapiro sequence when q is an odd integer and large enough. By methods of exponential sum and Kloosterman sum, we study its asymptotic properties and give a sharp asymptotic formula as q tends to infinity.
Based on this result, we will consider some distribution problems similar to the Lehmer problem with more special sequences, which is significant for understanding the distribution properties of those problems.
Xiaoqing Zhao: calculations, writing and editing; Yuan Yi: methodology and reviewing. All authors have read and agreed to the published version of the manuscript.
In preparing this manuscript, we employed the language model ChatGPT-4 for the purpose of grammatical corrections. It did not influence the calculations and conclusion in this paper.
This work is supported by Natural Science Foundation No.12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
Acheampong AO (2018) Economic growth, CO2 emissions and energy consumption: What causes what and where? Energy Econ 74: 677-692. https://doi.org/10.1016/j.eneco.2018.07.022 doi: 10.1016/j.eneco.2018.07.022
![]() |
[2] |
Afshan S, Yaqoob T, Ho WK, et al. (2024) Achieving sustainable growth in emerging economies: Insights from advance method moment of quantile regression. Gondwana Res 127: 182-198. https://doi.org/10.1016/j.gr.2023.08.003 doi: 10.1016/j.gr.2023.08.003
![]() |
[3] |
Altunbaş Y, Thornton J (2012) Does financial development reduce corruption? Econ Lett 114: 221-223. https://doi.org/10.1016/j.econlet.2011.08.020 doi: 10.1016/j.econlet.2011.08.020
![]() |
[4] | Amato JV (2023) As credit goes, so goes the economy. Available from: https://www.nb.com/en/global/insights/cio-weekly-perspectives-as_credit-goes-so-goes-the-economy. |
[5] | Asher C (2018) Brazil's actual forest related CO2 emissions could blow by Paris pledge. Available from: https://news.mongabay.com/2018/04/brazils-actual-forest-related-co2-emissions-could-blow-by-paris-pledge/. |
[6] |
Asravor RK, Arthur LA, Acheampong V, et al. (2023) Domestic debt sustainability and economic growth: Evidence from Ghana. Res Glob 7: 100144. https://doi.org/10.1016/j.resglo.2023.100144 doi: 10.1016/j.resglo.2023.100144
![]() |
[7] |
Atta N, Sharifi A, Lee CY (2024) The relationship between the rule of law and environmental sustainability: Empirical evidence from the analysis of global indices. Int J Sustain Dev World Ecol: 1-17. https://doi.org/10.1080/13504509.2024.2371159 doi: 10.1080/13504509.2024.2371159
![]() |
[8] |
Aye GC, Edoja PE, Charfeddine L (2017) Effect of economic growth on CO2 emission in developing countries: Evidence from a dynamic panel threshold model. Cogent Econ Financ 5: 1379239. https://doi.org/10.1080/23322039.2017.1379239 doi: 10.1080/23322039.2017.1379239
![]() |
[9] |
Azam M, Khan AQ, Abdullah HB, et al. (2016) The impact of CO2 emissions on economic growth: evidence from selected higher CO2 emissions economies. Environ Sci Pollut Res Int 23: 6376-6389. https://doi.org/10.1007/s11356-015-5817-4 doi: 10.1007/s11356-015-5817-4
![]() |
[10] | Balza L, Heras-Recuero L, Matías D, et al. (2024) Green or growth? Understanding the relationship between economic growth and CO2 emissions. Inter-American Development Bank, Energy Division Technical Note IDB-TN-2930. |
[11] | Barbosa H, Goes C, Bilajanovska N, et al. (2017) Brazil-selected issues. IMF Country Report No. 17/216. |
[12] | Barro RJ (1999) Determinants of economic growth: A cross-country empirical study. Cambridge: The MIT Press. |
[13] | Bazaluk O, Kader SA, Zayed NM, et al. (2024) Determinant of economic growth in developing country: A special case regarding Turkey and Bangladesh. J Knowledge Econ https://doi.org/10.1007/s13132-024-01989-8 |
[14] | Bello L (2024) Brazil's population will stop growing in 2041. Available from: https://agenciadenoticias.ibge.gov.br/en/agencia-news/2184-news-agency/news/41065-populacao-do-pais-vai-parar-de-crescer-em-2042. |
[15] | Brazil jumps two places, becomes world's ninth largest economy in 2023, The IMF estimates its GDP to reach $2.13 tri this year. Available from: https://agenciabrasil.ebc.com.br/en/economia/noticia/2023-12/brazil-jumps-two-places-becomes-worlds-ninth-largest-economy-2023. |
[16] | Braun M, Di Tella R (2004) Inflation, inflation variability, and corruption. Econ Pol 16: 77-100. |
[17] | Brida JG, Alvarez E, Cayssials G, et al. (2024) How does population growth affect economic growth and vice versa? An empirical analysis. Rev Econ Polit Sci 9: 265-297. |
[18] | Bufford S (2006) International rule of law and the market economy - An outline. Sw J Law Trade Am 12: 303-312. |
[19] | Chivvis CS, Geaghan-Breiner B (2023) Brazil in the emerging world order. Available from: https://carnegieendowment.org/research/2023/12/brazil-in-the-emerging-world-order?lang = en. |
[20] | Climate Action Tracker. Available from: https://climateactiontracker.org/. |
[21] | Coleman L (2024) What is needed for inclusive and sustainable global economic growth? Four leaders share their thoughts. Available from: https://www.weforum.org/agenda/2024/05/inclusive-sustainable-transition-specialmeeting24/. |
[22] | Corruption Comes in Many Forms. Available from: https://rwi.lu.se/corruption-comes-in-many-forms/. |
[23] | Dam KW (2006) The law-growth nexus: The rule of law and economic development. Brooking Institution Press: Washington, DC. |
[24] |
De Gregorio J (1992) The effects of inflation on economic growth: Lessons from Latin America. Eur Econ Rev 36: 417-425. https://doi.org/10.1016/0014-2921(92)90098-H doi: 10.1016/0014-2921(92)90098-H
![]() |
[25] | De Mello L (2011) Brazil: Brazil's achievements and challenges. CESifo Forum 1: 3-10. |
[26] | Domeher D, Abdulai R (2012) Access to credit in the developing world: Does land registration matter? Third World Q 33: 161-175. |
[27] | Edwards S (1995) Crisis and reform in Latin America, from despair to hope. Washington, DC: World Bank Publications. |
[28] | Edwards S (2007) Crises and growth: A Latin American perspective. J Iberian Latin Am Econ History XXV1: 19-52. |
[29] | Ekinci R, Tüzün O, Ceylan F (2020) The relationship between inflation and economic growth: Experiences of some inflation targeting countries. Financ Stud 24: 6-20. |
[30] | Emissions Database for Global Atmospheric Research (2023) Available from: https://edgar.jrc.ec.europa.eu/. |
[31] | France G (2019) Brazil: Overview of corruption and anti-corruption. Transparency International Anti-Corruption Helpdesk. Available from: https://knowledgehub.transparency.org/assets/uploads/helpdesk/Brazil-Country-Profile-2019_PR.pdf. |
[32] | GHG emissions of all world countries, (2024) Available from: https://edgar.jrc.ec.europa.eu/report_2023. |
[33] | Giannetti M, Yu X, Liao G, et al. (2017) The externalities of corruption: Evidence from Entrepreneurial Activity in China. CEPR Discussion Papers 12345. |
[34] | Gizaw T, Getachew Z, Mancha M (2024) Sectoral allocations of domestic credit and their effects on economic growth in Ethiopia. Cogent Econ Financ 12: 2390949. https://doi.org/10.1080/23322039.2024.2390949 |
[35] | Goncalves CE, Srinivasan K (2019) Corruption in emerging market economies: How does Brazil fare? In A Spilimbergo, K Srinivasan, Brazil: Boom, bust, and the road to recovery, 295-313. Washington, DC: International Monetary Fund. |
[36] |
González-Álvarez M, Montañés A (2023) CO2 emissions, energy consumption, and economic growth: Determining the stability of the 3E relationship. Econ Model 121: 106195. https://doi.org/10.1016/j.econmod.2023.106195 doi: 10.1016/j.econmod.2023.106195
![]() |
[37] |
Gouvea R, Montoya MJR (2014) Building an equitable green economy: A Brazilian perspective. Int J Environ Stud 71: 182-199. https://doi.org/10.1080/00207233.2014.898372 doi: 10.1080/00207233.2014.898372
![]() |
[38] | Gray CW, Kaufmann D (1998) Corruption and development. Financ Dev: 7-10. |
[39] | Hilson C (2021) Climate change and the rule of law: A case typology. Available from: https://www.ucl.ac.uk/law-environment/blog-climate-change-and-rule-law/climate-change-and-rule-law-case-typology. |
[40] | Ifada LM, Chafsya LA, Ihbal A (2024) The impact of control of corruption on GHG emissions: Overview of the five largest industrial cities in Indonesia. In B Alareeni, A Hamdan (Eds.), Technology: Toward Business Sustainability, 463-471. Cham: Springer. |
[41] | International Finance Corporation (2018) Sustainable banking network (SBN) global progress report. Available from: https://www.sbfnetwork.org/wpcontent/uploads/pdfs/2018_Global_Progress_Report_Downloads/SBFN_Global_Progress_Report_2018.pdf. |
[42] | Kapuria-Foreman V (1995) Population and growth causality in developing countries. J Develop Areas 29: 531-540. |
[43] |
Karedla Y, Mishra R, Patel N (2021) The impact of economic growth, trade openness and manufacturing on CO2 emission in India: An autoregressive distributive lag (ARDL) bounds test approach. J Econ Financ Admin Sci 26: 1-14. http://dx.doi.org/10.1108/jefas-05-2021-0057 doi: 10.1108/jefas-05-2021-0057
![]() |
[44] |
Koyoma M, Johnson B (2015) Monetary stability and the rule of law. J Financ Stab 17: 46-58. https://doi.org/10.1016/j.jfs.2014.09.002 doi: 10.1016/j.jfs.2014.09.002
![]() |
[45] | Lacerda JP (2024) Brazil launches new industrial policy with development goals and measures up to 2023. Available from: https://www.gov.br/planalto/en/latest-news/2024/01/brazil-launches-new-industrial-policy-with-development-goals-and-measures-up-to-2033. |
[46] |
Liu X, Latif Z, Danish Shahid L, et al. (2021) The corruption-emissions nexus: Do information and communication technologies make a difference? Util Policy 72: 101244. https://doi.org/10.1016/j.jup.2021.101244 doi: 10.1016/j.jup.2021.101244
![]() |
[47] | Lynn DJ, Wang T, Mehlum C (2011) Investing in emerging markets: China, India and Brazil. Real Estate Issues 36: 21-26. |
[48] | Mauro P (1997) Why worry about corruption? Washington, DC: International Monetary Fund. |
[49] | Maâlej A, Cabagnols A (2021) CO2 emission and growth. J Energy Dev 26: 1-24. |
[50] |
Mbate M (2013) Domestic debt, private sector credit and economic growth in sub-Saharan Africa. Afr Dev Rev 25: 434-446. https://doi.org/10.1111/1467-8268.12040 doi: 10.1111/1467-8268.12040
![]() |
[51] |
Mideksa TK (2013) The economic impact of natural resources. J Environ Econ Manag 65: 272-289. https://doi.org/10.1016/j.jeem.2012.07.005 doi: 10.1016/j.jeem.2012.07.005
![]() |
[52] |
Miladinov G (2023) Impacts of population growth and economic development on food security in low-income and middle-income countries. Front Hum Dynam 5: 1121662. https://doi.org/10.3389/fhumd.2023.1121662 doi: 10.3389/fhumd.2023.1121662
![]() |
[53] | Minh TB, Ngoc TN, Van HB (2023) Relationship between carbon emissions, economic growth, renewable energy consumption, foreign direct investment, and urban population in Vietnam. Heliyon 9: e17544. |
[54] |
Mitić P, Fedajev A, Radulescu M, et al. (2023) The relationship between CO2 emissions, economic growth, available energy, and employment in SEE countries. Environ Sci Pollut Res 30: 16140-16155. https://doi.org/10.1007/s11356-022-23356-3 doi: 10.1007/s11356-022-23356-3
![]() |
[55] | Morley SA (2000) The effects of growth and economic reform on income distribution in Latin America. CEPAL Rev 71: 23-40. |
[56] | Nassif A, Feijo C, Araujo E (2013) Structural change and economic development: Is Brazil catching up or falling behind? Camb J Econ 39: 1307-1332. |
[57] | New Zealand Foreign Affairs & Trade (2023) Brazil: Trade and economic update. Available from: https://www.mfat.govt.nz/assets/Trade-General/Trade-Market-reports/Brazil-Trade-and-economic-update-April-2023.pdf. |
[58] |
Osadume R, University EO (2021) Impact of economic growth on carbon emissions in selected West African countries, 1980–2019. J Bus Money 1: 8-23. https://doi.org/10.1108/JMB-03-2021-0002 doi: 10.1108/JMB-03-2021-0002
![]() |
[59] | Oto-Peralías D, Romero-Ávila D (2017) Legal reforms and economic performance: Revisiting the evidence. World Development Report. Governance and Law Background Paper: 1-107. |
[60] |
Paniagua P (2023) Money and the rule of law. Const Political Econ 34: 260-266. https://doi.org/10.1007/s10602-022-09372-y doi: 10.1007/s10602-022-09372-y
![]() |
[61] | Rule of Law and Development (2024) https://www.un.org/ruleoflaw/rule-of-law-and-development/. |
[62] | Samad F, Masih M (2016) Lead-lag relationship between domestic credit and economic growth: The case of Singapore. MPRA Paper No. 107380. |
[63] |
Sands P (2016) Climate change and the rule of law: Adjudicating the future in international law. J Environ Law 28: 19-35. https://doi.org/10.1093/jel/eqw005 doi: 10.1093/jel/eqw005
![]() |
[64] |
Sharma C, Paramati SR (2021) Does financial development reduce the level of corruption? Evidence from a global sample of 140 countries. Financ Econ 26: 5093-5109. https://doi.org/10.1002/ijfe.2056 doi: 10.1002/ijfe.2056
![]() |
[65] | Singh S (2024) The relationship between growth in GDP and CO2 has loosened; it needs to be cut completely. Available from: https://www.iea.org/commentaries/the-relationship-between-growth-in-gdp-and-co2-has-loosened-it-needs-to-be-cut-completely. |
[66] | Spilimbergo A, Srinivasan K (2019) Brazil: Boom, bust, and the road to recovery. Washington, DC: International Monetary Fund. |
[67] |
Spyromitros E, Panagiotidis M (2022) The impact of corruption on economic growth in developing countries and a comparative analysis of corruption measurement indicators. Cogent Econ Financ 10: 2129368. https://doi.org/10.1080/23322039.2022.2129368 doi: 10.1080/23322039.2022.2129368
![]() |
[68] | Sundström A, Harring N, Jagers SC, et al. (2024) The impact of corruption on climate change mitigation. The Quality of Government Institute Working Paper Series, 3. |
[69] |
Rigas N, Kounetas E (2024) The impact of CO2 emissions and climate on economic growth and productivity: International evidence. Rev Dev Econ 28: 719-740. https://doi.org/10.1111/rode.13075 doi: 10.1111/rode.13075
![]() |
[70] | Rose-Ackerman S (1997) Corruption and development. Annual Bank Conference on Development Economics: 24747. |
[71] | The Biggest Industries In Brazil (2024) Available from: https://www.worldatlas.com/articles/which-are-the-biggest-industries-in-brazil.html. |
[72] | THE NOBEL PRIZE, (2024) Available from: https://www.nobelprize.org/prizes/economic-sciences/2024/press-release/. |
[73] | Timperley J (2018) The carbon brief profile: Brazil. Available from: https://www.carbonbrief.org/the-carbon-brief-profile-brazil/. |
[74] | Thwaites J, Amarsinghe NM, Ballesteros A (2015) What does the Paris Agreement do for finance? Available from: https://www.wri.org/insights/what-does-paris-agreement-do-finance. |
[75] | United Nations Trade and Development (2022) Now 8 billion and counting: Where the world's population has grown most and why that matters. Available from: https://unctad.org/data-visualization/now-8-billion-and-counting-where-worlds-population-has-grown-most-and-why. |
[76] | Ventura L (2024) Countries with highest GDP growth 2024. Available from: https://gfmag.com/data/countries-highest-gdp-growth/. |
[77] | Wang YY (1996) Sustainable economic development. In M Guitián, RA Mundell (Eds.), Inflation and growth in China (Chapter 8). Washington, DC: International Monetary Fund. |
[78] | What are the largest industrial sectors in Brazil? (2023) Available from: https://latamfdi.com/largest-industrial-sectors-in-brazil/. |
[79] | World Economic Forum (2018) Brazil competitiveness and inclusive growth lab report. Available from: https://www3.weforum.org/docs/WEF_43923_Brazil_COMP_Lab_report_2018.pdf. |
[80] |
Zhang M, Zhang H, Zhang L, et al. (2023) Corruption, anti-corruption, and economic development. Humanit Soc Sci Commun 10: 434. https://doi.org/10.1057/s41599-023-01930-5 doi: 10.1057/s41599-023-01930-5
![]() |