Recently, European regulation on sustainability preferences has made green finance a mainstream topic for retail investors. On the contrary, green innovation is largely discussed as bearing risks, and renewable energy projects are sometimes referred to as related to high risk. Our article aimed to shed light on retail investors' risk exposure in green finance. In the literature review, we rarely found the retail investor's risk perspective reflected, and green finance risk in terms of major capital loss was not explicitly stated as a research topic. We aimed to close this gap in the literature and apply a multiple case study approach with cases from the renewable energy sector to analyze the components that nurture green finance risk. For case description, we leveraged publicly available online information such as press articles, financial reporting, mandatory disclosure from the represented company, and pre-contractual information of the financial instruments marketed. Our findings suggest that green finance risk (GFR) is nurtured by risk components from the categories of financial instrument risk (FIR), investee company risk (ICR), and operational risk (OR) of renewable energy projects. The cross-case analysis identified red flags that might alert future investors. Additionally, we suggested measures to mitigate green finance risk and propose regulatory improvements. Our research marks a starting point for future quantitative and qualitative research.
Citation: Laura Grumann, Mara Madaleno, Elisabete Vieira. The green finance dilemma: No impact without risk – a multiple case study on renewable energy investments[J]. Green Finance, 2024, 6(3): 457-483. doi: 10.3934/GF.2024018
[1] | Ziqiang Wang, Chunyu Cen, Junying Cao . Topological optimization algorithm for mechanical-electrical coupling of periodic composite materials. Electronic Research Archive, 2023, 31(5): 2689-2707. doi: 10.3934/era.2023136 |
[2] | Yun Ni, Jinqing Zhan, Min Liu . Topological design of continuum structures with global stress constraints considering self-weight loads. Electronic Research Archive, 2023, 31(8): 4708-4728. doi: 10.3934/era.2023241 |
[3] | Furong Xie, Yunkai Gao, Ting Pan, De Gao, Lei Wang, Yanan Xu, Chi Wu . Novel lightweight connecting bracket design with multiple performance constraints based on optimization and verification process. Electronic Research Archive, 2023, 31(4): 2019-2047. doi: 10.3934/era.2023104 |
[4] | Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang . A polygonal topology optimization method based on the alternating active-phase algorithm. Electronic Research Archive, 2024, 32(2): 1191-1226. doi: 10.3934/era.2024057 |
[5] | Mingtao Cui, Min Pan, Jie Wang, Pengjie Li . A parameterized level set method for structural topology optimization based on reaction diffusion equation and fuzzy PID control algorithm. Electronic Research Archive, 2022, 30(7): 2568-2599. doi: 10.3934/era.2022132 |
[6] | Xiaoguang Li . Normalized ground states for a doubly nonlinear Schrödinger equation on periodic metric graphs. Electronic Research Archive, 2024, 32(7): 4199-4217. doi: 10.3934/era.2024189 |
[7] | Lei Liu, Jun Dai . Estimation of partially linear single-index spatial autoregressive model using B-splines. Electronic Research Archive, 2024, 32(12): 6822-6846. doi: 10.3934/era.2024319 |
[8] | Yuhai Zhong, Huashan Feng, Hongbo Wang, Runxiao Wang, Weiwei Yu . A bionic topology optimization method with an additional displacement constraint. Electronic Research Archive, 2023, 31(2): 754-769. doi: 10.3934/era.2023037 |
[9] | Xiang Xu, Chuanqiang Huang, Chongchong Li, Gang Zhao, Xiaojie Li, Chao Ma . Uncertain design optimization of automobile structures: A survey. Electronic Research Archive, 2023, 31(3): 1212-1239. doi: 10.3934/era.2023062 |
[10] | Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang . Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29(1): 1859-1880. doi: 10.3934/era.2020095 |
Recently, European regulation on sustainability preferences has made green finance a mainstream topic for retail investors. On the contrary, green innovation is largely discussed as bearing risks, and renewable energy projects are sometimes referred to as related to high risk. Our article aimed to shed light on retail investors' risk exposure in green finance. In the literature review, we rarely found the retail investor's risk perspective reflected, and green finance risk in terms of major capital loss was not explicitly stated as a research topic. We aimed to close this gap in the literature and apply a multiple case study approach with cases from the renewable energy sector to analyze the components that nurture green finance risk. For case description, we leveraged publicly available online information such as press articles, financial reporting, mandatory disclosure from the represented company, and pre-contractual information of the financial instruments marketed. Our findings suggest that green finance risk (GFR) is nurtured by risk components from the categories of financial instrument risk (FIR), investee company risk (ICR), and operational risk (OR) of renewable energy projects. The cross-case analysis identified red flags that might alert future investors. Additionally, we suggested measures to mitigate green finance risk and propose regulatory improvements. Our research marks a starting point for future quantitative and qualitative research.
A set C⊆R is said to be convex, if
(1−τ)υ1+τυ2∈C,∀υ1,υ2∈C,τ∈[0,1]. |
Similarly, a function Ψ:C→R is said to be convex, if
Ψ((1−τ)υ1+τυ2)≤(1−τ)Ψ(υ1)+τΨ(υ2),∀υ1,υ2∈C,τ∈[0,1]. |
In recent years, the classical concepts of convexity has been extended and generalized in different directions using novel and innovative ideas.
Let us recall first Raina's function Rσρ,λ(z) that it's defined as follows:
Rσρ,λ(z)=Rσ(0),σ(1),…ρ,λ(z):=∞∑k=0σ(k)Γ(ρk+λ)zk,z∈C, | (1.1) |
where ρ,λ>0, with bounded modulus |z|<M, and σ={σ(0),σ(1),…,σ(k),…} is a bounded sequence of positive real numbers. For details, see [1].
Cortez et al. [2] presented a new generalization of convexity class as follows:
Definition 1. [2] Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A non-empty set I⊆R is said to be generalized convex, if
υ1+τRσρ,λ(υ2−υ1)∈I,∀υ1,υ2∈I,τ∈[0,1]. |
Definition 2. [2] Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A function Ψ:I⊆R→R is said to be generalized convex, if
Ψ(υ1+τRσρ,λ(υ2−υ1))≤(1−τ)Ψ(υ1)+τΨ(υ2),∀υ1,υ2∈I,τ∈[0,1]. |
Quantum calculus is the branch of mathematics (often known as calculus without limits) in which we obtain q-analogues of mathematical objects which can be recaptured by taking q→1−. Interested readers may find very useful details on quantum calculus in [3]. Recently, quantum calculus has been extended to post quantum calculus. In quantum calculus we deal with q-number with one base q however post quantum calculus includes p and q-numbers with two independent variables p and q. This was first considered by Chakarabarti and Jagannathan [4]. Tunç and Gov [5] introduced the concepts of (p,q)-derivatives and (p,q)-integrals on finite intervals as:
Definition 3. [5] Let K⊆R be a non-empty set such that υ1∈K, 0<q<p≤1 and Ψ:K→R be a continuous function. Then, the (p,q)-derivative υ1D(p,q)Ψ(Θ) of Ψ at Θ∈K is defined by
υ1D(p,q)Ψ(Θ)=Ψ(pΘ+(1−p)υ1)−Ψ(qΘ+(1−q)υ1)(p−q)(Θ−υ1),(Θ≠υ1). |
Note that, if we take p=1 in Definition 3, then we get the definition of q-derivative introduced and studied by Tariboon et al. [6].
Definition 4. [5] Let K⊆R be a non-empty set such that υ1∈K, 0<q<p≤1 and Ψ:K→R be a continuous function. Then, the (p,q)-integral on K is defined by
Θ∫υ1Ψ(τ)υ1d(p,q)τ=(p−q)(Θ−υ1)∞∑n=0qnpn+1Ψ(qnpn+1Θ+(1−qnpn+1)υ1) |
for all Θ∈K.
Note that, if we take p=1 in Definition 4, then we get the definition of q-integral on finite interval introduced and studied by Tariboon et al. [6].
Theory of convexity has played very important role in the development of theory of inequalities. A wide class of inequalities can easily be obtained using the convexity property of the functions. In this regard Hermite-Hadamard's inequality is one of the most studied result. It provides us an equivalent property for convexity. This famous result of Hermite and Hadamard reads as: Let Ψ:[υ1,υ2]⊆R→R be a convex function, then
Ψ(υ1+υ22)≤1υ2−υ1υ2∫υ1Ψ(Θ)dΘ≤Ψ(υ1)+Ψ(υ2)2. |
In recent years, several new extensions and generalizations of this classical result have been obtained in the literature. In [7] Dragomir and Agarwal have obtained a new integral identity using the first order differentiable functions:
Lemma 1. [7] Let Ψ:X=[υ1,υ2]⊆R→R be a differentiable function on X∘ (the interior set of X), then
Ψ(υ1)+Ψ(υ2)2−1υ2−υ1∫υ2υ1Ψ(Θ)dΘ=υ2−υ12∫10(1−2τ)Ψ′(τυ1+(1−τ)υ2)dτ. |
Using this identity authors have obtained some new right estimates for Hermite-Hadamard's inequality essentially using the class of first order differentiable convex functions. This idea of Dragomir and Agarwal has inspired many researchers and consequently a variety of new identities and corresponding inequalities have been obtained in the literature using different techniques. Sudsutad et al. [8] and Noor et al. [9] obtained the quantum counterpart of this result and obtained associated q-analogues of trapezium like inequalities. Liu and Zhuang [10] obtained another quantum version of this identity via twice q-differentiable functions and obtained associated q-integral inequalities. Awan et al. [11] extended the results of Dragomir and Agarwal by obtaining a new post-quantum integral identity involving twice (p,q)-differentiable functions and twice (p,q)-differentiable preinvex functions. Du et al. [12] obtained certain quantum estimates on the parameterized integral inequalities and established some applications. Zhang et al. [13] found different types of quantum integral inequalities via (α,m)-convexity. Cortez et al. [14,15] derived some inequalities using generalized convex functions in quantum analysis.
The main objective of this paper is to introduce the notion of generalized strongly convex functions using Raina's function. We derive two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also derive corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. In order to discuss the relation with other results, we also discuss some special cases about generalized convex functions. To support our main results, we give applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. Finally, some conclusions and future research are provided as well. We hope that the ideas and techniques of this paper will inspire interested readers working in this field.
In this section, we discuss our main results. First, we introduce the class of generalized strongly convex function involving Raina's function.
Definition 5. Let ρ,λ>0 and σ=(σ(0),…,σ(k),…) be a bounded sequence of positive real numbers. A function Ψ:I⊆R→R is called generalized strongly convex, if
Ψ(υ1+τRσρ,λ(υ2−υ1))≤(1−τ)Ψ(υ1)+τΨ(υ2)−cτ(1−τ)(Rσρ,λ(υ2−υ1))2, |
∀c>0,τ∈[0,1] and υ1,υ2∈I.
In this section, we derive two new post-quantum integral identities that will be used in a sequel.
Lemma 2. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q=qRσρ,λ(υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ. | (2.1) |
Proof. Using the right hand side of (3.3), we have
I:=qRσρ,λ(υ2−υ1)p+qI1, |
and from the definitions of υ1D(p,q), and (p,q)-integral, we get
I1:=∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ=∫10(1−(p+q)τ)Ψ(υ1+τpRσρ,λ(υ2−υ1))−Ψ(υ1+qτRσρ,λ(υ2−υ1))(p−q)τRσρ,λ(υ2−υ1)0d(p,q)τ=1Rσρ,λ(υ2−υ1)[∞∑n=0Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−Ψ(υ1+qn+1pn+1Rσρ,λ(υ2−υ1))]−p+qRσρ,λ(υ2−υ1)[∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−∞∑n=0qnpn+1Ψ(υ1+qn+1pn+1Rσρ,λ(υ2−υ1))]=Ψ(υ1+Rσρ,λ(υ2−υ1))−Ψ(υ1)Rσρ,λ(υ2−υ1)−p+qRσρ,λ(υ2−υ1)[∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))−1q∞∑n=1qnpnΨ(υ1+qnpnRσρ,λ(υ2−υ1))]=Ψ(υ1+Rσρ,λ(υ2−υ1))−Ψ(υ1)Rσρ,λ(υ2−υ1)−p+qqRσρ,λ(υ2−υ1)Ψ(υ1+Rσρ,λ(υ2−υ1))−p+qRσρ,λ(υ2−υ1)∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))+p(p+q)qRσρ,λ(υ2−υ1)∞∑n=0qnpn+1Ψ(υ1+qnpnRσρ,λ(υ2−υ1))=−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)qRσρ,λ(υ2−υ1)+p+qpq(Rσρ,λ(υ2−υ1))2∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)0d(p,q)τ. |
This completes the proof.
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 3. Let Ψ:X=[υ1,υ1+Rσρ,λ(υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rσρ,λ(υ2−υ1))2p+q∫10τ(1−qτ)υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))0d(p,q)τ. | (2.2) |
Proof. Firstly, applying the definition of υ1D2(p,q) differentiability, we have
υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))=υ1D(p,q)(υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1)))=qΨ(υ1+τp2Rσρ,λ(υ2−υ1))−(p+q)Ψ(υ1+pqτRσρ,λ(υ2−υ1))+pΨ(υ1+τq2Rσρ,λ(υ2−υ1))pq(p−q)2τ2(Rσρ,λ(υ2−υ1))2. |
Now, using the notion of (p,q)-integration, we get
![]() |
After multiplying both sides by pq2(Rσρ,λ(υ2−υ1))2p+q, we obtain our required identity.
We now derive some (p,q)-analogues of Dragomir-Agarwal like inequalities using first order and second order (p,q)-differentiable functions via generalized strongly convex function with modulus c>0. Let us recall the following notion that will be used in the sequel.
[n](p,q):=pn−qnp−q,n∈N,0<q<p≤1. |
Theorem 1. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(Rσρ,λ(υ2−υ1))2], |
where
S1:=2−p−qp+q+(p+q)3−2(p+q)−2+(p+q)2(p+q)2[2](p,q), | (2.3) |
S2:=2−(p+q)2(p+q)2[2](p,q)+(p+q)3−2(p+q)2[3](p,q), | (2.4) |
and
S3:=2−(p+q)2(p+q)2[2](p,q)+(p+q)3+p+q−2−(p+q)4(p+q)3[3](p,q)+(p+q)4−1(p+q)4[4](p,q). | (2.5) |
Proof. From Lemma 2, properties of modulus and using the generalized strongly convexity of |υ1D(p,q)Ψ|, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q∫10|(1−(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ≤qσρ,λ(υ2−υ1)p+q[∫1p+q0(1−(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ+∫11p+q((p+q)τ−1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ]≤qRσρ,λ(υ2−υ1)p+q[∫1p+q0(1−(p+q)τ)[(1−τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ+∫11p+q((p+q)τ−1)[(1−τ)|υ1D(p,q)Ψ(υ1)|+τ|υ1D(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]. |
After simplification, we obtain our required result.
Corollary 1. Letting c→0+ in Theorem 1, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|]. |
Theorem 2. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m−cS3(Rσρ,λ(υ2−υ1))2]1m, |
where S1,S2 and S3 are given by (2.3)–(2.5), respectively, and
S4:=2−(p+q)p+q+(p+q)((p+q)2−2)(p+q)2[2](p,q). | (2.6) |
Proof. From Lemma 2, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q(∫10|(1−(p+q)τ)|0d(p,q)τ)1−1m×(∫10|(1−(p+q)τ)||υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=qRσρ,λ(υ2−υ1)p+qS1−1m4[∫1p+q0(1−(p+q)τ)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ+∫11p+q((p+q)τ−1)|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤qRσρ,λ(υ2−υ1)p+qS1−1m4[∫1p+q0(1−(p+q)τ)[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ+∫11p+q((p+q)τ−1)[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
After simplification, we obtain our required result.
Corollary 2. Letting c→0+ in Theorem 2, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m]1m. |
Theorem 3. Suppose that all the assumptions of Lemma 2 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m, |
where
S5:=(p−q)1+q∞∑n=0[(1−(p+q)qnpn+1)l+q((p+q)qnpn+1−1)l]. | (2.7) |
Proof. From Lemma 2, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D(p,q)Ψ|m, we have
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q(∫10|(1−(p+q)τ)|l0d(p,q)τ)1l×(∫10|υ1D(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m≤qRσρ,λ(υ2−υ1)p+qS1l5[∫10[(1−τ)|υ1D(p,q)Ψ(υ1)|m+τ|υ1D(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
After simplification, we obtain our required result.
Corollary 3. Letting c→0+ in Theorem 3, then
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m]1m. |
Theorem 4. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(Rσρ,λ(υ2−υ1))2], |
where
S6:=p2−p−q(p+q)(p2+pq+q2)+qp3+pq(p+q)+q3, | (2.8) |
S7:=p3(p2+pq+q2)(p3+pq(p+q)+q3), | (2.9) |
and
S8:=1p+q−1+qp3+pq(p+q)+q3+q[5](p,q). | (2.10) |
Proof. From Lemma 3, properties of modulus and using the generalized strongly convexity of |υ1D2(p,q)Ψ|, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q∫10|τ(1−qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|0d(p,q)τ≤pq2(Rσρ,λ(υ2−υ1))2p+q[∫10τ(1−qτ)[(1−τ)|υ1D2(p,q)Ψ(υ1)|+τ|υ1D2(p,q)Ψ(υ2)|−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]. |
This completes the proof.
Corollary 4. Letting c→0+ in Theorem 4, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|]. |
Theorem 5. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m−cS8(Rσρ,λ(υ2−υ1))2]1m, |
where S6, S7 and S8 are given by (2.8)–(2.10), respectively, and
S9:=p2(p+q)(p2+pq+q2). | (2.11) |
Proof. From Lemma 3, properties of modulus, power-mean inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|τ(1−qτ)|0d(p,q)τ)1−1m×(∫10|τ(1−qτ)||υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[∫10τ(1−qτ)|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[∫10τ(1−qτ)[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 5. Letting c→0+ in Theorem 5, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m]1m. |
Theorem 6. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m, |
where
S10:=(p−q)∞∑n=0qnpn+1(qnpn+1−q2n+1p2n+2)l. | (2.12) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|τ(1−qτ)|l0d(p,q)τ)1l×(∫10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[∫10|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[∫10[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 6. Letting c→0+ in Theorem 22, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m]1m. |
Theorem 7. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(Rσρ,λ(υ2−υ1))2]1l, |
where
S11:=(p−q)∞∑n=0qnpn+1(1−qn+1pn+1)l. | (2.13) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10|(1−qτ)|l0d(p,q)τ)1l×(∫10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[∫10τm|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ]1m≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[∫10τm[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 7. Letting c→0+ in Theorem 7, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m]1l. |
Theorem 8. Suppose that all the assumptions of Lemma 3 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(Rσρ,λ(υ2−υ1))2]1m, |
where
S12:=p+q−1p+q∞∑n=0(1−qn+1pn+1)m, | (2.14) |
S13:=(p−q)∞∑n=0q2np2n+2(1−qn+1pn+1)m, | (2.15) |
and
S14:=p2+pq+q2−(p+q)(p+q)(p2+pq+q2)∞∑n=0(1−qn+1pn+1)m. | (2.16) |
Proof. From Lemma 3, properties of modulus, Hölder's inequality and using the generalized strongly convexity of |υ1D2(p,q)Ψ|m, we have
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(∫10τl0d(p,q)τ)1l×(∫10(1−qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m=pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l(∫10(1−qτ)m|υ1D2(p,q)Ψ(υ1+τRσρ,λ(υ2−υ1))|m0d(p,q)τ)1m≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[∫10(1−qτ)m[(1−τ)|υ1D2(p,q)Ψ(υ1)|m+τ|υ1D2(p,q)Ψ(υ2)|m−cτ(1−τ)(Rσρ,λ(υ2−υ1))2]0d(p,q)τ]1m. |
This completes the proof.
Corollary 8. Letting c→0+ in Theorem 8, then
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m]1m. |
In this section, we discuss some applications of our main results.
First of all, we recall some previously known concepts regarding special means. For different real numbers υ1<υ2, we have
(1) The arithmetic mean: A(υ1,υ2)=υ1+υ22.
(2) The generalized logarithmic mean: Ln(υ1,υ2)=[υ2n+1−υ1n+1(υ2−υ1)(n+1)]1n,n∈Z∖{−1,0}.
Proposition 1. Assume that all the assumptions of Theorem 1 are satisfied, then the following inequality holds
|2A(pυ2n,qυ1n)p+q−1[n](p,q)Lnn(υ1+p(υ2−υ1),υ1)|≤q(υ2−υ1)p+q[S1|(pυ2+(1−p)υ1)n−(qυ2+(1−q)υ1)n(p−q)(υ2−υ1)|+S2|[n](p,q)υ1n−1|], |
where S1 and S2 are given by (2.3) and (2.4), respectively.
Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2−υ1)=υ2−υ1 and c=0 in Theorem 1, we obtain our required result.
Example 1. If we take n=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 1, then we have 0.4<9.42, which shows the validity of the result.
Proposition 2. Assume that all the assumption of Theorem 2 are satisfied, then the following inequality holds
|2A(pυ2n,qυ1n)p+q−1[n](p,q)Lnn(υ1+p(υ2−υ1),υ1)|≤q(υ2−υ1)p+qS1−1m4[S1|(pυ2+(1−p)υ1)n−(qυ2+(1−q)υ1)n(p−q)(υ2−υ1)|m+S2|[n](p,q)υ1n−1|m]1m, |
where S1 and S2 are given by (2.3), (2.4), and S4 is given by (2.6), respectively.
Proof. If we choose υ1D2(p,q)Ψ(x)=xn,Rσρ,λ(υ2−υ1)=υ2−υ1 and c=0 in Theorem 2, then we obtain our required result.
Example 2. If we take n=2,m=2,υ1=2,υ2=4, p=12 and q=13 in Proposition 2, then we have 0.4<11.39, which shows the validity of the result.
From relation (1.1), if we set ρ=1,λ=0 and σ(k)=(ϕ)k(ψ)k(η)k≠0, where ϕ,ψ and η are parameters may be real or complex values and (m)k is defined as (m)k=Γ(m+k)Γ(m) and its domain is restricted as |x|≤1, then we have the following hypergeometric function
R(ϕ,ψ;η,x):=∞∑k=0(ϕ)k(ψ)kk!(η)kxk. |
So using above notations and all the results obtained in this paper, we have the following forms.
Lemma 4. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q=qR(ϕ,ψ;η;υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τR(ϕ,ψ;η;υ2−υ1))0d(p,q)τ. | (3.1) |
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 5. Let Ψ:X=[υ1,υ1+R(ϕ,ψ;η;υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
![]() |
(3.2) |
Theorem 9. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q|≤qR(ϕ,ψ;η;υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(R(ϕ,ψ;η;υ2−υ1))2], |
where S1,S2 and S3 are given by (2.3)–(2.5).
Theorem 10. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
![]() |
where S1,S2 S3 and S4 are given by (2.3)–(2.6), respectively.
Theorem 11. Suppose that all the assumptions of Lemma 4 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pR(ϕ,ψ;η;υ2−υ1)∫υ1+pR(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q|≤qR(ϕ,ψ;η;υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(R(ϕ,ψ;η;υ2−υ1))2]1m, |
where S5 is given by (2.7).
Theorem 12. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(R(ϕ,ψ;η;υ2−υ1))2], |
where S6,S7 and S8 are given as (2.8)–(2.10).
Theorem 13. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
![]() |
where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.
Theorem 14. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(R(ϕ,ψ;η;υ2−υ1))2]1m. |
Theorem 15. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(R(ϕ,ψ;η;υ2−υ1))2]1l, |
where S11 is given by (2.13).
Theorem 16. Suppose that all the assumptions of Lemma 5 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+R(ϕ,ψ;η;υ2−υ1))+qΨ(υ1)p+q−1p2R(ϕ,ψ;η;υ2−υ1)∫υ1+p2R(ϕ,ψ;η;υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(R(ϕ,ψ;η;υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(R(ϕ,ψ;η;υ2−υ1))2]1m, |
where S12,S13,S14 are given by (2.14)–(2.16).
Moreover if we take σ=(1,1,1,…),λ=1 and ρ=ϕ with Re(ϕ)>0 in (1.1), then we obtain well-known Mittag–Leffler function:
Rϕ(x)=∞∑k=01Γ(1+ϕk)xk. |
So using this function and all the results obtained in this paper, we have the following forms.
Lemma 6. Let Ψ:X=[υ1,υ1+Rϕ(υ2−υ1)]⊆R→R be a differentiable function and 0<q<p≤1. If υ1D(p,q)Ψ is integrable function on X∘, then
1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q=qRϕ(υ2−υ1)p+q∫10(1−(p+q)τ)υ1D(p,q)Ψ(υ1+τRϕ(υ2−υ1))0d(p,q)τ. | (3.3) |
The second identity for twice (p,q)-differentiable functions states as follows:
Lemma 7. Let Ψ:X=[υ1,υ1+Rϕ(υ2−υ1)]⊆R→R be a twice differentiable function and 0<q<p≤1. If υ1D2(p,q)Ψ is integrable function on X∘, then
p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ=pq2(Rϕ(υ2−υ1))2p+q∫10τ(1−qτ)υ1D2(p,q)Ψ(υ1+τRϕ(υ2−υ1))0d(p,q)τ. | (3.4) |
Theorem 17. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ| is generalized strongly convex function, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+q[S1|υ1D(p,q)Ψ(υ1)|+S2|υ1D(p,q)Ψ(υ2)|−cS3(Rϕ(υ2−υ1))2], |
where S1,S2 and S3 are (2.3)–(2.5).
Theorem 18. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+qS1−1m4[S1|υ1D(p,q)Ψ(υ1)|m+S2|υ1D(p,q)Ψ(υ2)|m−cS3(Rϕ(υ2−υ1))2]1m, |
where S1,S2 S3S4p are given by (2.3)–(2.6), respectively.
Theorem 19. Suppose that all the assumptions of Lemma 6 are satisfied and |υ1D(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|1pRϕ(υ2−υ1)∫υ1+pRϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q|≤qRϕ(υ2−υ1)p+qS1l5[p+q−1p+q|υ1D(p,q)Ψ(υ1)|m+1p+q|υ1D(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rϕ(υ2−υ1))2]1m, |
where S5 is given by (2.7).
Theorem 20. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ| is generalized strongly convex function, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+q[S6|υ1D2(p,q)Ψ(υ1)|+S7|υ1D2(p,q)Ψ(υ2)|−cS8(Rϕ(υ2−υ1))2], |
where S6,S7 and S8 are given (2.8)–(2.10).
Theorem 21. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with m≥1, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1−1m9[S6|υ1D2(p,q)Ψ(υ1)|m+S7|υ1D2(p,q)Ψ(υ2)|m−cS8(Rϕ(υ2−υ1))2]1m, |
where S6, S7,S8 and S9 are given by (2.8)–(2.11), respectively.
Theorem 22. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1l10[p+q−1p+q|υ1D2(p,q)Ψ(υ1)|m+1p+q|υ1D2(p,q)Ψ(υ2)|m−c(1p+q−1p2+pq+q2)(Rϕ(υ2−υ1))2]1m. |
Theorem 23. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+qS1l11[(1[m+1](p,q)−1[m+2](p,q))|υ1D2(p,q)Ψ(υ1)|m+1[m+2](p,q)|υ1D2(p,q)Ψ(υ2)|m−c(1[m+2](p,q)−1[m+3](p,q))(Rϕ(υ2−υ1))2]1l, |
where S11 is given by (2.13).
Theorem 24. Suppose that all the assumptions of Lemma 7 are satisfied and |υ1D2(p,q)Ψ|m is generalized strongly convex function with 1l+1m=1, and l,m>0, then
|p2Ψ(υ1+Rϕ(υ2−υ1))+qΨ(υ1)p+q−1p2Rϕ(υ2−υ1)∫υ1+p2Rϕ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rϕ(υ2−υ1))2p+q(1[l+1](p,q))1l[S12|υ1D2(p,q)Ψ(υ1)|m+S13|υ1D2(p,q)Ψ(υ2)|m−cS14(Rϕ(υ2−υ1))2]1m, |
where S12,S13 and S14 are given by (2.14)–(2.16).
In this section, we discuss applications regarding bounded functions in absolute value of the results obtained from our main results. We suppose that the following two conditions are satisfied:
|υ1D(p,q)Ψ|≤Δ1and|υ1D2(p,q)Ψ|≤Δ2, |
and 0<q<p≤1.
Applying the above conditions, we have the following results.
Corollary 9. Under the assumptions of Theorem 1, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+q[Δ1(S1+S2)−cS3(Rσρ,λ(υ2−υ1))2]. |
Corollary 10. Under the assumptions of Theorem 2, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1−1m4[Δm1(S1+S2)−cS3(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 11. Under the assumptions of Theorem 3, the following inequality holds
|1pRσρ,λ(υ2−υ1)∫υ1+pRσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ−pΨ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q|≤qRσρ,λ(υ2−υ1)p+qS1l5[Δm1−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 12. Under the assumptions of Theorem 4, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q[Δ2(S6+S7)−cS8(Rσρ,λ(υ2−υ1))2]. |
Corollary 13. Under the assumptions of Theorem 5, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1−1m9[Δm2(S6+S7)−cS8(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 14. Under the assumptions of Theorem 22, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l10[Δm2−c(1p+q−1p2+pq+q2)(Rσρ,λ(υ2−υ1))2]1m. |
Corollary 15. Under the assumptions of Theorem 7, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+qS1l11[Δm2[m+1](p,q)−c(1[m+2](p,q)−1[m+3](p,q))(Rσρ,λ(υ2−υ1))2]1l. |
Corollary 16. Under the assumptions of Theorem 8, the following inequality holds
|p2Ψ(υ1+Rσρ,λ(υ2−υ1))+qΨ(υ1)p+q−1p2Rσρ,λ(υ2−υ1)∫υ1+p2Rσρ,λ(υ2−υ1)υ1Ψ(τ)υ1d(p,q)τ|≤pq2(Rσρ,λ(υ2−υ1))2p+q(1[l+1](p,q))1l[Δm2(S12+S13)−cS14(Rσρ,λ(υ2−υ1))2]1m. |
In this paper, we introduced the class of generalized strongly convex functions using Raina's function. We have derived two new general auxiliary results involving first and second order (p,q)-differentiable functions and Raina's function. Essentially using these identities and the generalized strongly convexity property of the functions, we also established corresponding new generalized post-quantum analogues of Dragomir-Agarwal's inequalities. We have discussed in details some special cases about generalized convex functions. The efficiency of our main results is also demonstrated with the help of application. We have offered applications to special means, to hypergeometric functions, to Mittag-Leffler functions and also to (p,q)-differentiable functions of first and second order that are bounded in absolute value. We will derive as future works several new post-quantum interesting inequalities using Chebyshev, Markov, Young and Minkowski inequalities. Since the class of generalized strongly convex functions have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate further research in different areas of pure and applied sciences. Studies relating convexity, partial convexity, and preinvex functions (as contractive operators) may have useful applications in complex interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving Gauss-Laplace distribution. For more details, please see [16,17,18,19,20,21,22,23].
The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
The authors declare no conflict of interest.
[1] | 10 Jahre Solarparks von Green City - Auf in die nächste Phase der Energiewende. (2013) Available from: https://www.pressebox.de/pressemitteilung/green-city-energy-ag/10-Jahre-Solarparks-von-Green-City-Auf-in-die-naechste-Phase-der-Energiewende/boxid/631572 (accessed on 08.08.2023) |
[2] | Abriss nach Windrad-Havarie - Suche nach Ursache geht weiter. (2021) Proplanta GmbH & Co. KG. Available from: https://www.proplanta.de/agrar-nachrichten/energie/abriss-nach-windrad-havarie-suche-nach-ursache-geht-weiter_article1633485787.html. (accessed on 05.02.2024) |
[3] | Ad hoc: Siemens Energy kommentiert Medienberichte. (2023) Available from: https://www.siemens-energy.com/de/de/home/pressemitteilungen/ad-hoc--siemens-energy-kommentiert-medienberichte.html. (accessed on 05.11.2023) |
[4] |
Afridi FEA, Jan S, Ayaz B, et al. (2021) Green finance incentives: An empirical study of the Pakistan banking sector. Revista Amazonia Investiga 10: 169–176. https://doi.org/10.34069/ai/2021.41.05.17 doi: 10.34069/ai/2021.41.05.17
![]() |
[5] |
Aghion P, Boneva L, Breckenfelder J, et al. (2022) Financial Markets and Green Innovation. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4173682 doi: 10.2139/ssrn.4173682
![]() |
[6] |
Agliardi R (2022) Green securitisation. J Sustain Financ Inv 12: 1330–1345. https://doi.org/10.1080/20430795.2021.1874214 doi: 10.1080/20430795.2021.1874214
![]() |
[7] | Ahima T (2010) Warnung vor grünen Geldanlagen: Risikogeschäfte bei Windparks. taz Verlags u. Vertriebs GmbH. Available from: https://taz.de/Warnung-vor-gruenen-Geldanlagen/!5147325/. (accessed on 10.08.2023) |
[8] |
Akomea-Frimpong I, Adeabah D, Ofosu D, et al. (2022) A review of studies on green finance of banks, research gaps and future directions. J Sustain Financ Inv 12: 1241–1264. https://doi.org/10.1080/20430795.2020.1870202 doi: 10.1080/20430795.2020.1870202
![]() |
[9] | Amann C (2023) Welche Probleme hat Siemens Gamesa mit seinen Windturbinen? Reuters. Available from: https://www.onvista.de/news/2023/06-23-welche-probleme-hat-siemens-gamesa-mit-seinen-windturbinen-20-26147733. (accessed on 05.02.2024) |
[10] |
Andersen LB, Häger D, Maberg S, et al. (2012) The financial crisis in an operational risk management context-A review of causes and influencing factors. Reliab Eng Syst Safe 105: 3–12. https://doi.org/10.1016/j.ress.2011.09.005 doi: 10.1016/j.ress.2011.09.005
![]() |
[11] | Anleihebedingungen 2016 - 2030. PROKON Regenerative Energien eG. Available from: https://www.prokon.net/ueber-uns/investor-relations/prokon-anleihe-2016–2030. (accessed on 30.08.2023) |
[12] |
Bachner G, Mayer J, Steininger KW (2019) Costs or benefits? Assessing the economy-wide effects of the electricity sector's low carbon transition - The role of capital costs, divergent risk perceptions and premiums. Energy Strateg Rev 26: 100373. https://doi.org/10.1016/j.esr.2019.100373 doi: 10.1016/j.esr.2019.100373
![]() |
[13] | Bergermann M, Jens B, Christian K (20122) Lücken in der Ökobilanz. Capital. Available from: https://download.djp.de/downloadarticle.php?p1 = 2980 & p2 = 1341943224 & p3 = save. (accessed on 03.11.2023) |
[14] | Beschluss Bestätigung Genossenschaftsinsolvenzplan (2015) PROKON Abgeltungsgläubiger SPV GmbH. Available from: https://prokon-spv.insolvenz-solution.de/download/Beschluss_gerichtliche_Bestaetigung_eG-Insolvenzplan_PROKON.pdf. (accessed on 20.08.2023) |
[15] | Bock M, Tichy J (2016) FAILURE OF THE CONTROL MECHANISMS IN US BANKS DURING THE CRISIS AND SPREAD OF THE FINANCIAL CRISIS INTO THE WORLD THROUGH STRUCTURED PRODUCTS. Ad Alta-Journal of Interdisciplinary Research 6: 79–81. |
[16] |
Bourcet C, Bovari E (2020) Exploring citizens' decision to crowdfund renewable energy projects: Quantitative evidence from France. Energ Econ 88: 104754. https://doi.org/10.1016/j.eneco.2020.104754 doi: 10.1016/j.eneco.2020.104754
![]() |
[17] |
Campiglio E, Daumas L, Monnin P, et al. (2023) Climate‐related risks in financial assets. J Econ Surv 37: 950–992. https://doi.org/10.1111/joes.12525 doi: 10.1111/joes.12525
![]() |
[18] |
Chabot M, Bertrand JL (2023) Climate risks and financial stability: Evidence from the European financial system. J Financ Stabil 69: 101190. https://doi.org/10.1016/j.jfs.2023.101190 doi: 10.1016/j.jfs.2023.101190
![]() |
[19] |
Chen HX, Shi Y, Zhao X (2022) Investment in renewable energy resources, sustainable financial inclusion and energy efficiency: A case of US economy. Resour Policy 77: 102680. https://doi.org/10.1016/j.resourpol.2022.102680 doi: 10.1016/j.resourpol.2022.102680
![]() |
[20] |
Chen L (2024) Unraveling the drivers of greenwashing in China's new energy sector: A PLS‐SEM and fsQCA analysis. Manag Decis Econ 45: 1528–1546. https://doi.org/10.1002/mde.4089 doi: 10.1002/mde.4089
![]() |
[21] | COMMISSION DELEGATED REGULATION (EU) 2023/2486, (2023). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = CELEX: 32023R2486. |
[22] | Consolidated Non-Financial Statement 2022 (2023) S. G. R. E. S.A. Available from: https://www.siemensgamesa.com/en-int/-/media/siemensgamesa/downloads/en/sustainability/siemens-gamesa-consolidated-non-financial-statement-2022-en.pdf. (accessed on 03.02.2024) |
[23] |
Curcio D, Gianfrancesco I, Vioto D (2023) Climate change and financial systemic risk: Evidence from US banks and insurers. J Financ Stabil 66: 101132. https://doi.org/10.1016/j.jfs.2023.101132 doi: 10.1016/j.jfs.2023.101132
![]() |
[24] |
D'Orazio P (2021) Towards a post-pandemic policy framework to manage climate-related financial risks and resilience. Clim Policy 21: 1368–1382. https://doi.org/10.1080/14693062.2021.1975623 doi: 10.1080/14693062.2021.1975623
![]() |
[25] |
Debrah C, Darko A, Chan APC (2023) A bibliometric-qualitative literature review of green finance gap and future research directions. Clim Dev 15: 432–455. https://doi.org/10.1080/17565529.2022.2095331 doi: 10.1080/17565529.2022.2095331
![]() |
[26] | Delegated Regulation (EU) 2021/1235 amending Delegated Regulation (EU) 2017/565 as regards the integration of sustainability factors, risks and preferences into certain organisational requirements and operating conditions for investment firms. (2021) Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = CELEX%3A32021R1253. |
[27] |
Desalegn G, Tangl A (2022) Enhancing Green Finance for Inclusive Green Growth: A Systematic Approach. Sustainability 14: 7416. https://doi.org/10.3390/su14127416 doi: 10.3390/su14127416
![]() |
[28] |
Deschryver P, De Mariz F (2020) What Future for the Green Bond Market? How Can Policymakers, Companies, and Investors Unlock the Potential of the Green Bond Market? J Risk Financ Manag 13: 61. https://doi.org/10.3390/jrfm13030061 doi: 10.3390/jrfm13030061
![]() |
[29] | Die Freunde Prokons e.V. Available from: https://fvp-ev.de/verein/Entstehung. (accessed on 31.08.2023) |
[30] | Die zehn größten Kursstürze im Dax (2023) manager magazin new media GmbH & Co. KG. Available from: https://www.manager-magazin.de/finanzen/aktien-crash-von-siemens-energy-und-co-die-zehn-groessten-kursstuerze-im-dax-a-b5816971-b21d-4300-826b-25d061889ae7. (accessed on 05.11.2023) |
[31] | Diekmann F (2014) Insolventer Ökokonzern Mitarbeiter feiern Prokon-Chef. DER SPIEGEL GmbH & Co. KG. Available from: https://www.spiegel.de/wirtschaft/unternehmen/prokon-pk-rodbertus-beklagt-medienkampagne-a-945141.html. (accessed on 01.09.2023) |
[32] | Drygala T (2014) Prokon - Kein Genuss ohne Folgen. Wolters Kluwer Deutschland GmbH. Available from: https://www.lto.de/recht/hintergruende/h/prokon-genussrechte-liquiditaet-insolvenz-kapitalmarkt/2/. (accessed on 02.02.2024) |
[33] |
Fichtner J, Jaspert R, Petry J (2024) Mind the < scp > ESG < /scp > capital allocation gap: The role of index providers, standard‐setting, and "green" indices for the creation of sustainability impact. Regul Gov 18: 479–498. https://doi.org/10.1111/rego.12530 doi: 10.1111/rego.12530
![]() |
[34] |
Frydrych S (2021) Green bonds as an instrument for financing in Europe. Ekonomia i Prawo 20: 239–255. https://doi.org/10.12775/eip.2021.014 doi: 10.12775/eip.2021.014
![]() |
[35] | Giglio S, Maggiori M, Stroebel J, et al. (2023) Four Facts About ESG Beliefs and Investor Portfolios. National Bureau of Economic Research. |
[36] | Green City AG - Informationen für Anleger*inne. GLS Gemeinschaftsbank eG. Available from: https://www.gls.de/privatkunden/anlegen-sparen/green-city-energy/. (accessed on 02.09.2023) |
[37] | Green City AG Konzernabschluss 2017. Available from: https://www.bundesanzeiger.de/pub/de/suchergebnis?6. (accessed on 30.01.2024) |
[38] | Green City AG stellt Insolvenzantrag. (2022) Available from: https://gc-ag.org/docs/Pressemitteilung-Green-City-AG-stellt-Insolvenzantrag.pdf. (accessed on 03.08.2023) |
[39] | Green City AG: Der Jahresabschluss 2018 und die Perspektiven für 2020 (2020) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/green-city-ag-der-jahresabschluss-2018-und-die-perspektiven-fur-2020/. (accessed on 04.09.2023) |
[40] | Green City Anleihen (2023) Finanzen.net. Available from: https://www.finanzen.net/anleihen/green-city-anleihen. (accessed on 30.01.2024) |
[41] | Green City Energy - Unseriöse Werbung für alternative Energien (2015) Stiftung Warentest. Available from: https://www.test.de/Green-City-Energy-Unserioese-Werbung-fuer-alternative-Energien-4848835-0/. (accessed on 05.02.2024) |
[42] | Green City Energy: Darum können die Anleihen derzeit nicht gehandelt werden (2021) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/green-city-energy-darum-k%C3%B6nnen-die-anleihen-derzeit-nicht-gehandelt-werden/. (accessed on 04.09.2023) |
[43] | Green City Refinanzierungsvehikel forcieren Bond Delisting (2022) BondGuide Media GmbH. Available from: https://www.bondguide.de/topnews/green-city-refinanzierungsvehikel-forcieren-bond-delisting/. (accessed on 03.09.2023) |
[44] | Green City: Verdacht auf zweckentfremdete Gelder (2022) pv magazine group GmbH & Co. KG. Available from: https://www.pv-magazine.de/2022/04/13/green-city-verdacht-auf-zweckentfremdete-gelder/. (accessed on 04.09.2023) |
[45] |
Grumann L, Madaleno M, Vieira E (2024) Gender Differences in Knowledge, Experience, and Preference of Sustainable Investments. J Financ Couns Plan 35: 58–71. https://doi.org/10.1891/JFCP-2022-0050 doi: 10.1891/JFCP-2022-0050
![]() |
[46] |
He F, Yan Y, Hao J, et al. (2022) Retail investor attention and corporate green innovation: Evidence from China. Energ Econ 115: 106308. https://doi.org/https://doi.org/10.1016/j.eneco.2022.106308 doi: 10.1016/j.eneco.2022.106308
![]() |
[47] |
He JM, Iqbal W, Su FL (2023) Nexus between renewable energy investment, green finance, and sustainable development: Role of industrial structure and technical innovations. Renew Energ 210: 715–724. https://doi.org/10.1016/j.renene.2023.04.010 doi: 10.1016/j.renene.2023.04.010
![]() |
[48] | Horn M (2024) The European green deal, retail investors and sustainable investments: A perspective article covering economic, behavioral, and regulatory insights. Available from: https://www.sciencedirect.com/science/article/pii/S266604902400001X?via%3Dihub. (accessed on 21.07.2024) |
[49] |
Hsu PH, Tian X, Xu Y (2014) Financial development and innovation: Cross-country evidence. J Financ Econ 112: 116–135. https://doi.org/10.1016/j.jfineco.2013.12.002 doi: 10.1016/j.jfineco.2013.12.002
![]() |
[50] |
Ibrahim RL, Huang Y, Mohammed A, et al. (2023) Natural resources-sustainable environment conflicts amidst COP26 resolutions: investigating the role of renewable energy, technology innovations, green finance, and structural change. Int J Sust Dev World Ecology 30: 445–457. https://doi.org/10.1080/13504509.2022.2162147 doi: 10.1080/13504509.2022.2162147
![]() |
[51] | Informationen für Anleihegläubiger der Green City-Gruppe (2023) Available from: https://www.dentonsgmbh.com/de/about-dentons-gmbh/information-for-green-city-group-bondholders. (accessed on 13.02.2024) |
[52] | Inhaberschuldverschreibungen Kraftwerkspark Ⅲ Wertpapierprospekt (2016) Green City Energy Kraftwerkspark Ⅲ GmbH & Co. KG. Available from: https://www.vcd-service.de/fileadmin/user_upload/redaktion/beteiligung/2017/pdf/green_city/Verkaufsunterlagen_KWPIII_Wertpapierprospekt_Nachtrag1_03_2017.pdf. (accessed on 03.09.2023) |
[53] |
Islam SM (2023) Impact Risk Management in Impact Investing: How Impact Investing Organizations Adopt Control Mechanisms to Manage Their Impact Risk. J Manag Account Res 35: 115–139. https://doi.org/10.2308/jmar-2021-041 doi: 10.2308/jmar-2021-041
![]() |
[54] | Jahresabschluss per 31.12.2022 (2023)[Financial Reporting]. Available from: https://www.prokon.net/files/Prokon-eG_Jahresabschluss-2022_gez.pdf. (accessed on 29.01.2024) |
[55] | Jahresabschluss zum 31. Dezember 2012. P. R. E. GmbH. Available from: https://www.bundesanzeiger.de/pub/de/suchergebnis?9. (accessed on 29.01.2024) |
[56] | Janzing B (2014) Anleger nach der Prokon-Pleite - In den Wind geschossen. taz Verlags u. Vertriebs GmbH. Available from: from https://taz.de/Anleger-nach-der-Prokon-Pleite/!5050135/. (accessed on 15.08.2023) |
[57] | Jones R, Baker T, Huet K, et al. (2020) Treating ecological deficit with debt: The practical and political concerns with green bonds. Geoforum 114: 49–58. |
[58] | Kirchner C (2013) Umstrittenes Ökounternehmen - So riskant ist Prokon als Geldanlage. DER SPIEGEL GmbH & Co. KG. Available from: https://www.spiegel.de/wirtschaft/service/prokon-anlage-in-oekounternehmen-ist-riskant-a-929892.html. (accessed on 31.08.2023) |
[59] | Kompetenzprofil Green City AG. Bayern Innovativ - Bayerische Gesellschaft für Innovation und Wissenstransfer mbH. Available from: https://www.bayern-innovativ.de/de/kompetenzprofil/green-city-ag. (accessed on 03.09.2023) |
[60] | Konzernobergesellschaft stellt Insolvenzantrag (2022) Available from: https://gc-ag.org/docs/Kraftwerkspark-II-DGAP-Meldung-24.1.2022.pdf. (accessed on 25.02.2024) |
[61] |
Kouwenberg R, Zheng C (2023) A Review of the Global Climate Finance Literature. Sustainability 15: 1255. https://doi.org/10.3390/su15021255 doi: 10.3390/su15021255
![]() |
[62] |
Koval V, Khaustova V, Lippolis S, et al. (2023) Fundamental Shifts in the EU's Electric Power Sector Development: LMDI Decomposition Analysis. Energies 16: 5478. https://doi.org/10.3390/en16145478 doi: 10.3390/en16145478
![]() |
[63] |
La Monaca S, Assereto M, Byrne J (2018) Clean energy investing in public capital markets: Portfolio benefits of yieldcos. Energ Policy 121: 383–393. https://doi.org/10.1016/j.enpol.2018.06.028 doi: 10.1016/j.enpol.2018.06.028
![]() |
[64] |
Ma F, Cao J, Wang Y, et al. (2023) Dissecting climate change risk and financial market instability: Implications for ecological risk management. Risk Anal. https://doi.org/10.1111/risa.14265 doi: 10.1111/risa.14265
![]() |
[65] |
Matviienko H, Pylypenko O, Putintsev A, et al. (2022) European Union policy on financing eco-innovations in the transition to a green economy. Cuest Políticas 40: 28–48. https://doi.org/10.46398/cuestpol.4075.01 doi: 10.46398/cuestpol.4075.01
![]() |
[66] | Meo M, Abd Karim M (2022) The role of green finance in reducing CO2 emissions: An empirical analysis. Borsa Istanb Rev 22: 169–178. |
[67] |
Mzoughi H, Urom C, Guesmi K (2022) Downside and upside risk spillovers between green finance and energy markets. Financ Res Lett 47: 102612. https://doi.org/10.1016/j.frl.2021.102612 doi: 10.1016/j.frl.2021.102612
![]() |
[68] | Naber NL (2014) Prokon setzt Anleger unter Druck. NDR. Available from: https://www.ndr.de/nachrichten/schleswig-holstein/Prokon-setzt-Anleger-unter-Druck, prokon151.html. (accessed on 01.09.2023) |
[69] | Nagel LM, Neller M (2013) Die Windmacher. Axel Springer Deutschland GmbH. Available from: https://www.welt.de/print/wams/wirtschaft/article115294409/Die-Windmacher.html. (accessed on 02.10.2023) |
[70] |
Navid K (2022) How Many Single Rulebooks? The EU's Patchwork Approach to Ensuring Regulatory Consistency in the Area of Investment Management. Eur Bus Organ Law Rev 23: 347–390. https://doi.org/10.1007/s40804-021-00228-w doi: 10.1007/s40804-021-00228-w
![]() |
[71] | New Approaches to SME and Entrepreneurship Financing: Broadening the Range of Instruments (2015) O. S.-G. o. t. OECD. Available from: https://www.oecd.org/cfe/smes/New-Approaches-SME-full-report.pdf. (accessed on 29.01.2024) |
[72] | Oprean C, Bratian V, Lucian Blaga Univ Sibiu FES (2009) THE ROLE OF PORTFOLIO IN RISK REDUCTION THROUGH DIVERSIFICATION[Proceedings Paper]. Industrial Revolutions, from the Globalization and Post-Globalization Perspective, Vol Iv: Banking, Accounting and Financial Systems from the 21st Century Perspective, 476–480. Available from: https://www.webofscience.com/wos/woscc/full-record/WOS: 000287985000073?SID = EUW1ED0EC3lfxnVvOja8Mwsm6XkMk. (accessed on 29.01.2024) |
[73] |
Osei DB, Alagidede IP, Agbodjah S (2023) Impact Investing in Ghana: A Multiple-Case Study. J Social Entrep, 1-21. https://doi.org/10.1080/19420676.2023.2166093 doi: 10.1080/19420676.2023.2166093
![]() |
[74] |
Ozdurak C (2021) Will clean energy investments provide a more sustainable financial ecosystem? Less carbon and more democracy. Renew Sust Energ Rev 151: 111556. https://doi.org/10.1016/j.rser.2021.111556 doi: 10.1016/j.rser.2021.111556
![]() |
[75] |
Pástor, Stambaugh RF, Taylor LA (2021) Sustainable investing in equilibrium. J Financ Econ 142: 550–571. https://doi.org/10.1016/j.jfineco.2020.12.011 doi: 10.1016/j.jfineco.2020.12.011
![]() |
[76] |
Pedersen LH, Fitzgibbons S, Pomorski L (2021) Responsible investing: The ESG-efficient frontier. J Financ Econ 142: 572–597. https://doi.org/https://doi.org/10.1016/j.jfineco.2020.11.001 doi: 10.1016/j.jfineco.2020.11.001
![]() |
[77] |
Polzin F, Sanders M (2020) How to finance the transition to low-carbon energy in Europe? Energ Policy 147: 111863. https://doi.org/10.1016/j.enpol.2020.111863 doi: 10.1016/j.enpol.2020.111863
![]() |
[78] | Prokon droht Anlegern mit Insolvenz (2014) G+J Medien GmbH. Available from: https://www.stern.de/wirtschaft/news/oekostromfinanzierer-prokon-droht-anlegern-mit-insolvenz-3129970.html. (accessed on 30.08.2023) |
[79] | PROKON Genussrechte - Verkaufsprospekt (2010 and 2012) Available from: https://www.anleihen-finder.de/wp-content/uploads/2012/12/Prokon-Wertpapierprospekt-2012-03-21.pdf. (accessed on 06.02.2024) |
[80] | Prokon Insolvenz - Hoffnung für Anleger (2014) Stiftung Warentest. Available from: https://www.test.de/Prokon-Insolvenz-Hoffnung-fuer-Anleger-4701648-0/#: ~: text = Die. (accessed on 30.08.2023) |
[81] |
Purkayastha D, Sarkar R (2021) Getting Financial Markets to Work for Climate Finance. J Struct Financ 27: 27–41. https://doi.org/10.3905/jsf.2021.1.122 doi: 10.3905/jsf.2021.1.122
![]() |
[82] | Qair enters German renewables market (2022) Renews Limited. Available from: https://renews.biz/78268/qair-enters-german-renewables-market/. (accessed on 05.09.2023) |
[83] | Rendite festverzinslicher Wertpapiere bis 2023 (2024) Statista Research Department. Available from: from https://de.statista.com/statistik/daten/studie/192860/umfrage/entwicklung-der-renditen-festverzinslicher-wertpapiere-in-deutschland-seit-2000/. (accessed on 15.02.2024) |
[84] | Resch J (2013a) PROKON: kein vollständiger Konzernabschluss in Sicht. RA Jochen Resch. Available from: https://www.anwalt.de/rechtstipps/prokon-kein-vollstaendiger-konzernabschluss-in-sicht_050643.html. (accessed on 31.08.2023) |
[85] | Resch J (2013b) PROKON: Konzernabschluss lässt noch immer auf sich warten. RA Jochen Resch. Available from: https://www.anwalt.de/rechtstipps/prokon-konzernabschluss-laesst-noch-immer-auf-sich-warten_047997.html. (accessed on 31.08.2023) |
[86] |
Ribas WP, Pedroso B, Vargas LM, et al. (2022) Cooperative Organization and Its Characteristics in Economic and Social Development (1995 to 2020) Sustainability 14: 8470. https://doi.org/10.3390/su14148470 doi: 10.3390/su14148470
![]() |
[87] |
Ringel M, Mjekic S (2023) Analyzing the Role of Banks in Providing Green Finance for Retail Customers: The Case of Germany. Sustainability 15: 8745. https://doi.org/10.3390/su15118745 doi: 10.3390/su15118745
![]() |
[88] | Ruedinger A (2019) Participatory and citizen renewable energy projects in France - State of play and recommendations. Available from: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor = SingleRecord & RN = 52116570. (accessed on 08.01.2024) |
[89] |
Santos TMO, Bessani M, Da Silva I (2023) Evolving Dynamic Bayesian Networks for CO(2)Emissions Forecasting in Multi-Source Power Generation Systems. Ieee Latin Am Trans 21: 1022–1031. https://doi.org/10.1109/tla.2023.10251809 doi: 10.1109/tla.2023.10251809
![]() |
[90] | Schlechtere Entwicklung bei Siemens Gamesa drückt auf Siemens Energy (2022) Wirtschaftswoche Dieter von Holtzbrinck. Available from: https://www.wiwo.de/energietechnik-konzern-schlechtere-entwicklung-bei-siemens-gamesa-drueckt-auf-siemens-energy/27995374.html. (accessed on 10.09.2023) |
[91] | Schwere Materialmängel: Windrad in Haltern gesprengt (2023) Landwirtschaftsverlag GmbH. Available from: https://www.topagrar.com/energie/news/schwere-materialmaengel-windrad-in-haltern-gesprengt-13388506.html. (accessed on 05.02.2024) |
[92] |
Selvapandian G, Jeyapaul PP, Gunabalan B (2022) ADOPTION OF GREEN FINANCING STRATEGIES WITH RENEWABLE ENERGY RESOURCES FOR GLOBAL ECONOMIC GROWTH. Glob Econ J 22: 17. https://doi.org/10.1142/s2194565923500045 doi: 10.1142/s2194565923500045
![]() |
[93] | Siemens Gamesa's shareholders approve delisting of the company (2023) Available from: https://www.siemensgamesa.com/-/media/siemensgamesa/downloads/en/newsroom/2023/01/siemens-gamesa-press-release-extraordinary-general-meeting-2023.pdf?ste_sid = d1a81c358371bc49eeabe7877b7a467e. (accessed on 08.01.2024) |
[94] |
Steffen B (2018) The importance of project finance for renewable energy projects. Energ Econ 69: 280–294. https://doi.org/10.1016/j.eneco.2017.11.006 doi: 10.1016/j.eneco.2017.11.006
![]() |
[95] |
Sun X, Zhang A, Zhu M (2023) Impact of Pilot Zones for Green Finance Reform and Innovations on green technology innovations: evidence from Chinese manufacturing corporates. Environ Sci Pollut R 30: 43901–43913. https://doi.org/10.1007/s11356-023-25371-4 doi: 10.1007/s11356-023-25371-4
![]() |
[96] | Sustainability Report 2022 - Tackling challenges (2023) S. E. AG. Available from: https://assets.siemens-energy.com/siemens/assets/api/uuid: 49bc59fb-7af0-47fc-a764-a3550d4153dc/siemens-energy-sustainability-report-2022.pdf. (accessed on 25.02.2024) |
[97] | Sustainable Europe Investment Plan, European Green Deal Investment Plan (COM(2020) 21 final) (2020) European Commission Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX: 52020DC0021 & from = EN. (accessed on 29.11.2023) |
[98] |
Taghizadeh-Hesary F, Li YF, Rasoulinezhad E, et al. (2022) Green finance and the economic feasibility of hydrogen projects. Int J Hydrogen Energ 47: 24511–24522. https://doi.org/10.1016/j.ijhydene.2022.01.111 doi: 10.1016/j.ijhydene.2022.01.111
![]() |
[99] |
Taghizadeh-Hesary F, Yoshino N (2019) The way to induce private participation in green finance and investment. Financ Res Lett 31: 98–103. https://doi.org/10.1016/j.frl.2019.04.016 doi: 10.1016/j.frl.2019.04.016
![]() |
[100] |
Taghizadeh-Hesary F, Yoshino N (2020) Sustainable Solutions for Green Financing and Investment in Renewable Energy Projects. Energies 13: 788. https://doi.org/10.3390/en13040788 doi: 10.3390/en13040788
![]() |
[101] | Überblick über die betroffenen Emittentinnen, dem Status zum Insolvenzverfahren und eine mögliche Quotenzahlung (2023) Available from: from https://gc-ag.org/docs/Uebersicht_Insolvenz_Green_City_Gesellschaften_12_2023.pdf. (accessed on 20.01.2024) |
[102] | Unabhängige Analyse: Genussrechte von Prokon im ECOanlagecheck - Teil 1 und 2 (2012) ECOreporter GmbH. Available from: https://www.ecoreporter.de/artikel/ecoanlagecheck-genussrechte-von-prokon-teil-1-des-ausfuehrlichen-ecoanlagechecks-25-05-2012. (accessed on 31.08.2023) |
[103] | Unlautere Bewerbung von Genussrechten (2012) OLG Schleswig-Holstein. Available from: https://www.bbh-blog.de/wp-content/uploads/2012/09/OLG-SH-05.09.2012-6-U-14-11.pdf. (accessed on 29.08.2023) |
[104] | Verfahren gegen Prokon-Gründer eingestellt (2017) Gerald Braunberger, Jürgen Kaube, Carsten Knop, Berthold Kohler. Available from: https://www.faz.net/aktuell/finanzen/finanzmarkt/prokon-gruender-carsten-rodbertus-betrugsverfahren-eingestellt-15187554.html. (accessed on 06.02.2024) |
[105] | Verluste bei der Green City AG (2021) Süddeutsche Zeitung GmbH. Available from: https://www.sueddeutsche.de/muenchen/muenchen-green-city-schieflage-1.5495361. (accessed on 05.02.2024) |
[106] | Voluntary cash tender offer (2022) Siemens Gamesa Renewable Energy, S.A. Available from: https://www.siemensgamesa.com/investors-and-shareholders/cash-tender-offer. (accessed on 02.09.2023) |
[107] |
Wang H, Shen H, Li SW (2023) Does green direct financing work in reducing carbon risk? Econ Model 128: 106495. https://doi.org/10.1016/j.econmod.2023.106495 doi: 10.1016/j.econmod.2023.106495
![]() |
[108] |
Wang R, Usman M, Radulescu M, et al. (2023) Achieving ecological sustainability through technological innovations, financial development, foreign direct investment, and energy consumption in developing European countries. Gondwana Res 119: 138–152. https://doi.org/10.1016/j.gr.2023.02.023 doi: 10.1016/j.gr.2023.02.023
![]() |
[109] |
Wang Z, Teng YP, Xie LB (2023) Innovation for renewable energy and energy related greenhouse gases: Evaluating the role of green finance. Sustaine Energy Techn 57: 103279. https://doi.org/10.1016/j.seta.2023.103279 doi: 10.1016/j.seta.2023.103279
![]() |
[110] |
Wasan P, Kumar A, Luthra S (2024) Green Finance Barriers and Solution Strategies for Emerging Economies: The Case of India. IEEE Transact Eng Manage 71: 414–425. https://doi.org/10.1109/tem.2021.3123185 doi: 10.1109/tem.2021.3123185
![]() |
[111] |
Wu L, Liu D, Lin T (2023) The Impact of Climate Change on Financial Stability. Sustainability 15: 11744. https://doi.org/10.3390/su151511744 doi: 10.3390/su151511744
![]() |
[112] | Wulf AB, Julia (2015) M&A-Deals: ZF Friedrichshafen, Henkel, Prokon. F.A.Z.-Fachverlag. Available from: https://www.finance-magazin.de/deals/ma/ma-deals-zf-friedrichshafen-henkel-prokon-29345/. (accessed on 15.09.2023) |
[113] |
Xiang XJ, Liu CJ, Yang M (2022) Who is financing corporate green innovation? Int Rev Econ Financ 78: 321–337. https://doi.org/10.1016/j.iref.2021.12.011 doi: 10.1016/j.iref.2021.12.011
![]() |
[114] | Ziesemer B (2023) Das große Rätsel von Siemens Energy. Gruner + Jahr Deutschland GmbH. Available from: https://www.capital.de/wirtschaft-politik/das-grosse-raetsel-von-siemens-energy-33856088.html. (accessed on 01.10.2023) |
1. | Feiteng Cheng, Qinghai Zhao, Zibin Mao, Fajie Wang, Mechanical Response of Gradient Lattice Structures Based on Topology Optimization, 2024, 26, 1438-1656, 10.1002/adem.202301887 | |
2. | Mingtao Cui, Wennan Cui, Wang Li, Xiaobo Wang, A polygonal topology optimization method based on the alternating active-phase algorithm, 2024, 32, 2688-1594, 1191, 10.3934/era.2024057 | |
3. | Mohammed Hameed Hafeeth, Ying Liu, An efficient volume-preserving binary filter for additive manufacturing in topology optimization, 2024, 0305-215X, 1, 10.1080/0305215X.2024.2382799 | |
4. | Martin Sotola, Pavel Marsalek, David Rybansky, Jan Kopacka, Dusan Gabriel, Ondrej Jezek, Ludek Kovar, Josef Tejc, Miloslav Pasek, Radim Halama, Michal Barnovsky, Application of Surface-Based Smoothing Methods for Topology Optimization Results, 2024, 16, 1758-8251, 10.1142/S1758825124500868 | |
5. | Jianping Zhang, Tao Chen, Haiming Zhang, Shuying Wu, Lei Zhao, Zhijian Zuo, Topology optimization of orthotropic multi-material microstructures with maximum thermal conductivity based on element-free Galerkin method, 2024, 1040-7782, 1, 10.1080/10407782.2024.2379616 | |
6. | Wangyu Liu, Guanghui Huang, Weigui Xie, An efficient cross-platform multi-material topology optimization approach occupying enhanced BESO method, 2024, 0025-6455, 10.1007/s11012-024-01916-w | |
7. | Hongshuo Fan, Jianli Liu, Haobo Zhang, Tao Nie, Jingui Yu, Jianzhong Yang, Zhaohui Xia, Evolutionary topology optimization for elastoplastic structures via isogeometric analysis, 2025, 0305-215X, 1, 10.1080/0305215X.2024.2443738 |