The purpose of this paper is to investigate whether the gender diversity of audit committees has a significant impact on the level of a dividend payout ratio using a sample of French firms listed on the Société des Bourses Françaises 120 (SBF 120) index after quota law enactment (from 2012 to 2019). While previous studies examined the effect of board gender diversity on dividend policy, we focus on women representation on audit committees. In fact, women membership in board committees reflects their involvement in corporate governance and decision-making, especially in a context where gender diversity is enforced. Overall, our results are in line with the outcome hypothesis and show a positive effect of female representation in audit committees on corporate dividend payouts. Additionally, we show that the size and independence of audit committees are positively related to the dividend payout ratio. Our findings are robust for alternative measures of dividend payments.
Citation: Sameh Halaoua, Sonia Boukattaya. 2023: Does gender diversity in the audit committee influence corporate dividend policy? Evidence from French listed firms, Green Finance, 5(3): 373-391. doi: 10.3934/GF.2023015
[1] | Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215 |
[2] | Xin Du, Quansheng Liu, Yuanhong Bi . Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay. Electronic Research Archive, 2024, 32(1): 293-316. doi: 10.3934/era.2024014 |
[3] | Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150 |
[4] | Rui Ma, Xin-You Meng . Dynamics of an eco-epidemiological model with toxicity, treatment, time-varying incubation. Electronic Research Archive, 2025, 33(5): 3074-3110. doi: 10.3934/era.2025135 |
[5] | Rina Su . Dynamic analysis for a class of hydrological model with time delay under fire disturbance. Electronic Research Archive, 2022, 30(9): 3290-3319. doi: 10.3934/era.2022167 |
[6] | Mengting Sui, Yanfei Du . Bifurcations, stability switches and chaos in a diffusive predator-prey model with fear response delay. Electronic Research Archive, 2023, 31(9): 5124-5150. doi: 10.3934/era.2023262 |
[7] | Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109 |
[8] | Yuan Xue, Jinli Xu, Yuting Ding . Dynamics analysis of a diffusional immunosuppressive infection model with Beddington-DeAngelis functional response. Electronic Research Archive, 2023, 31(10): 6071-6088. doi: 10.3934/era.2023309 |
[9] | Wenbin Zhong, Yuting Ding . Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116 |
[10] | Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128 |
The purpose of this paper is to investigate whether the gender diversity of audit committees has a significant impact on the level of a dividend payout ratio using a sample of French firms listed on the Société des Bourses Françaises 120 (SBF 120) index after quota law enactment (from 2012 to 2019). While previous studies examined the effect of board gender diversity on dividend policy, we focus on women representation on audit committees. In fact, women membership in board committees reflects their involvement in corporate governance and decision-making, especially in a context where gender diversity is enforced. Overall, our results are in line with the outcome hypothesis and show a positive effect of female representation in audit committees on corporate dividend payouts. Additionally, we show that the size and independence of audit committees are positively related to the dividend payout ratio. Our findings are robust for alternative measures of dividend payments.
Fractional difference calculus is a tool used to explain many phenomena in physics, control problems, modeling, chaotic dynamical systems, and various fields of engineering and applied mathematics. In this direction, different kinds of methods and techniques, including numerical and analytical methods, have been utilized by researchers to discuss given fractional discrete and continuous mathematical models and boundary value problems (BVPs) [1,2,3,4]. For some recent developments on the existence, uniqueness, and stability of solutions for fractional differential equations, see, for example, [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23] and the references therein.
Discrete fractional calculus and difference equations open a new study context for mathematicians. For this reason, they have received increasing attention in recent years. Some real-world processes and phenomena are analyzed with the aid of discrete fractional operators, since such operators provide an accurate tool to describe memory. A large number of research articles dealing with difference equations and discrete fractional boundary value problems (FBVPs) can be found in [24,25,26,27,28,29,30,31,32].
In 2020, Selvam et al. [33] proved the existence of a solution to a discrete fractional difference equation formulated as
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),1<ϱ≤2,Δχ(ϱ−2)=M1,χ(ϱ+T)=M2, | (1.1) |
for ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, M1 and M2 constants, Φ:[ϱ−2,ϱ+T]Nϱ−2×R⟶R continuous, and where cΔϱξ denotes the ϱth-Caputo difference. Here, motivated by the discrete model (1.1), we shall consider two generalized discrete problems.
Our first goal consists to study existence and uniqueness of solutions to the following discrete fractional equation that involves Caputo discrete derivatives:
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.2) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T], T∈N, η∈[ϱ−1,T+ϱ−1]Nϱ−1, λ, A1 and A2 constants, and where Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is continuous.
The second goal is to study the stability of solutions to the discrete Riemann-Liouville fractional problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2, | (1.3) |
for 0<β≤1, ξ∈[0,T]N0=[0,1,2,…,T] and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the Riemann-Liouville difference operator.
The organization of the paper is as follows. In Section 2, we collect some fundamental definitions available from the literature. In Section 3, we prove the existence and uniqueness results for the discrete FBVP (1.2). Hyers-Ulam and Hyers-Ulam-Rassias stability of the solution for the FBVP (1.3) is established in Section 4. In Section 5, two examples are given to illustrate the obtained results. We end with Section 6 of conclusions.
We begin by recalling some necessary definitions and essential lemmas that will be used throughout the paper.
Definition 2.1. (See [27]) Let ϱ>0. The ϱ-order fractional sum of Φ is defined by
Δ−ϱξΦ(ξ)=1Γ(ϱ)ξ−ϱ∑l=a(ξ−l−1)(ϱ−1)Φ(l), | (2.1) |
where ξ∈Na+ϱ:={a+ϱ,a+ϱ+1,…} and ξ(ϱ):=Γ(ξ+1)Γ(ξ+1−ϱ).
Definition 2.2. (See [27]) Let ϱ>0 and Φ be defined on Na. The ϱ-order Caputo fractional difference of Φ is defined by
CaΔϱξΦ(ξ)=Δ−(n−ϱ)(ΔnΦ(ξ))=1Γ(n−ϱ)ξ−(n−ϱ)∑l=a(ξ−l−1)(n−ϱ−1)ΔnΦ(l), | (2.2) |
while the Riemann-Liouville fractional difference of Φ is defined by
RLaΔϱξΦ(ξ)=ΔnΔ−(n−ϱ)Φ(ξ), | (2.3) |
where ξ∈Na+n−ϱ and n−1<ϱ≤n.
Lemma 2.1. (See [24,27]) For ϱ>0,
Δ−ϱCaΔϱξΦ(ξ)=Φ(ξ)+C0+C1ξ+⋯+CN−1ξ(N−1), | (2.4) |
where Ci∈R, i=1,2,…,N−1, Φ is defined on Na, and 0≤N−1<ϱ≤N.
Lemma 2.2. (See ([32]) Let 0≤N−1<ϱ≤N and Φ be defined on Na. Then,
Δ−ϱRL0ΔϱξΦ(ξ)=Φ(ξ)+B1ξϱ−1+B2ξ(ϱ−2)+⋯+BNξ(ϱ−N), | (2.5) |
for B1,…,BN∈R.
Lemma 2.3. (See [31]) Let ϱ and ξ be any arbitrary real numbers. Then,
(1)ξ−ϱ∑l=0(ξ−l−1)(ϱ−1)=Γ(ξ+1)ϱΓ(ξ−ϱ+1),(2)L∑l=0(ξ−L−l−1)(ϱ−1)=Γ(ϱ+L+1)ϱΓ(L+1). |
Lemma 2.4. (See [31]) For ζ∈R∖(Z−∖{0}), we have
Δ−ϱξ(ζ)=Γ(ζ+1)Γ(ζ+ϱ+1)ξ(ζ+ϱ). |
In this section, we prove the existence and uniqueness of solution for the Caputo three-point discrete fractional problem (1.2). To accomplish this, we denote by C(Nϱ−3,ϱ+T,R) the collection of all continuous functions χ with the norm
‖χ‖=max{|χ(ξ)|:ξ∈Nϱ−3,ϱ+T}. |
Lemma 3.1. Let 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ(ξ) (ξ∈[ϱ−3,ϱ+T]Nϱ−3) that satisfies the discrete FBVP
{cΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (3.1) |
is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.2) |
with
K1=λη∑l=ϱ−3(η+β−ρ(l))(β−1)−Γ(β), | (3.3) |
and
K2=λK1[A2(ϱ−3)−A1]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1)−A22K1λη∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+Γ(β)K1(ϱ+T)[A1−A2(ϱ−3)+A22(ϱ+T−1)]. | (3.4) |
Proof. Let χ(ξ) be a solution to (3.1). Applying Lemma 2.1 and Definition 2.1, we find that
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+C1ξ(1)+C2ξ(2), | (3.5) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3, where C0,C1,C2∈R. By using the difference of order 1 for (3.5), we have
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+C1+2C2ξ(1), |
and
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+2C2. |
Now, from conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
C1=A1−A2(ϱ−3),C2=A22. |
Therefore,
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2), | (3.6) |
for ξ∈[ϱ−3,ϱ+T]Nϱ−3. By using formula (3.5), one has
Δ−βχ(ξ)=C1Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(1)+C2Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(2)+C0Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑ξ=0(ξ−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1). | (3.7) |
The other condition of (3.1) gives
λΔ−βχ(η+β)=λ[A1−A2(ϱ−3)]Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(1) +λA22Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(2)+λC0Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1) +λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+C0 +[A1−A2(ϱ−3)](ϱ+T)(1)+A22(ϱ+T)(2). |
We have
C0=Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+K2−λK1Γ(ϱ)η∑l=ϱl−ϱ∑ξ=0(η+β−ρ(l))(β−1)(l−ρ(ξ))(ϱ−1)Φ(ξ+ϱ−1), |
where K1 and K2 are defined by (3.3) and (3.4), and one obtains (3.2) by substituting the value of C0 into (3.6).
Now, let us consider the operator H:C(Nϱ−3,ϱ+T,R)→C(Nϱ−3,ϱ+T,R) defined by
(Hχ)(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2). |
Theorem 3.1. Assume that:
(H1) Function Φ satisfies |Φ(ξ,χ1)−Φ(ξ,χ2)|≤K|χ1−χ2|, where K>0, ∀ξ∈Nϱ−3,ϱ+T and χ1,χ2∈C(Nϱ−3,ϱ+T,R). The discrete FBVP (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R) provided
Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)K1)+MλK1Γ(ϱ)≤1K | (3.8) |
with
M=|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|. | (3.9) |
Proof. Let χ1,χ2∈C(Nϱ−3,ϱ+T,R). Then, for each ξ∈Nϱ−3,ϱ+T, we have
|(Hχ1)(ξ)−(Hχ2)(ξ)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|+Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)×|Φ(l+ϱ−1,χ1(l+ϱ−1))−Φ(l+ϱ−1,χ2(l+ϱ−1))|. |
It follows that
‖(Hχ1)(ξ)−(Hχ2)(ξ)‖≤K‖χ1−χ2‖Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)≤K‖χ1−χ2‖Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)+λK‖χ1−χ2‖K1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)K‖χ1−χ2‖K1Γ(ϱ)Γ(ϱ+T+1)ϱΓ(T+1)≤K‖χ1−χ2‖[Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)+MλK1Γ(ϱ)+Γ(β)Γ(ϱ+T+1)K1Γ(ϱ+1)Γ(T+1)]. |
From (3.8), we conclude that H is a contraction. Then, by the Banach contraction principle, the discrete problem (3.1) has a unique solution on C(Nϱ−3,ϱ+T,R).
Theorem 3.2. Suppose that Φ:[ϱ−3,ϱ+T]Nϱ−3×R⟶R is a continuous function and
R=max{|Φ(l+ϱ−1,χ(l+ϱ−1))|,ξ∈Nϱ−3,ϱ+T,χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. |
The discrete problem (3.1) has a solution provided that
R≤|K2|−|[A1−A2(ϱ−3)]|(ϱ+T)(1)−|A22|(ϱ+T)(2)Γ(ϱ+T+1)Γ(ϱ+1)Γ(T+1)(1+Γ(β)|K1|)+M|λ|Γ(ϱ)|K1|. | (3.10) |
Proof. Let G={χ∈C(Nϱ−3,ϱ+T,R);‖χ‖≤2|K2|}. For χ(ξ)∈G, we get
|(Hχ)(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+λK1Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))−Γ(β)K1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+K2+[A1−A2(ϱ−3)]ξ(1)+A22ξ(2)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|λ||K1|Γ(ϱ)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+Γ(β)|K1|Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)|Φ(l+ϱ−1,χ(l+ϱ−1))|+|K2|+|[A1−A2(ϱ−3)]ξ(1)|+|A22ξ(2)|≤RΓ(ϱ)[ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)+|λ||K1|η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)+Γ(β)|K1|T∑l=0(ϱ+T−ρ(l))(ϱ−1)]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2)≤RΓ(ϱ)[Γ(ϱ+T+1)ϱΓ(T+1)(1+Γ(β)|K1|)+M|λ||K1|]+|K2|+|[A1−A2(ϱ−3)]|(ϱ+T)(1)+|A22|(ϱ+T)(2). |
From (3.10), we have ‖Hχ‖≤2|K2|, which implies that H:G→G. By Brouwer's fixed point theorem, we know that the discrete problem (3.1) has a solution.
In this section, we study the Hyers-Ulam and Hyers-Ulam-Rassias stability for the solutions of the discrete Riemann-Liouville (RL) FBVP
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1,χ(ξ+ϱ−1)),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.1) |
for ξ∈[0,1,2,…,T]=[0,T]N0 and η∈[ϱ−1,T+ϱ−1]Nϱ−1, where RLΔϱξ is the RL fractional difference operator. We begin by proving the following lemma.
Lemma 4.1. Suppose that 2<ϱ≤3 and Φ:[ϱ−3,ϱ+T]Nϱ−3⟶R. A function χ satisfies the discrete problem
{RLΔϱξχ(ξ)=Φ(ξ+ϱ−1),2<ϱ≤3,Δχ(ϱ−3)=A1,χ(ϱ+T)=λΔ−βχ(η+β),Δ2χ(ϱ−3)=A2,0<β≤1, | (4.2) |
if, and only if, χ(ξ), ξ∈[ϱ−3,ϱ+T]Nϱ−3, has the form
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fΦ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fΦ+dϱhϱξ(ϱ−3), | (4.3) |
where
hϱ=ϱ−3ϱ−2(ϱ+T)(ϱ−2)−ϱ−32(ϱ−1)(ϱ+T)(ϱ−1)−(ϱ+T)(ϱ−3) | (4.4) |
+λ(ϱ−3)Γ(β)2(ϱ−1)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)−λ(ϱ−3)Γ(β)(ϱ−2)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3),dϱ=A1(ϱ+T)(ϱ−2)Γ(ϱ−1)−[A2−A1(ϱ−3)]λΓ(ϱ)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1) | (4.5) |
−A1λΓ(ϱ−1)Γ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+[A2−A1(ϱ−3)]Γ(ϱ)(ϱ+T)(ϱ−1),fΦ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1) | (4.6) |
+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1). |
Proof. Let χ(ξ) be a solution to (4.2). Applying Lemma 2.2 and Definition 2.1, we obtain that the general solution of (4.2) is given by
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+B1ξ(ϱ−1)+B2ξ(ϱ−2)+B3ξ(ϱ−3), | (4.7) |
ξ∈[ϱ−3,ϱ+T]Nϱ−3, where B1,B2,B3∈R. The first order difference of (4.7) is
Δχ(ξ)=1Γ(ϱ−1)ξ−ϱ+1∑l=0(ξ−ρ(l))(ϱ−2)Φ(l+ϱ−1)+B1(ϱ−1)ξ(ϱ−2)+B2(ϱ−2)ξ(ϱ−3)+B3(ϱ−3)ξ(ϱ−4), |
while
Δ2χ(ξ)=1Γ(ϱ−2)ξ−ϱ+2∑l=0(ξ−ρ(l))(ϱ−3)Φ(l+ϱ−1)+B1(ϱ−1)(ϱ−2)ξ(ϱ−3)+B2(ϱ−2)(ϱ−3)ξ(ϱ−4)+B3(ϱ−3)(ϱ−4)ξ(ϱ−5). |
From the conditions Δχ(ϱ−3)=A1 and Δ2χ(ϱ−3)=A2, we obtain that
B2=1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)], |
and
B1=1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1). |
Now, by using the difference of order β for (4.7), it follows that
Δ−βχ(ξ)=1Γ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−1)+B3Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−3)+[A1−B3(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)Γ(β)ξ−β∑l=ϱ−3(ξ−ρ(l))(β−1)l(ϱ−2)+1Γ(ϱ)Γ(β)ξ−β∑l=ϱl−ϱ∑τ=0(ξ−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1). | (4.8) |
Based on condition (4.1), we have
λΔ−βχ(η+β)=λΓ(β){1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−1)+λΓ(ϱ−1)Γ(β)[A1−B3(ϱ−3)Γ(ϱ−2)]η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−2)+B3λΓ(β)η∑l=ϱ−3(η+β−ρ(l))(β−1)l(ϱ−3)+λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1)=1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1)+1Γ(ϱ−1)[A1−B3(ϱ−3)Γ(ϱ−2)](ϱ+T)(ϱ−2)+{1Γ(ϱ)[A2−A1(ϱ−3)]+B3(ϱ−3)2(ϱ−1)}(ϱ+T)(ϱ−1)+B3(ϱ+T)(ϱ−3). |
Then,
B3=1hϱ[fΦ+dϱ],B2=1Γ(ϱ−1)[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)],B1=1Γ(ϱ)[A2−A1(ϱ−3)]+1hϱ[fΦ+dϱ](ϱ−3)2(ϱ−1), |
where hϱ, dϱ and fΦ are defined by (4.4)-(4.6), respectively. Substituting the values of the constants B1, B2 and B3 into (4.7), we obtain (4.3) and our proof is complete.
From Lemma 4.1, the solution of the discrete RL problem (4.1) is given by the formula
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1))+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fΦ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3), | (4.9) |
where dρ and hρ are defined by (4.4) and (4.5), respectively, and
fχ=−λΓ(ϱ)Γ(β)η∑l=ϱl−ϱ∑τ=0(η+β−ρ(l))(β−1)(l−ρ(τ))(ϱ−1)Φ(τ+ϱ−1,χ(τ+ϱ−1))+1Γ(ϱ)T∑l=0(ϱ+T−ρ(l))(ϱ−1)Φ(l+ϱ−1,χ(l+ϱ−1)). | (4.10) |
Lemma 4.2. If χ is a solution of (4.3), then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ), | (4.11) |
where
Q(ξ)={[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3), |
and
K(ξ)=(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−3)hϱ. |
Proof. Take χ as a solution of (4.2). For ξ∈[ϱ−3,ϱ+T]Nϱ−3, then
χ(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+fχ+dϱhϱ(ϱ−3)2(ϱ−1)}ξ(ϱ−1)+[A1−1hϱ[fχ+dϱ](ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+fχ+dϱhϱξ(ϱ−3)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+{[A2−A1(ϱ−3)]Γ(ϱ)+dϱ(ϱ−3)2hϱ(ϱ−1)}ξ(ϱ−1)+[A1−dϱhϱ(ϱ−3)Γ(ϱ−2)]Γ(ϱ−1)ξ(ϱ−2)+dϱhϱξ(ϱ−3)+fχ[(ϱ−3)2hϱ(ϱ−1)ξ(ϱ−1)−(ϱ−3)hϱ(ϱ−2)ξ(ϱ−2)+ξ(ϱ−1)hϱ]=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1)+Q(ξ)+fχK(ξ). |
The proof is complete.
Definition 4.1. We say that the discrete RL problem (4.1) is Hyers-Ulam stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵ,ξ∈[0,T]N0, | (4.12) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ>0 such that
|ν(ξ)−χ(ξ)|≤δϵ,ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.13) |
Definition 4.2. We say that the discrete RL problem (4.1) is Hyers-Ulam–Rassias stable if for each function ν∈C(Nϱ−3,ϱ+T,R) of
|RLΔϱξν(ξ)−Φ(ξ+ϱ−1,ν(ξ+ϱ−1))|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0, | (4.14) |
and ϵ>0, there exists χ∈C(Nϱ−3,ϱ+T,R) solution of (4.1) and δ2>0 such that
|ν(ξ)−χ(ξ)|≤δ2ϵθ(ξ+ϱ−1),ξ∈[ϱ−3,ϱ+T]Nϱ−3. | (4.15) |
Remark 4.1. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.12) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying:
(H2) |μ(ξ+ϱ−1)|≤ϵ,ξ∈[0,T]N0;
(H3) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Remark 4.2. A function χ(ξ)∈C(Nϱ−3,ϱ+T,R) is a solution of (4.14) if, and only if, there exists μ:[ϱ−3,ϱ+T]Nϱ−3⟶R satisfying
(H4) |μ(ξ+ϱ−1)|≤ϵθ(ξ+ϱ−1),ξ∈[0,T]N0,
(H5) RLΔϱξν(ξ)=Φ(ξ+ϱ−1,ν(ξ+ϱ−1))+μ(ξ+ϱ−1),ξ∈[0,T]N0.
Lemma 4.3. If ν satisfies (4.12), then
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1). |
Proof. Using our hypothesis, and based on Remark 4.1, the solution to (H3) satisfies
ν(ξ)=1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))+Q(ξ)+fνK(ξ)+1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1). |
Hence,
|ν(ξ)−1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)Φ(l+ϱ−1,ν(l+ϱ−1))−Q(ξ)−fνK(ξ)|=|1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)μ(l+ϱ−1)|≤1Γ(ϱ)ξ−ϱ∑l=0(ξ−ρ(l))(ϱ−1)|μ(l+ϱ−1)|≤ϵΓ(ϱ+T+1)Γ(ϱ+1)Γ(T+1), |
and the desired inequality is derived.
Theorem 4.1. If condition (\mathcal{H}1) holds and (4.13) is satisfied, then the discrete RL problem (4.1) is Hyers-Ulam stable under the condition
\begin{equation} K\leq\dfrac{\Gamma(\beta)\Gamma(T+1)\Gamma(\varrho+1)}{2M_{1} \Gamma(\varrho+T+1)\Gamma(\beta)+ M M_{1}\lambda\varrho\Gamma(T+1)}, \end{equation} | (4.16) |
where M_{1} = \max(1, |K(\xi)|) .
Proof. Let \xi\in[\varrho-3, \varrho+T]_{\mathbb{N}_{\varrho-3}} . From Lemma 8, we have
\begin{align*} |\nu(\xi)-\chi(\xi)| &\leq\bigg|\nu(\xi)-\dfrac{1}{\Gamma(\varrho)} \sum\limits_{l = 0}^{\xi-\varrho}(\xi-\rho(l))^{(\varrho-1)}\Phi(l+\varrho-1, \chi(l+\varrho-1))-Q(\xi)-f_{\chi}K(\xi)\bigg|\\ &\leq\bigg|\nu(\xi)-\dfrac{1}{\Gamma(\varrho)} \sum\limits_{l = 0}^{\xi-\varrho}(\xi-\rho(l))^{(\varrho-1)} \Phi(l+\varrho-1,\nu(l+\varrho-1))-Q(\xi)-f_{\nu}K(\xi)\bigg|\\ &\quad +\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho}(\xi-\rho(l))^{(\varrho-1)}| \Phi(l+\varrho-1,\chi(l+\varrho-1))-\Phi(l+\varrho-1,\nu(l+\varrho-1))|\\ &\quad +|K(\xi)||f_{\nu}-f_{\chi}|. \end{align*} |
It follows that
\begin{align*} |\nu(\xi)-\chi(\xi)| &\leq\dfrac{\epsilon\Gamma(\varrho+T+1)}{\Gamma(\varrho+1)\Gamma(T+1)} +\dfrac{K}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho}(\xi-\rho(l))^{(\varrho-1)}| \chi(l+\varrho-1)-\nu(l+\varrho-1)|\\ &\quad +|K(\xi)|K\bigg\lbrace\dfrac{\lambda}{\Gamma(\varrho)\Gamma(\beta)} \sum\limits_{l = \varrho}^{\eta}\sum\limits_{\tau = 0}^{l-\varrho}(\eta +\beta-\rho(l))^{(\beta-1)}(l-\rho(\tau))^{(\varrho-1)}|\nu(l+\varrho-1) -\chi(l+\varrho-1)|\\ &\quad +\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{T}(\varrho+T-\rho(l))^{(\varrho-1)}| \chi(l+\varrho-1)-\nu(l+\varrho-1)|\bigg\rbrace\\ &\leq\dfrac{\epsilon\Gamma(\varrho+T+1)}{\Gamma(\varrho+1)\Gamma(T+1)} +\dfrac{K\Vert\chi-\nu\Vert}{\Gamma(\varrho)}\dfrac{\Gamma(\xi+1)}{\varrho \Gamma(\xi+1-\varrho)}\\ &\quad +|K(\xi)|K\Vert\chi-\nu\Vert\bigg[\dfrac{M\lambda}{\Gamma(\varrho)\Gamma(\beta)} +\dfrac{1}{\Gamma(\varrho)}\dfrac{\Gamma(\varrho+T+1)}{\varrho\Gamma(T+1)}\bigg]\\ &\leq\dfrac{\epsilon\Gamma(\varrho+T+1)}{\Gamma(\varrho+1)\Gamma(T+1)} +\dfrac{2K M_{1}}{\Gamma(\varrho+1)}\dfrac{\Gamma(\varrho+T+1)}{ \Gamma(T+1)}\Vert\chi-\nu\Vert +\Vert\chi-\nu\Vert \dfrac{K M M_{1}\lambda}{\Gamma(\varrho)\Gamma(\beta)}. \end{align*} |
Therefore,
\begin{equation*} \Vert\nu-\chi\Vert\leq\dfrac{\epsilon\Gamma(\varrho+T+1)}{\Gamma(\varrho+1) \Gamma(T+1)}+\Vert\nu-\chi\Vert\bigg[\dfrac{2K M_{1}}{\Gamma(\varrho+1)} \dfrac{\Gamma(\varrho+T+1)}{\Gamma(T+1)} +\dfrac{K M M_{1}\lambda}{\Gamma(\varrho)\Gamma(\beta)}\bigg]. \end{equation*} |
Moreover, \Vert\nu-\chi\Vert\leq\epsilon\delta , where
\delta = \dfrac{\Gamma(\beta)\Gamma(\varrho+T+1)}{\Gamma(\beta) \Gamma(T+1)\Gamma(\varrho+1)-2K M_{1}\Gamma(\varrho+T+1)\Gamma(\beta) -K M M_{1}\lambda\varrho\Gamma(T+1)} > 0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam stable.
Lemma 4.4. If v solves (4.14) under the condition:
(\mathcal{H}6) The function \theta:[\varrho-3, \varrho+T]_{\mathbb{N}_{\varrho-3}} \longrightarrow\mathbb{R} is increasing and there exists a constant \gamma > 0 such that
\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho}(\xi -\rho(l))^{(\varrho-1)}\theta(l+\varrho-1) \leq\gamma\theta(\xi+\varrho-1),\quad \xi\in[0,T]_{\mathbb{N}_{0}}, |
then
\begin{equation*} \bigg|\nu(\xi)-\dfrac{1}{\Gamma(\varrho)} \sum\limits_{l = 0}^{\xi-\varrho}(\xi-\rho(l))^{(\varrho-1)} \Phi(l+\varrho-1,\nu(l+\varrho-1))-Q(\xi)-f_{\phi_{\nu}}K(\xi)\bigg| \leq\gamma\theta(\xi+\varrho-1). \end{equation*} |
Proof. Let \nu satisfy (4.14). From Remark 4.2, the solution to (\mathcal{H}5) satisfies
\begin{align*} \nu(\xi) & = \dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho}(\xi -\rho(l))^{(\varrho-1)}\Phi(l+\varrho-1,\nu(l+\varrho-1))+Q(\xi)+f_{\nu}K(\xi)\\ &+\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi -\varrho}(\xi-\rho(l))^{(\varrho-1)}\mu(l+\varrho-1). \end{align*} |
Hence,
\begin{align*} \bigg|\nu(\xi) &-\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho} (\xi-\rho(l))^{(\varrho-1)}\Phi(l+\varrho-1,\nu(l+\varrho-1))-Q(\xi)-f_{\nu}K(\xi)\bigg|\\ & = \bigg|\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho} (\xi-\rho(l))^{(\varrho-1)}\mu(l+\varrho-1)\bigg|\\ &\leq\dfrac{1}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho} (\xi-\rho(l))^{(\varrho-1)}|\mu(l+\varrho-1)|\\ &\leq\dfrac{\epsilon}{\Gamma(\varrho)}\sum\limits_{l = 0}^{\xi-\varrho} (\xi-\rho(l))^{(\varrho-1)}|\theta(l+\varrho-1)|\\ &\leq\gamma\epsilon\theta(l+\varrho-1), \end{align*} |
and the desired inequality is derived.
Remark 4.3. About the restrictiveness of hypotheses (\mathcal{H}1) – (\mathcal{H}6) , and the bounds imposed on the family of discrete systems that satisfy them, one should note that such hypotheses are the usual conditions for proving existence, uniqueness or stability of solutions. In fact, the conditions (\mathcal{H}2) – (\mathcal{H}6) are considered as the fundamental conditions in the definition of Hyers-Ulam-Rassias stability. Condition (\mathcal{H}1) is a standard Lipschitz condition while other constants are computed based on the given fractional system. Therefore, these conditions are natural and, in real systems, with specified numerical data, their expressions are reduced to numerical bounds.
Theorem 4.2. If the inequality (4.16) and the hypotheses (\mathcal{H}1) and (\mathcal{H}6) are satisfied, then the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
Proof. From Lemmas 4.4 and 2.3, we obtain that
\Vert\nu-\chi\Vert\leq\delta_{2}\epsilon\theta(\xi+\varrho-1), |
where
\delta_2 = \dfrac{\Gamma(\varrho+1)\Gamma(\beta) \Gamma(T+1)}{\Gamma(\varrho+1)\Gamma(\beta)\Gamma(T+1) -2K M_{1}\Gamma(\beta)\Gamma(\varrho+T+1) -K M M_{1}\lambda\varrho\Gamma(T+1)} > 0. |
Thus, the discrete RL problem (4.1) is Hyers-Ulam-Rassias stable.
In this section, we consider two examples to illustrate the obtained results.
Example 5.1. Let
\begin{equation} \begin{cases} ^{*}\Delta_{\xi}^{\varrho}\chi(\xi) = \Phi(\xi+\varrho-1,\chi(\xi+\varrho-1)), \quad \xi\in {\mathbb{N}_{0,4}},\\[0.3cm] \Delta\chi(\varrho-3) = 1, \quad \chi(\varrho+4) = 0.3\Delta^{-0.5}\chi(\eta+0.5), \quad \Delta^{2}\chi(\varrho-3) = 0, \end{cases} \end{equation} | (5.1) |
where ^{*}\Delta_{\xi}^{\varrho} denotes the operator ^{c}\Delta_{\xi}^{\varrho} or ^{RL}\Delta_{\xi}^{\varrho} . Set \beta = 0.5 , T = 4 , \lambda = 0.7 , A_1 = 1 , A_2 = 0 , and
\Phi(\xi+1.5,\chi(\xi+1.5)) = \dfrac{137}{10^5}\sin(\chi(\xi+1.5)). |
\bullet If ^{*}\Delta_{\xi}^{\varrho}\chi(\xi) = {^{c}\Delta}_{\xi}^{\frac{5}{2}}\chi(\xi) and \eta = \frac{5}{2} , then we obtain that
\begin{align*} K_{1}& = \lambda\sum\limits_{l = \varrho-3}^{\eta}(\eta+\beta-\rho(l))^{(\beta-1)}-\Gamma(\beta)\\ & = \dfrac{\lambda\Gamma(\eta+\beta-\varrho+4)}{\beta \Gamma(\eta-\varrho+4)}-\Gamma(\beta)\\ & = 0.9416, \end{align*} |
\begin{equation} M = \bigg|\sum\limits_{l = \varrho}^{\eta}\sum\limits_{\xi = 0}^{l-\varrho}(\eta +\beta-\rho(l))^{(\beta-1)}(l-\rho(\xi))^{(\varrho-1)}\bigg| = 2.3562. \end{equation} | (5.2) |
Hence, the inequality (3.8) takes the form
\dfrac{\Gamma(\varrho+T+1)}{\Gamma(\varrho+1)\Gamma(T+1)}\bigg(1 +\dfrac{\Gamma(\beta)}{K_{1}}\bigg)+\dfrac{M\lambda}{K_{1} \Gamma(\varrho)}\approx 68.9403\leq\dfrac{1}{K} \approx 729.9270, |
such that
\begin{equation*} K = \dfrac{137}{10^5}. \end{equation*} |
From Theorem 3.1, the discrete problem (5.1) has a unique solution.
\bullet In the case ^{*}\Delta_{\xi}^{\varrho}\chi(\xi) = {^{RL}\Delta}_{\xi}^{3}\chi(\xi) and \eta = 3 , we obtain
\begin{align*} M& = 3.5449,\\ M&_1 = 1.8824,\\ h_{\varrho} & = \dfrac{\lambda\Gamma(\eta+\beta-\varrho+4)}{\Gamma(\beta+1) \Gamma(\eta-\varrho+4)}-1 = 0.5313,\\ K_{1}& = \dfrac{\lambda\Gamma(\eta+\beta-\varrho+4)}{\beta \Gamma(\eta-\varrho+4)}-\Gamma(\beta) = 0.9416. \end{align*} |
Also,
\begin{equation} \dfrac{\Gamma(\beta)\Gamma(T+1)\Gamma(\varrho+1)}{2M_{1} \Gamma(\varrho+T+1)\Gamma(\beta)+ M M_{1}\lambda\varrho\Gamma(T+1)} \approx 0.0075. \end{equation} | (5.3) |
If K = 0.0014 < 0.0075 and
\begin{align} \vert^{RL}\Delta_{\xi}^{3}\nu(\xi)-\Phi(\xi+2,v(\xi+2))\vert \leq\epsilon, \,\,\,\,\xi\in[0,4]_{\mathbb{N}_0}, \end{align} | (5.4) |
holds, then, by Theorem 4.1, the discrete RL problem (5.1) is Hyers-Ulam stable.
Example 5.2. Let
\begin{equation} \begin{cases} ^{c}\Delta_{\xi}^{2.4}\chi(\xi) = \dfrac{1}{10^7}\chi^{4}(\xi+1.4), \quad \xi\in {\mathbb{N}_{0,2}},\\[0.3cm] \Delta\chi(-0.4) = 2, \quad \chi(3.4) = 0.8\Delta^{-1/3}\chi(1/3+2.4), \quad \Delta^{2}\chi(-0.6) = 0. \end{cases} \end{equation} | (5.5) |
After some calculations, we find that
\begin{align*} M& = 3.277,\\ K_{1}& = \lambda\sum\limits_{l = \varrho-3}^{\eta}(\eta +\beta-\rho(l))^{(\beta-1)}-\Gamma(\beta) = 1.0253,\\ K_{2}& = \dfrac{A_{1}\Gamma(\beta)}{K_{1}}(\varrho+T) -\dfrac{\lambda A_{1}}{K_{1}}\frac{(\eta-\beta(3-\varrho)) \Gamma(\eta-\varrho+\beta+4)}{\beta(\beta+1)\Gamma(\eta-\varrho+4)} = 16.2963. \end{align*} |
We define the following Banach space:
C(\mathbb{N}_{\varrho-3,\varrho+T},\mathbb{R}) = \left\{\chi(t)|[-0.5,6.5]_{\mathbb{N}_{-0.5}} \to\mathbb{R}, \,\,\Vert\chi\Vert\leq2|K_{2}| = 32.5927\right\}. |
Note that
\begin{equation*} \dfrac{|K_{2}|-\big|[A_{1}-A_{2}(\varrho-3)]\big|(\varrho+T)^{(1)} -\left|\dfrac{A_{2}}{2}\right|(\varrho+T)^{(2)}}{\dfrac{\Gamma(\varrho+T+1)}{ \Gamma(\varrho+1)\Gamma(T+1)}\left(1+\dfrac{\Gamma(\beta)}{|K_{1}|}\right) +\dfrac{M|\lambda|}{\Gamma(\varrho)|K_{1}|}} = 0.3262. \end{equation*} |
It is clear that \vert\Phi(t, \chi)\vert \leq 0.0586\leq 0.3262 whenever \chi\in [-32.5927, 32.5927] . Therefore, by Theorem 3.2, we find out that the discrete FBVP (5.5) has a solution.
We proved existence and uniqueness of solution to discrete fractional boundary value problems (FBVPs) involving fractional difference operators via the Brouwer fixed point theorem and the Banach contraction principle. Different versions of stability criteria were obtained for a discrete FBVP involving Riemann-Liouville difference operators. The results were illustrated by suitable examples. The approach of this paper is new and can be a beginning method for discussing different real-world models in the context of discrete behavior structures. In particular, our results can contribute for the development of discrete fractional boundary value problems describing discrete dynamics of some physical applications. In future works, we plan to extend our approach to other types of discrete differential inclusions or fully-hybrid discrete fractional differential equations.
The third and fourth authors would like to thank Azarbaijan Shahid Madani University. The fifth author was supported by the Portuguese Foundation for Science and Technology (FCT) and CIDMA through project UIDB/04106/2020. This research received funding support from the NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant number B05F650018).
The authors declare no conflict of interest.
[1] | Abbas M, Qureshi SU, Ahmed MM, et al. (2018) Corporate Governance and dividend payout policy: Mediating role of leverage. Pak J Soc Sci 38: 62–86. Available from: https://pjss.bzu.edu.pk/index.php/pjss/article/view/572 |
[2] |
Abbott L, Parker S, Peters G (2004) Audit committee characteristics and restatements. Auditing-J Pract Th 23: 69–87. https://doi.org/10.2308/aud.2004.23.1.69 doi: 10.2308/aud.2004.23.1.69
![]() |
[3] |
Ahmed I, Ghafoor Z (2022) Audit committee characteristics and debt choice: evidence from the S & P 500. Span J Financ Account 51: 1–24. https://doi.org/10.1080/02102412.2022.2031507 doi: 10.1080/02102412.2022.2031507
![]() |
[4] |
Adams R, Ferreira D (2009) Women in the boardroom and their impact on governance and performance. J Financ Econ 94: 291–309. https://doi.org/10.1016/j.jfineco.2008.10.007 doi: 10.1016/j.jfineco.2008.10.007
![]() |
[5] |
Adjaoud F, Ben Amar W (2010) Corporate Governance and Dividend Policy: Shareholders' Protection or Expropriation? J Bus Financ Account 37: 648–667. https://doi.org/10.1111/j.1468-5957.2010.02192.x doi: 10.1111/j.1468-5957.2010.02192.x
![]() |
[6] |
Al-Absy MSM, Almaamari Q, Alkadash T, et al. (2020) Gender Diversity and Financial Stability: Evidence from Malaysian Listed Firms. J Asian Financ Econ Bus 7: 181–193. https://doi.org/10.13106/JAFEB.2020.VOL7.NO12.181 doi: 10.13106/JAFEB.2020.VOL7.NO12.181
![]() |
[7] |
Al-Dhamari RA, Ku Ismail KNI, Al-Gamrh BA (2016) Board diversity and corporate payout policy: Do free cash flow and ownership concentration matter? Corp Ownersh Control 14: 373–383. https://doi.org/10.22495/cocv14i1c2p9 doi: 10.22495/cocv14i1c2p9
![]() |
[8] |
Al Farooque O, Hamid A, Sun L (2021) Does Corporate Governance Have a Say on Dividends in Australian Listed Companies? Australas Account Bus Financ J 15: 47–75. https://doi.org/10.14453/aabfj.v15i4.4 doi: 10.14453/aabfj.v15i4.4
![]() |
[9] |
Al Farooque O, Buachoom W, Sun L (2020) Board, audit committee, ownership and financial performance – emerging trends from Thailand. Pac Account Rev 32: 54–81. https://doi.org/10.1108/PAR-10-2018-0079 doi: 10.1108/PAR-10-2018-0079
![]() |
[10] |
Albersmann BT, Hohenfels D (2017) Audit committees and earnings management–Evidence from the German two-tier board system. Schmalenbach Bus Rev 18: 147–178. https://doi.org/10.1007/s41464-017-0028-9 doi: 10.1007/s41464-017-0028-9
![]() |
[11] |
Aljughaiman A, Albarrak M, Cao ND, et al. (2022) Cost of equity, debt financing policy, and the role of female directors. Cogent Econ Financ 10: 1–34. https://doi.org/10.1080/23322039.2022.2109274 doi: 10.1080/23322039.2022.2109274
![]() |
[12] |
Al Lawati H, Hussainey K (2021) The impact of audit committee financial expertise on corporate financial decisions. Corp Ownersh Control 18: 348–359. https://doi.org/10.22495/cocv18i3siart9 doi: 10.22495/cocv18i3siart9
![]() |
[13] |
Almulla M, Juhmani OI (2021) Audit Committee Characteristics and Dividend Payouts: The Case of Gulf Cooperation Council Countries. International Conference on Decision Aid Sciences and Application (DASA). https://doi.org/10.1109/DASA53625.2021.9682290 doi: 10.1109/DASA53625.2021.9682290
![]() |
[14] |
Al-Najjar B, Kilincarslan E (2016) The effect of ownership structure on dividend policy: evidence from Turkey. Corp Gov Int J Bus Soc 16: 135–161. https://doi.org/10.1108/cg-09-2015-0129 doi: 10.1108/cg-09-2015-0129
![]() |
[15] |
Al-Rahahleh AS (2017) Corporate Governance Quality, Board Gender Diversity and Corporate Dividend Policy: Evidence from Jordan. Australas Account Bus Financ J 11: 86–104. https://doi.org/10.14453/aabfj.v11i2.6 doi: 10.14453/aabfj.v11i2.6
![]() |
[16] |
Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58: 277–297. https://doi.org/10.2307/2297968 doi: 10.2307/2297968
![]() |
[17] |
Bae KH, El Ghoul S, Guedhami O, et al. (2021) Board Reforms and Dividend Policy: International Evidence. J Financ Quant Anal 56: 1296–1320. https://doi.org/10.1017/S0022109020000319 doi: 10.1017/S0022109020000319
![]() |
[18] |
Bhattacharya S (1979) Imperfect Information, Dividend Policy, and "The Bird in the Hand" Fallacy. Bell J Econ 10: 259–270. https://doi.org/10.2307/3003330 doi: 10.2307/3003330
![]() |
[19] |
Ben Amar A, Ben Salah O, Jarboui A (2018) Do discretionary accruals affect firms' corporate dividend policy? Evidence from France. J Financ Report Account 16: 333–347. https://doi.org/10.1108/JFRA-03-2017-0020 doi: 10.1108/JFRA-03-2017-0020
![]() |
[20] |
Blundell R, Bond S (1998) Initial conditions and moment restrictions in dynamic panel data models. J Econ 87: 115–143. https://doi.org/10.1016/S0304-4076(98)00009-8 doi: 10.1016/S0304-4076(98)00009-8
![]() |
[21] |
Boubaker S, Derouiche I, Nguyen DK (2013) Does the board of directors affect cash holdings? A study of French listed firms. J Manag Gov 19: 341–370. https://doi.org/10.1007/s10997-013-9261-x doi: 10.1007/s10997-013-9261-x
![]() |
[22] |
Brockman P, Unlu E (2009) Dividend policy, creditor rights, and the agency costs of debt. J Financ Econ 92: 276–299. https://doi.org/10.1016/j.jfineco.2008.03.007 doi: 10.1016/j.jfineco.2008.03.007
![]() |
[23] |
Byoun S, Chang K, Kim Y (2016) Does corporate board diversity affect corporate payout policy? Asia-Pac J Financ Stud 45: 48–101. https://doi.org/10.1111/ajfs.12119 doi: 10.1111/ajfs.12119
![]() |
[24] |
Carter DA, Simkins BJ, Simpson WG (2003) Corporate Governance, Board Diversity, and Firm Value. Financ Rev 38: 33–53. https://doi.org/10.1111/1540-6288.00034 doi: 10.1111/1540-6288.00034
![]() |
[25] |
Carter DA, D'Souza F, Simkins BJ, et al. (2010) The Gender and Ethnic Diversity of US Boards and Board Committees and Firm Financial Performance. Corp Gov Int Rev 18: 396–414. https://doi.org/10.1111/j.1467-8683.2010.00809.x doi: 10.1111/j.1467-8683.2010.00809.x
![]() |
[26] |
Caskey J, Hanlon M (2012) Dividend Policy at Firms Accused of Accounting Fraud. Contemp Account Res 30: 818–850. https://doi.org/10.1111/j.1911-3846.2012.01173.x doi: 10.1111/j.1911-3846.2012.01173.x
![]() |
[27] |
Chen J, Leung WS, Goergen M (2017) The impact of board gender composition on dividend payouts. J Corp Financ 43: 86–105. https://doi.org/10.1016/j.jcorpfin.2017.01.001 doi: 10.1016/j.jcorpfin.2017.01.001
![]() |
[28] |
Chijoke-Mgbame AM, Boateng A, Mgbame CO (2020) Board gender diversity, audit committee and financial performance: evidence from Nigeria. Account Forum 44: 262–286. http://doi.org/10.1080/01559982.2020.1766280 doi: 10.1080/01559982.2020.1766280
![]() |
[29] |
Claessens S, Djankov S, Lang LH (2000) The separation of ownership and control in East Asian Corporations. J Financ Econ 58: 81–112. https://doi.org/10.1016/s0304-405x(00)00067-2 doi: 10.1016/S0304-405X(00)00067-2
![]() |
[30] |
Dang VC, Nguyen QK (2022) Audit committee characteristics and tax avoidance: Evidence from an emerging economy. Cogent Econ Financ 10: 1–15. https://doi.org/10.1080/23322039.2021.2023263 doi: 10.1080/23322039.2021.2023263
![]() |
[31] |
Danila N, Noreen U, Azizan NA, et al. (2020) Growth Opportunities, Capital Structure and Dividend Policy in Emerging Market: Indonesia Case Study. J Asian Financ Econ Bus 7: 1–8. https://doi.org/10.13106/jafeb.2020.vol7.no10.001 doi: 10.13106/jafeb.2020.vol7.no10.001
![]() |
[32] |
Djankov S, La Porta R, Lopez-de-Silanes F, et al. (2008) The law and economics of self-dealing. J Financ Econ 88: 430–465. https://doi.org/10.1016/j.jfineco.2007.02.007 doi: 10.1016/j.jfineco.2007.02.007
![]() |
[33] | Easterbrook FE (1984) Two agency-cost explanations of dividends. Am Econ Rev 74: 650–659. https://www.jstor.org/stable/1805130 |
[34] |
Elmagrhi MH, Ntim CG, Crossley RM, et al. (2017) Corporate governance and dividend pay-out policy in UK listed SMEs. Int J Account Inf Manag 25: 459–483. https://doi.org/10.1108/ijaim-02-2017-0020 doi: 10.1108/IJAIM-02-2017-0020
![]() |
[35] |
Eluyela DF, Dahunsi O, Tolase OA, et al. (2019) Impact of gender dichotomy on dividend payout policy in listed Nigerian financial services firm. Cogent Bus Manag 6: 1687270. https://doi.org/10.1080/23311975.2019.1687270 doi: 10.1080/23311975.2019.1687270
![]() |
[36] |
Francis B, Hasan I, Park JC, et al. (2015) Gender differences in financial reporting decision-making: Evidence from accounting conservatism. Contemp Account Res 32: 1285–1318. https://doi.org/10.1111/1911-3846.12098 doi: 10.1111/1911-3846.12098
![]() |
[37] |
Gai SL, Cheng JJ, Wu A (2021) Board design and governance failures at peer firms. Strateg Manag J 42: 1909–1938. https://doi.org/10.1002/smj.3308 doi: 10.1002/smj.3308
![]() |
[38] |
Gavious I, Segev E, Yosef R (2012) Female directors and earnings management in high‐technology firms. Pac Account Rev 24: 4–32. https://doi.org/10.1108/01140581211221533 doi: 10.1108/01140581211221533
![]() |
[39] |
Gontara H (2020) Internal Control Quality and Dividend Policy in French Setting: Does Managerial Ownership Concentration Matter? Int J Account Financ Report 10: 81. https://doi.org/10.5296/ijafr.v10i2.16641 doi: 10.5296/ijafr.v10i2.16641
![]() |
[40] |
Green CP, Homroy S (2018) Female directors, board committees and firm performance. Eur Econ Rev 102: 19–38. https://doi.org/10.1016/j.euroecorev.2017.12.003 doi: 10.1016/j.euroecorev.2017.12.003
![]() |
[41] |
Ho SSM, Li AY, Tam K, et al. (2014) CEO Gender, Ethical Leadership, and Accounting Conservatism. J Bus Ethics 127: 351–370. https://doi.org/10.1007/s10551-013-2044-0 doi: 10.1007/s10551-013-2044-0
![]() |
[42] |
Huang TC, Huang HW, Lee CC (2014) Corporate executive's gender and audit fees. Manag Audit J 29: 527–547. https://doi.org/10.1108/maj-03-2013-0837 doi: 10.1108/MAJ-03-2013-0837
![]() |
[43] | Jensen M (1986) Agency costs of free cash flow corporate finance, and takeovers. Am Econ Rev 76: 323–329. |
[44] |
Jensen MC, Meckling WH (1976) Theory of the firm: Managerial behavior, agency costs and ownership structure. J Financ Econ 3: 305–360. https://doi.org/10.1016/0304-405X(76)90026-X doi: 10.1016/0304-405X(76)90026-X
![]() |
[45] | Jiraporn P, Bouattour M, Hamrouni A, et al. (2019) Does board gender diversity influence dividend policy? Evidence from France. Econ Bull 39: 2942–2954. |
[46] |
John K, Williams J (1985) Dividends, dilution, and taxes: a signalling equilibrium. J Financ 40: 1053–1070. https://doi.org/10.1111/j.1540-6261.1985.tb02363.x doi: 10.1111/j.1540-6261.1985.tb02363.x
![]() |
[47] |
Juhmani O (2017) Audit Committee Characteristics and Earnings Management: The Case of Bahrain. Int J Account Financ Report 7: 11–31. http://dx.doi.org/10.5296/ijafr.v7i1.10447 doi: 10.5296/ijafr.v7i1.10447
![]() |
[48] |
Kalay A (1982) Stockholder-bondholder conflict and dividend constraints. J Financ Econ 10: 211–233. https://doi.org/10.1016/0304-405X(82)90014-9 doi: 10.1016/0304-405X(82)90014-9
![]() |
[49] |
Kanakriyah R (2020) Dividend Policy and Companies' Financial Performance. J Asian Financ Econ Bus 7: 531–541. https://doi.org/10.13106/jafeb.2020.vol7.no10.531 doi: 10.13106/jafeb.2020.vol7.no10.531
![]() |
[50] |
Khlif H, Achek I (2017) Gender in accounting research: a review. Manag Audit J 32: 627–655. https://doi.org/10.1108/maj-02-2016-1319 doi: 10.1108/MAJ-02-2016-1319
![]() |
[51] |
Klein A (2002) Audit committee, board of director characteristics, and earnings management. J Account Econ 33: 375–400. https://doi.org/10.1016/S0165-4101(02)00059-9 doi: 10.1016/S0165-4101(02)00059-9
![]() |
[52] | KPMG (2015). Guide des bonnes pratiques pour les comités d'audit et Modus Operandi. |
[53] |
La Porta R, Lopez-de-Silanes F, Shleifer A, et al. (2000) Agency Problems and Dividend Policies around the World. J Financ 55: 1–33. https://doi.org/10.1111/0022-1082.00199 doi: 10.1111/0022-1082.00199
![]() |
[54] |
Lawson BP, Wang D (2015) The Earnings Quality Information Content of Dividend Policies and Audit Pricing. Contemp Account Res 33: 1685–1719. https://doi.org/10.1111/1911-3846.12179 doi: 10.1111/1911-3846.12179
![]() |
[55] |
Li X, Li Y (2020) Female independent directors and financial irregularities in Chinese listed firms: From the perspective of audit committee chairpersons. Financ Res Lett 32: 101320. https://doi.org/10.1016/j.frl.2019.101320 doi: 10.1016/j.frl.2019.101320
![]() |
[56] |
Lin D, Lin L (2020) Does corporate governance affect the critical corporate policies such as dividend policy? Int J Econ Financial Issues 10: 18–24. https://doi.org/10.32479/ijefi.10546 doi: 10.32479/ijefi.10546
![]() |
[57] | Madhani PM (2017) Diverse roles of corporate board: Review of various corporate governance theories. IUP J Corp Gov 16: 7–28. |
[58] |
Magnanelli BS, Nasta L, Raoli E (2020) Female directors on corporate boards make a difference in family owned businesses? J Int Account Res 19: 85–102. https://doi.org/10.2308/jiar-17-561 doi: 10.2308/jiar-17-561
![]() |
[59] |
Mili M, Sahut JM, Teulon F (2017) Do corporate governance and ownership structure impact dividend policy in emerging market during financial crisis? J Appl Account Res 18: 274–297. https://doi.org/10.1108/jaar-07-2014-0079 doi: 10.1108/JAAR-07-2014-0079
![]() |
[60] |
Miller J (1980) Decision-making and organizational effectiveness: Participation and perceptions. Sociol Work Occup 7: 55–79. https://doi.org/10.1177/009392858071003 doi: 10.1177/009392858071003
![]() |
[61] |
Mungai EM, Ndiritu SW, Rajwani T (2020) Raising the bar? Top management teams, gender diversity, and environmental sustainability. Afr J Manag 6: 269–294. https://doi.org/10.1080/23322373.2020.1830688 doi: 10.1080/23322373.2020.1830688
![]() |
[62] |
Nelwan ML, Tansuria BI (2022) Audit Committee Busyness and The Risk of Financial Distress: Evidence from Indonesia. Int J Acad Res Bus Soc Sci 12: 425–437. http://dx.doi.org/10.6007/IJARBSS/v12-i2/12303 doi: 10.6007/IJARBSS/v12-i2/12303
![]() |
[63] |
Nerantzidis M, Tzeremes P, Koutoupis A, et al. (2022) Exploring the black box: board gender diversity and corporate social performance. Financ Res Lett 48: 102987. https://doi.org/10.1016/j.frl.2022.102987 doi: 10.1016/j.frl.2022.102987
![]() |
[64] |
Nimer K, Warrad L, Khuraisat O (2012) The Effect of Audit Committee's Effectiveness on Dividend Payout Policy: Evidence from the Jordanian Firms. Int J Bus Manag 7: 172–179. https://doi.org/10.5539/ijbm.v7n7p172 doi: 10.5539/ijbm.v7n7p172
![]() |
[65] |
Ngo DNP, Le ATH (2021) Relationship between the audit committee and earning management in listed companies in Vietnam. J Asian Financ Econ Bus 8: 135–42. https://doi.org/10.13106/jafeb.2021.vol8.no2.0135 doi: 10.13106/jafeb.2021.vol8.no2.0135
![]() |
[66] |
Nguyen AH, Pham CD, Doan, NT, et al. (2021) The Effect of Dividend Payment on Firm's Financial Performance: An Empirical Study of Vietnam. J Risk Financ Manag 14: 1–11. https://doi.org/10.3390/jrfm14080353 doi: 10.3390/jrfm14080353
![]() |
[67] |
Oskou V, Moradi M, Norouzi M, et al. (2023) Presence of women in the board of directors and audit committee on financial irregularities. Wom Dev Pol. https://doi.org/10.22059/jwdp.2023.350519.1008272 doi: 10.22059/jwdp.2023.350519.1008272
![]() |
[68] |
Parker RJ, Dao M, Huang HW, et al. (2015) Disclosing material weakness in internal controls: Does the gender of audit committee members matter? Asia-Pac J Account Econ 24: 407–420. https://doi.org/10.1080/16081625.2015.1057190 doi: 10.1080/16081625.2015.1057190
![]() |
[69] |
Poletti-Hughes J, Dimungu-Hewage D (2022) The Effectiveness of Gender Diversity Reforms and the Impact of a Familial Culture: A Spillover Effect on Board Independence. Br J Manag 1–24. https://doi.org/10.1111/1467-8551.12660 doi: 10.1111/1467-8551.12660
![]() |
[70] |
Pucheta-Martínez MC, Bel-Oms I (2016) The board of directors and dividend policy: the effect of gender diversity. Ind Corp Change 25: 523–547. https://doi.org/10.1093/icc/dtv040 doi: 10.1093/icc/dtv040
![]() |
[71] | Rezaee Z (2008) Corporate Governance and Ethics, Hoboken, NJ: John Wiley & Sons. |
[72] |
Rohov H, Kolodiziev O, Shulga N, et al. (2020) Factors affecting the dividend policy of non-financial joint stock companies in Ukraine. Invest Manag Financ Innov 17: 40–53. https://doi.org/10.21511/imfi.17(3).2020.04 doi: 10.21511/imfi.17(3).2020.04
![]() |
[73] |
Rozeff MS (1982) Growth, beta and agency costs as determinants of dividend payout ratios. J Financ Res 5: 249–259. https://doi.org/10.1111/j.1475-6803.1982.tb00299.x doi: 10.1111/j.1475-6803.1982.tb00299.x
![]() |
[74] | Sani AA, Musa AM (2017) Corporate Board Attributes and Dividend Payout Policy of Listed Deposit Money Banks in Nigeria. Int J Res IT Manag Eng 7: 7–13. |
[75] |
Saona P, Muro L, Martin PS, et al. (2019) Board of Director's Gender Diversity and Its Impact on Earnings Management: An Empirical Analysis for Select European Firms. Technol Econ Dev Econ 25: 634–663. https://doi.org/10.3846/tede.2019.9381 doi: 10.3846/tede.2019.9381
![]() |
[76] |
Shin YZ, Chang JY, Jeon K, et al. (2020) Female directors on the board and investment efficiency: evidence from Korea. Asian Bus Manag 19: 438–479. https://doi.org/10.1057/s41291-019-00066-2 doi: 10.1057/s41291-019-00066-2
![]() |
[77] |
Shleifer A, Vishny RW (1997) A Survey of Corporate Governance. J Financ 52: 737–783. https://doi.org/10.1111/j.1540-6261.1997.tb04820.x doi: 10.1111/j.1540-6261.1997.tb04820.x
![]() |
[78] |
Sun J, Liu G, Lan G (2011) Does female directorship on independent audit committees constrain earnings management? J Bus Ethics 99: 369–382. https://doi.org/10.1007/s10551-010-0657-0 doi: 10.1007/s10551-010-0657-0
![]() |
[79] |
Trinh VQ, Cao ND, Dinh LH, et al. (2021) Boardroom gender diversity and dividend payout strategies: Effects of mergers deals. Int J Financ Econ 26: 6014–6035. https://doi.org/10.1002/ijfe.2106 doi: 10.1002/ijfe.2106
![]() |
[80] |
Trinh QD, Haddad C, Thuan TK (2022) Financial Reporting Quality and Dividend Policy: New Evidence from an International Level. Int Rev Financ Anal 80. https://doi.org/10.1016/j.irfa.2022.102026 doi: 10.1016/j.irfa.2022.102026
![]() |
[81] |
Uzun H, Szewczyk SH, Varma R (2004) Board composition and corporate fraud. Financ Anal J 60: 33–43. https://doi.org/10.2469/faj.v60.n3.2619 doi: 10.2469/faj.v60.n3.2619
![]() |
[82] |
Watts RL (2003) Conservatism in accounting Part I: Explanations and implications. Account Horiz 17: 207–221. https://doi.org/10.2308/acch.2003.17.3.207 doi: 10.2308/acch.2003.17.3.207
![]() |
[83] |
Yakubu IN, Kapusuzoğlu A, Ceylan NB (2022) The effects of corporate governance on firm dividends policy: Evidence from Ghana. J Account Financ 94: 223–238. https://doi.org/10.25095/mufad.1064148 doi: 10.25095/mufad.1064148
![]() |
[84] |
Yusof Y, Ismail S (2016) Determinants of dividend policy of public listed companies in Malaysia. Rev Int Bus Strateg 26: 88–99. https://doi.org/10.1108/RIBS-02-2014-0030 doi: 10.1108/RIBS-02-2014-0030
![]() |
[85] |
Zalata AM, Ntim CG, Alsohagy MH, et al. (2021) Gender diversity and earnings management: the case of female directors with financial background. Rev Quant Financ Account 58: 101–136. https://doi.org/10.1007/s11156-021-00991-4 doi: 10.1007/s11156-021-00991-4
![]() |
[86] |
Zhou H, Owusu-Ansah S, Maggina A (2018) Board of Directors, Audit Committee, and Firm Performance: Evidence from Greece. J Int Account Audit Tax 31: 20–36. https://doi.org/10.1016/j.intaccaudtax.2018.03.002 doi: 10.1016/j.intaccaudtax.2018.03.002
![]() |
1. | Zimeng Lv, Xinyu Liu, Yuting Ding, Dynamic behavior analysis of an SVIR epidemic model with two time delays associated with the COVID-19 booster vaccination time, 2023, 20, 1551-0018, 6030, 10.3934/mbe.2023261 | |
2. | Zhiliang Li, Lijun Pei, Guangcai Duan, Shuaiyin Chen, A non-autonomous time-delayed SIR model for COVID-19 epidemics prediction in China during the transmission of Omicron variant, 2024, 32, 2688-1594, 2203, 10.3934/era.2024100 | |
3. | Liping Wang, Xinyu Wang, Dajun Liu, Xuekang Zhang, Peng Wu, Dynamical analysis of a heterogeneous spatial diffusion Zika model with vector-bias and environmental transmission, 2024, 32, 2688-1594, 1308, 10.3934/era.2024061 | |
4. | Chen Wang, Ruizhi Yang, Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source, 2025, 33, 2688-1594, 2815, 10.3934/era.2025124 |