
Citation: Elías Fernando Rodríguez Ferri, Sonia Martínez Martínez, César Bernardo Gutiérrez Martín. From the first to the latest vaccines in Veterinary Medicine[J]. AIMS Allergy and Immunology, 2018, 2(2): 82-87. doi: 10.3934/Allergy.2018.2.82
[1] | Mario Coccia, Igor Benati . Negative effects of high public debt on health systems facing pandemic crisis: Lessons from COVID-19 in Europe to prepare for future emergencies. AIMS Public Health, 2024, 11(2): 477-498. doi: 10.3934/publichealth.2024024 |
[2] | Pamila Sadeeka Adikari, KGRV Pathirathna, WKWS Kumarawansa, PD Koggalage . Role of MOH as a grassroots public health manager in preparedness and response for COVID-19 pandemic in Sri Lanka. AIMS Public Health, 2020, 7(3): 606-619. doi: 10.3934/publichealth.2020048 |
[3] | Boris G Andryukov, Natalya N Besednova . Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health, 2021, 8(3): 388-415. doi: 10.3934/publichealth.2021030 |
[4] | Abdulqadir J. Nashwan, Rejo G. Mathew, Reni Anil, Nabeel F. Allobaney, Sindhumole Krishnan Nair, Ahmed S. Mohamed, Ahmad A. Abujaber, Abbas Balouchi, Evangelos C. Fradelos . The safety, health, and well-being of healthcare workers during COVID-19: A scoping review. AIMS Public Health, 2023, 10(3): 593-609. doi: 10.3934/publichealth.2023042 |
[5] | Jennifer L Lemacks, Laurie S Abbott, Cali Navarro, Stephanie McCoy, Tammy Greer, Sermin Aras, Michael B Madson, Jacqueline Reese-Smith, Chelsey Lawrick, June Gipson, Byron K Buck, Marcus Johnson . Passive recruitment reach of a lifestyle management program to address obesity in the deep south during the COVID-19 pandemic. AIMS Public Health, 2023, 10(1): 116-128. doi: 10.3934/publichealth.2023010 |
[6] | Maria Mercedes Ferreira Caceres, Juan Pablo Sosa, Jannel A Lawrence, Cristina Sestacovschi, Atiyah Tidd-Johnson, Muhammad Haseeb UI Rasool, Vinay Kumar Gadamidi, Saleha Ozair, Krunal Pandav, Claudia Cuevas-Lou, Matthew Parrish, Ivan Rodriguez, Javier Perez Fernandez . The impact of misinformation on the COVID-19 pandemic. AIMS Public Health, 2022, 9(2): 262-277. doi: 10.3934/publichealth.2022018 |
[7] | Safaa Badi, Loai Abdelgadir Babiker, Abdullah Yasseen Aldow, Almigdad Badr Aldeen Abas, Mazen Abdelhafiez Eisa, Mohamed Nour Abu-Ali, Wagass Abdelrhman Abdella, Mohamed Elsir Marzouq, Musaab Ahmed, Abubakr Ali M Omer, Mohamed H Ahmed . Knowledge and attitudes toward COVID-19 vaccination in Sudan: A cross-sectional study. AIMS Public Health, 2023, 10(2): 310-323. doi: 10.3934/publichealth.2023023 |
[8] | Sushant K Singh . COVID-19: A master stroke of Nature. AIMS Public Health, 2020, 7(2): 393-402. doi: 10.3934/publichealth.2020033 |
[9] | Sameer Badri Al-Mhanna, Alexios Batrakoulis, Abdulrahman M. Sheikh, Abdulaziz A. Aldayel, Abdulwali Sabo, Mahaneem Mohamed, Hafeez Abiola Afolabi, Abdirizak Yusuf Ahmed, Sahra Isse Mohamed, Mehmet Gülü, Wan Syaheedah Wan Ghazali . Impact of COVID-19 lockdown on physical activity behavior among students in Somalia. AIMS Public Health, 2024, 11(2): 459-476. doi: 10.3934/publichealth.2024023 |
[10] | Vasiliki Georgousopoulou, Panagiota Pervanidou, Pantelis Perdikaris, Efrosyni Vlachioti, Vaia Zagana, Georgios Kourtis, Ioanna Pavlopoulou, Vasiliki Matziou . Covid-19 pandemic? Mental health implications among nurses and Proposed interventions. AIMS Public Health, 2024, 11(1): 273-293. doi: 10.3934/publichealth.2024014 |
A molecular graph in chemical graph theory is the graphical representation of the structural formula of a chemical compound in which the vertices represent atoms and edges represent chemical bond between those atoms. A topological index of a molecular graph $ G $ is a real number which characterizes the topology of $ G $. Also it is invariant under graph automorphism. Topological indices have been widely used in Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies. It has application in many folds, to name a few areas, biochemistry, nanotechnology, pharmacology. Bond energy is a measure of bond strength of a chemical compound. The distance between two atoms is considered as the bond length between them. The higher the bond energy, the smaller is the bond length between those atoms. The recently introduced 2-degree based topological invariants, analogous to novel graph invariants (Zagreb indices), namely leap Zagreb indices, may be applied in studying such bond energy between atoms in a molecular graph of a chemical compound.
Throughout this paper, $ G = (V, E) $ represents a connected molecular graph with the vertex set $ V(G) $ and the edge set $ E(G) $. Let the number of vertices and edges of $ G $ be $ n $ and $ m $ respectively. The degree of a vertex $ v $ in $ G $ is the number of vertices adjacent to $ v $ in $ G $ and denoted by $ deg(v:G) $. The $ 2 $-degree (or the second-degree) of a vertex $ v $ in $ G $ is the number of vertices which are at distance two from $ v $ in $ G $ and denoted by $ d_2(v:G) $. The Zagreb indices, namely, the first and second Zagreb indices, are the most important and oldest molecular structure descriptors. These indices have been studied extensively in the field of Mathematical Chemistry [3,4,5]. Recently, the concept of Forgotten topological index also known as F-index have attracted many researchers which results in over 100 research articles related to F-index. A.M.Naji et al. [13] have recently introduced and studied some properties of a new topological invariant called Leap Zagreb indices. They are defined as follows:
Definition 1. (ⅰ) The first leap Zagreb index $ LM_1(G) $ of a graph $ G $ is equal to the sum of squares of the second degrees of the vertices, $ LM_1(G) = \sum\limits_{u\in V(G)} d_2(u)^2 $.
(ⅱ) The second leap Zagreb index $ LM_2(G) $ of a graph $ G $ is equal to the sum of the products of the second degrees of pairs of adjacent vertices, $ LM_2(G) = \sum\limits_{uv\in E(G)} d_2(u)d_2(v) $.
(ⅲ) The third leap Zagreb index $ LM_3(G) $ of a graph $ G $ is equal to the sum of the products of the degree with the second degree of every vertex in $ G $, $ LM_3(G) = \sum\limits_{u\in V(G)} deg(u)d_2(u) $
Subsequently, Z. Shao et al. [18] generalized the results of Naji et al.[13] for trees and unicyclic graphs and determined upper and lower bounds on leap Zagreb indices and characterized extremal graphs. Basavanagoud et al.[2] computed exact values for first and second leap hyper Zagreb indices of some nano structures. V. R. Kulli [7,8,9] introduced and studied various leap indices. Shiladhar et al.[17] computed leap Zagreb indices of wind mill graphs. Most recently, Naji et al.[14] have studied some properties of leap graphs.
Azari et al.[1] found formulae for first and second Zagreb indices of bridge and chain graphs. Nilanjan De [15,16] computed F-index and hyper Zagreb index of bridge and chain graphs. Jerline et al. [6] obtained exact values for harmonic index of bridge and chain graphs. E. Litta et al. [10] worked on modified Zagreb indices of bridge graphs. Mohanad Ali et al. [11] computed F-leap index of some special classes of bridge and chain graphs. Zhang et al.[12] worked on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices of generalized bridge molecular graphs. Motivated by their results, we compute exact values for the first and third leap Zagreb indices of bridges and chain graphs. Also we discuss some applications related to these indices in the last section of this paper. First, we recall the definitions of bridge and chain graphs from [1] as follows:
Definition 2. Let $ {\{G_i\}}_{i = 1}^d $ be a set of finite pairwise disjoint graphs with distinct vertices $ v_i\in V(G_i) $. The bridge graph $ \mathcal{B}_1 = \mathcal{B}_1(G_1, G_2, \dots, G_d; v_1, v_2, v_3, \dots, v_d) $ of $ {\{G_i\}}_{i = 1}^d $ with respect to the vertices $ {\{v_i\}}_{i = 1}^d $ as shown in Figure 1, is the graph obtained from the graphs $ G_1, G_2, \dots, G_d $ by connecting the vertices $ v_i $ and $ v_{i+1} $ by an edge for all $ i = 1, 2, \dots, d-1 $.
Definition 3. The bridge graph $ \mathcal{B}_2 = \mathcal{B}_2(G_1, G_2, \dots, G_d; v_1, w_1, v_2, w_2, \dots, v_d, w_d) $ of $ {\{G_i\}}_{i = 1}^d $ with respect to the vertices $ {\{v_i, w_i\}}_{i = 1}^d $ as shown in Figure 2, is the graph obtained from the graphs $ G_1, G_2, G_3, \dots, G_d $ by connecting the vertices $ w_i $ and $ v_{i+1} $ by an edge for all $ i = 1, 2, \dots, d-1 $.
Definition 4. The chain graph $ \mathcal{C} = \mathcal{C}(G_1, G_2, \dots, G_d; v_1, w_1, v_2, w_2, \dots, v_d, w_d) $ of $ \{G_i\}_{i = 1}^{d} $ with respect to the vertices $ \{v_i, w_i\}_{i = 1}^{d} $ as shown in Figure 3, is the graph obtained from the graphs $ G_1, G_2, \dots, G_d $ by identifying the vertices $ w_i $ and $ v_{i+1} $ for all $ i = 1, 2, \dots, d-1 $.
The following lemma gives the $ 2 $-degree of any arbitrary vertex in the bridge graph $ \mathcal{B}_1 $.
Lemma 5. Let $ G_1, G_2, \cdots, G_d $ be $ d\geq 5 $ connected graphs. Then the $ 2 $-degree of any arbitrary vertex $ u $ in the bridge graph $ \mathcal{B}_1 $ formed by these graphs is as follows:
$ d2(u:B1)={ν1+μ2+1,ifu=v1νd+μd−1+1,ifu=vdν2+μ1+μ3+1,ifu=v2νd−1+μd+μd−2+1,ifu=vd−1νi+μi−1+μi+1+2,,ifu=vi,3≤i≤d−2d2(u:G1)+1,ifu∈NG1(v1)d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+2,ifu∈NGi(vi),2≤i≤d−1d2(u:Gi),ifu∈V(Gi)∖NGi[vi],1≤i≤d, $
|
(2.1) |
where $ \nu_{i} = d_2(v_i:G_i) $ and $ \mu_i = deg(v_i:G_i), \; 1\le i \le d $.
Next, we compute the first leap Zagreb index of the type-Ⅰ bridge graph $ \mathcal{B}_1 $.
Let $ S_i = \sum\limits_{u \in N_{G_i}(v_i)}d_2(u:G_i) $, $ 1\le i \le d $.
Theorem 6. $ LM_1(\mathcal{B}_1) = \sum\limits_{i = 1}^{d}LM_1(G_i)+\sum\limits_{i = 2}^{d-1}\left[ (\mu_{i-1}+\mu_{i+1}+1)^2+2\nu_i(\mu_{i-1}+\mu_{i+1}+1)+4S_i+8\mu_i\right]+2\sum\limits_{i = 3}^{d-2}\nu_i\\+2(S_1+S_d)+(\mu_1+\mu_d-2\mu_3-2\mu_{d-2})+(\mu_2+1)(\mu_2+2\nu_1+1) +(\mu_{d-1}+1)(\mu_{d-1}+2\nu_d+1)+3d-12 $.
Proof. By virtue of Lemma 5
$ LM1(B1)=∑u∈V(B1)d2(u:B1)2=(ν1+μ2+1)2+(νd+μd−1+1)2+(ν2+μ1+μ3+1)2+(νd−1+μd+μd−2+1)2+d−2∑i=3(νi+μi−1+μi+1+2)2+∑u∈NG1(v1)(d2(u:G1)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)2+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 $
|
$ =ν21+(μ2+1)2+2ν1(μ2+1)+ν2d+(μd−1+1)2+2νd(μd−1+1)+ν22+(μ1+μ3+1)2+2ν2(μ1+μ3+1)+ν2d−1+(μd+μd−2+1)2+2νd−1(μd+μd−2+1)+d−2∑i=3[(νi+1)2+2(νi+1)(μi−1+μi+1+1)+(μi−1+μi+1+1)2]+∑u∈NG1(v1)[d2(u:G1)2+2d2(u:G1)]+μ1+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)]+μd+d−1∑i=2∑u∈NGi(vi)[d2(u:Gi)2+4d2(u:Gi)]+4d−1∑i=2μi+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 $
|
$ =d∑i=1LM1(Gi)+d−1∑i=2[(μi−1+μi+1+1)2+2νi(μi−1+μi+1+1)+4Si+8μi]+2d−2∑i=3νi+2(S1+Sd)+(μ1+μd−2μ2−2μ3−2μd−2−2μd−1)+(μ2+1)(μ2+2ν1+1)+(μd−1+1)(μd−1+2νd+1)+3d−12. $
|
Thus the result follows.
Corollary 7. If $ G_1 = G_2 = \cdots = G_d = G $ in a bridge graph $ \mathcal{B}_1 $, then $ LM_1(\mathcal{B}_1) = dLM_1(G)+(4d-6)\mu^2+(4d-8)\nu+(12d-26)\mu+(4d-4)(\nu\mu+S)+4d-12 $, where $ S = \sum\limits_{u\in N_{G}(v)}d_2(u:G) $.
Lemma 8. [1] The degree of an arbitrary vertex $ u $ of the bridge graph $ B_1, \:\:d\geq5 $ is given by:
$ deg(u:B1)={μ1+1,ifu=v1μd+1,ifu=vdμi+2,ifu=vi,2≤i≤d−1deg(u:Gi),ifu∈V(Gi)∖{vi},1≤i≤d, $
|
(2.2) |
where $ \mu_i = deg(v_i:G_i), \; 1\le i \le d $.
Next, we compute the third leap Zagreb index of the type-Ⅰ bridge graph $ \mathcal{B}_1 $ Let us denote $ s_i = \sum\limits_{u\in N_{G_i}(v_i)}deg(u:G_i) $, $ 1 \le i \le d $.
Theorem 9. $ LM_3(\mathcal{B}_1) = \sum\limits_{i = 1}^{d}LM_3(G_i)+(s_1+s_d)+2\sum\limits_{i = 2}^{d-1}s_i+\sum\limits_{i = 1}^{d}(2\nu_i+ 6\mu_i)+2\sum\limits_{i = 2}^{d}(\mu_{i-1}\mu_{i})-2(\mu_2+\mu_{d-1})-(\nu_1+\nu_d)-3(\mu_1+\mu_d)+4d-10 $.
Proof. By virtue of Lemma 5 and 8
$ LM3(B1)=∑u∈v(B1)d2(u)deg(u)=(ν1+μ2+1)(μ1+1)+(ν2+μ1+μ3+1)(μ2+2)+(νd+μd−1+1)(μd+1)+(νd−1+μd+μd−2+1)(μd−1+2)+d−2∑i=3(νi+μi−1+μi+1+2)(μi+2)+∑u∈NG1(v1)(d2(u:G1)+1)(deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)(deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi](d2(u:Gi))(deg(u:Gi)) $
|
$ =(ν1μ1+ν1+μ2μ1+μ2+μ1+1)+(ν2μ2+2ν2+μ1μ2+2μ1+μ3μ2+2μ3+μ2+2)+(νdμd+νd+μd−1μd+μd−1+μd+1)+(νd−1μd−1+2νd−1+μdμd−1+2μd+μd−2μd−1+2μd−2+μd−1+2)+d−2∑i=3(νiμi+2νi+μi−1μi+2μi−1+μi+1μi+2μi+1+2μi+4)+∑u∈NG1(v1)(d2(u:G1)deg(u:G1)+deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)deg(u:Gd)+deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)deg(u:Gi)+2deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)deg(u:Gi) $
|
Thus the result follows.
Corollary 10. If $ G_1 = G_2 = \cdots = G_d = G $ in a bridge graph $ \mathcal{B}_1 $, then $ LM_3(\mathcal{B}_1) = dLM_3(G)+ 2(d-1)(s+\nu+\mu^2)+2\mu(3d-5)+4d-10 $, where $ s = \sum\limits_{u \in N_G(v)}deg(u:G) $.
For any two nonempty sets $ A $ and $ B $, $ A \Delta B $ denotes the symmetric difference of $ A $ and $ B $ and defined as $ A \Delta B = (A\setminus B)\cup (B \setminus A) = (A\cup B)\setminus (A \cap B) $. First, we obtain the $ 2 $-degree of any arbitrary vertex in the type-Ⅱ bridge graph $ \mathcal{B}_2 $ as follows:
Lemma 11. Let $ G_1, G_2, \cdots, G_d $ be $ d\geq 5 $ triangle free connected graphs. Then $ 2 $-degree of any arbitrary vertex $ u $ in the bridge graph $ \mathcal{B}_2 $ formed by these graphs is as follows:
$ d2(u:B2)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+1,ifu∈NG1(w1)d2(u:Gi),ifu∈V(Gi)∖{NGi[vi]∪NGi[wi]},2≤i≤d−1d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+1,ifu∈(NGi(vi)ΔNGi(wi)),2≤i≤d−1d2(u:Gi)+2,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+μi+1,ifu=wi,1≤i≤d−1νi+λi−1,ifu=vi,2≤i≤d. $
|
(2.3) |
where $ \nu_i = d_2(v_i:G_i), \; \mu_i = deg(v_i:G_i)\; ; 2\le i \le d, \; \delta_i = d_2(w_i:G_i), \; \lambda_i = deg(w_i:G_i); \; 1 \le i \le d-1 $.
Next, we compute the first leap Zagreb index of type-Ⅱ bridge graph $ \mathcal{B}_2 $.
Let us denote $ S_1^{'} = \sum\limits_{u\in N_{G_1}(w_1)}d_2(u:G_1) $ and $ S_d = \sum\limits_{u\in N_{G_d}(v_d)}d_2(u:G_d) $
Theorem 12. $ LM_1(\mathcal{B}_2) = \sum\limits_{i = 1}^{d}LM_1(G_i)+2(S_{1}^{'}+S_{d})+(\lambda_1+\mu_d)+\\ \sum\limits_{i = 2}^{d-1}\sum\limits_{u\in N_{G_i}(v_i)\Delta N_{G_i}(w_i)}[2d_2(u:G_i)+1]+4\sum\limits_{i = 2}^{d-1}\sum\limits_{u \in N_{G_i}(v_i)\cap N_{G_i}(w_i)}[d_2(u:G_i)+1]+\sum\limits_{i = 1}^{d-1}(\mu_{i+1}^{2}+2\delta_i\mu_{i+1})+\sum\limits_{i = 2}^{d}(\lambda_{i-1}^{2}+2\nu_i\lambda_{i-1}). $
Proof.
$ LM1(B2)=∑u∈V(B2)d2(u:B2)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NG1(w1)(d2(u:G1)+1)2+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)(d2(u:Gi)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)2+d−1∑i=1(δi+μi+1)2+d∑i=2(νi+λi−1)2 $
|
$ =LM1(G1)−δ21−∑u∈NG1(w1)d2(u:G1)2+d−1∑i=2[∑u∈V(Gi)d2(u:Gi)2−∑u∈N(vi)∪N(wi)d2(u:Gi)2−ν2i−δ2i]+LM1(Gd)−ν2d−∑u∈NGd(vd)d2(u:Gd)2+∑u∈NG1(w1)d2(u:G1)2+2∑u∈NG1(w1)d2(u:G1)+λ1+d−1∑i=2[∑u∈NGi(vi)ΔNGi(wi)[d2(u:Gi)2+2d2(u:Gi)+1]]+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)+1]+d−1∑i=2[∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+4d2(u:Gi)+4]]+d−1∑i=1[δ2i+2δiμi+1+μ2i+1]+d∑i=2[ν2i+2νiλi−1+λ2i−1] $
|
Thus,
$ LM1(B2)=d∑i=1LM1(Gi)+2(S′1+Sd)+(λ1+μd)+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+1]+d−1∑i=1(μ2i+1+2δiμi+1)+d∑i=2(λ2i−1+2νiλi−1). $
|
Corollary 13. If $ G_1 = G_2 = \cdots, G_d = G $, in a bridge graph $ \mathcal{B}_2 $, then $ LM_1(\mathcal{B}_2) = dLM_1(G)+\lambda+\mu+2(S+S') + (d-2)\sum\limits_{u \in N_{G}(v)\Delta N_{G}(w)}(2d_2(u:G)+1)+4(d-2)\sum\limits_{u \in N_{G}(v)\cap N_{G}(w)}(d_2(u:G)+1)+(d-1)[\mu^2+\lambda^2] +2(d-1)[\delta\mu+\nu\lambda] $, where $ S = \sum\limits_{u\in N_{G}(w)}d_2(u:G) $ and $ S' = \sum\limits_{u \in N_{G}(v)}d_2(u:G). $
In what follows next, we compute the third leap Zagreb index of $ \mathcal{B}_2 $.
Lemma 14. The degree of an arbitrary vertex $ u $ of the bridge graph $ B_2 $, $ d\geq5 $ is given by:
$ deg(u:B2)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+1,ifu=wi,1≤i≤d−1μi+1,ifu=vi,2≤i≤d. $
|
(2.4) |
where $ \mu_i = deg(v_i:G_i)\; ; 2\le i \le d, \; \lambda_i = deg(w_i:G_i); \; 1 \le i \le d-1 $.
Theorem 15. $ LM_3(\mathcal{B}_2) = \sum\limits_{i = 1}^{d}LM_3(G_i)+\sum\limits_{u \in N_{G_1}(w_1)}deg(u:G_1)+\sum\limits_{u \in N_{G_d}(v_d)}deg(u:Gd)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)deg(u:
Proof. By virtue of Lemma 2.7 and 2.10
$ LM3(B2)=∑u∈V(B2)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+d−1∑i=2∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)deg(u:Gi)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NG1(w1)(d2(u:G1)+1)(deg(u:G1))+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+1)(deg(u:Gi))+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+1)(deg(u:Gi))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)(deg(u:Gi))+d−1∑i=1(δi+μi+1)(λi+1)+d∑i=2(νi+λi−1)(μi+1) $
|
Thus the result follows.
Corollary 16. If $ G_1 = G_2 = \cdots = G_d = G $ in a bridge graph $ \mathcal{B}_2 $, then $ LM_3(\mathcal{B}_2) = dLM_3(G)+\sum\limits_{u \in N_{G}(w)}deg(u:G)+\sum\limits_{u \in N_{G}(v)}deg(u:G)+(d-2)(\sum\limits_{u \in N_{G}(w)\setminus N_{G}(v) }deg(u:G)+$$\sum\limits_{u \in N_{G}(v)\setminus N_{G}(w)}deg(u:G)+\sum\limits_{u \in N_{G}(v)\cap N_{G}(w)}2deg(u:G))+(d-1)(2\mu\lambda+\mu+\lambda)+d(\delta+\nu)-(\nu+\delta). $
In the following lemma, we obtain the $ 2 $-degree of any vertex in the chain graph $ \mathcal{C} $.
Lemma 17. Let $ G_1\; ,\; G_2\; ,\cdots, G_d $, $ d\geq 5 $ be $ C_3 $-free connected graphs and let $ \mathcal{C} = \mathcal{C}(G_1, G_2, \cdots, G_d; w_1, v_2, w_2, v_3, \cdots, w_{d-1}, v_{d}) $ be the chain graph formed using these graphs. Then the $ 2 $-degree of any vertex $ u $ in $ \mathcal{C} $ is given as follows:
$ d2(u:C)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+μ2,ifu∈NG1(w1)d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+λd−1,ifu∈NGd(vd)d2(u:Gi),ifu∈V(Gi)∖{NGi[wi]∪NGi[vi]},2≤i≤d−1d2(u:Gi)+μi+1,ifu∈NGi(wi)∖NGi(vi),2≤i≤d−1d2(u:Gi)+λi−1,ifu∈NGi(vi)∖NGi(wi),2≤i≤d−1d2(u:Gi)+λi−1+μi+1,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+νi+1,ifu=wi=vi+1,1≤i≤d−1, $
|
(2.5) |
where $ \nu_{i} = d_2(v_i:G_i), \; \mu_i = deg(v_i:G_i), \; \lambda_i = deg(w_i:G_i) $ and $ \delta_i = d_2(w_i:G_i) $ for all $ 1\le i \le d $.
Now, we compute the first leap Zagreb index of the chain graph $ \mathcal{C} $ by applying Lemma 17.
Theorem 18. For the chain graph $ \mathcal{C} $,
$ LM1(C)=d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. $
|
Proof. By Lemma 17, we have
$ LM1(C)=∑u∈V(C)d2(u:C)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+∑u∈NG1(w1)[d2(u:G1)+μ2]2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NGd(vd)[d2(u:Gd)+λd−1]2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)+μi+1]2+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)+λi−1]2+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+λi−1+μi+1]2+d−1∑i=1[δi+νi+1]2 $
|
$ =LM1(G1)−∑u∈NG1(w1)[d2(u:G1)2]−δ21+∑u∈NG1(w1)[d2(u:G1)2+2d2(u:G1)μ2+μ22]+LM1(Gd)−∑u∈NGd(vd)d2(u:Gd)2−ν2d+∑u∈NGd(vd)[d2(u:Gd)2+2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2∑u∈V(Gi)d2(u:Gi)2−d−1∑i=2 ∑u∈NGi[vi]∪NGi[wi]d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)2+2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+λ2i−1]+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+2μi+1d2(u:Gi)+2λi−1μi+1+λ2i−1+μ2i+1]+d−1∑i=1[δ2i+ν2i+1]+2d−1∑i=1δiνi+1 $
|
$ =d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. $
|
Corollary 19. In a chain graph $ \mathcal{C} $, if $ G_1 = G_2 = \cdots = G_d = G $, then $ LM_1(\mathcal{C}) = dLM_1(G)+\sum\limits_{u \in N_{G}(w)}[2 \mu d_2(u:G)+\mu^{2}] +\sum\limits_{u\in N_G(v)}[2\lambda d_2(u:G)+\lambda^{2}]+ (d-2)\sum\limits_{u \in N_{G}(w)\setminus N_{G}(v)}[2 \mu d_2(u:G)+\mu^{2}] +(d-2)\sum\limits_{u \in N_{G}(v)\setminus N_{G}(w)}[2\lambda d_{2}(u:G)+\lambda^{2}]\\ + 2(d-2)\sum\limits_{u \in N_{G}(v)\cap N_{G}(w)}[\lambda d_2(u:G)+\mu d_2(u:G)+\lambda \mu] \\ + (d-2)\sum\limits_{u \in N_{G}(v)\cap N_{G}(w)}(\lambda^{2}+\mu^{2})+2(d-1)\delta \nu $.
Lemma 20. Let $ G_1\; ,\; G_2\; ,\cdots, G_d $, $ d\geq 5 $ be $ C_3 $-free connected graphs and let $ \mathcal{C} = \mathcal{C}(G_1, G_2, \cdots, G_d; w_1, v_2, w_2, v_3, \cdots, w_{d-1}, v_{d}) $ be the chain graph formed using these graphs. Then the degree of any vertex $ u $ in $ \mathcal{C} $ is given as follows:
$ deg(u:C)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+μi+1,ifu=wi=vi+1,1≤i≤d−1, $
|
(2.6) |
where $ \mu_i = deg(v_i:G_i), \; \lambda_i = deg(w_i:G_i) $ for all $ 1\le i \le d $
Finally, we compute the third leap Zagreb index of the chain graph $ \mathcal{C} $ by applying Lemma 17 and 2.16.
Theorem 21. $ LM_3(\mathcal{C}) = \sum\limits_{i = 1}^{d}LM_3(G_i)+\sum\limits_{u \in N_{G_1}(w_1)}\mu_2 deg(u:G_1)+\sum\limits_{u \in N_{G_d}(v_d)}\lambda_{d-1}deg(u:G_d)+\sum\limits_{i = 2}^{d-1}\sum\limits_{u \in N_{G_i}(w_i)\setminus N_{G_i}(v_i)}\mu_{i+1}deg(u:G_i)+\sum\limits_{i = 2}^{d-1}\sum\limits_{u \in N_{G_i}(v_i)\setminus N_{G_i}(w_i)}\lambda_{i-1}deg(u:G_i)+\sum\limits_{i = 2}^{d-1}\sum\limits_{u \in N_{G_i}(v_i)\cap N_{G_i}(w_i)}(\lambda_{i-1}deg(u:G_i)+\mu_{i+1}deg(u:G_i))+\sum\limits_{i = 1}^{d-1}(\delta_i\mu_{i+1}+\nu_{i+1}\lambda_i). $
Proof. By virtue of Lemma 17 and 20
$ LM3(C)=∑u∈V(C)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+∑u∈NG1(w1)(d2(u:G1)+μ2)deg(u:G1)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NGd(vd)(d2(u:Gd)+λd−1)deg(u:Gd)+d−1∑i=2∑u∈V(Gi)∖{NGi[wi]∪NGi[vi]}d2(u:Gi)deg(u:Gi)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+μi+1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+λi−1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+λi−1+μi+1)deg(u:Gi)+d−1∑i=1(δi+νi+1)(λi+μi+1). $
|
Thus the result follows.
Corollary 22. In a chain graph $ \mathcal{C} $, if $ G_1 = G_2 = \cdots = G_d = G $, then $ LM_3(\mathcal{C}) = dLM_3(G)+\sum\limits_{u \in N_{G}(w)}\mu deg(u:G)+\sum\limits_{u \in N_{G}(v)}\lambda deg(u:G)+(d-2)(\sum\limits_{u \in N_{G}(w)\setminus N_{G}(v)}\mu deg(u:G)+\sum\limits_{u \in N_{G}(v)\setminus N_{G}(w)}\lambda deg(u:G)+\sum\limits_{u \in N_{G}(v) \cap N_{G}(w)} (\lambda+\mu)deg(u:G))+(d-1)(\delta\mu+\nu\lambda). $
In this section, we determine the first and third leap Zagreb indices of some molecular graph structures. Two vertices $ v $ and $ w $ of a hexagon $ H $ ($ C_6 $) (please refer Figure 4) are said to be in
(ⅰ) ortho-position, if they are adjacent in $ H $
(ⅱ) meta-position, if they are distance two in $ H $
(ⅲ) para-position, if they are distance three in $ H $.
We connect $ h\geq 5 $ ortho-hexagons to form a polyphenyl chain denoted by $ \mathcal{O}_h $ as follows:
One can observe that the Polyphenyl chain $ \mathcal{O}_h $ shown in Figure 5 is a $ \mathcal{B}_1 $ type bridge graph. Therefore, from Corollary 7, we get
$ LM1(Oh)=hLM1(G)+(4h−6)μ2+(4h−8)ν+(12h−26)μ+(4h−4)[νμ+∑u∈NG(v)d2(u:G)]+4h−12=24h+(4h−6)(4)+(4h−8)(2)+(12h−26)(2)+(4h−4)(4)+(4h−4)(4)+4h−12=108h−136. $
|
Similarly,
From Corollary 10, we get
$ LM3(Oh)=24h+(2h−2)(2)+(2h−2)(2)+2(2)(3h−5)+2(h−1)(2+4)+4h−10=60h−50 $
|
The polyphenyl chain $ \mathcal{M}_h $ is formed by connecting $ h \ge 5 $ meta-hexagons as shown in Figure 6.
The polyphenyl chain $ \mathcal{P}_h $ is formed by connecting $ h \ge 5 $ para-hexagons as shown in the following Figure 7.
It is clear that the Polyphenyl chains $ \mathcal{M}_h $ and $ \mathcal{P}_h $ are type-Ⅱ bridge graphs $ \mathcal{B}_2 $.
Using Corollary 2.9, we get
$ LM1(Mh)=hLM1(G)+λ+μ+2∑u∈NG(w)d2(u:G)+(h−2)[∑u∈NG(w)∖NG(v)(2d2(u:G)+1)]+(h−2)∑u∈NG(v)∖NG(w)(2d2(u:G)+1)+4(h−2)∑u∈NG(v)∩NG(w)(d2(u:G)+1)+2∑u∈NG(v)d2(u:G)+(h−1)μ2+2(h−1)δμ+2(h−1)νλ+(h−1)λ2=24h+4+2(4)+(h−2)[2(2)+1]+(h−2)[2(2)+1]+4(h−2)(2+1)+2(4)+(h−1)(4)+4(h−1)(4)+(h−1)(4) $
|
Thus $ LM_1(\mathcal{M}_h) = 70h-48. $
Similarly, by Corollary 13, we have
$ LM1(Ph)=24h+4+2(4)+(h−2)[2(4)+2]+(h−2)(8+2)+4(h−2)(0)+2(4)+(h−1)(4)+8(h−1)+8(h−1)+(h−1)(4) $
|
Therefore, $ LM_1(\mathcal{P}_h) = 68h-44 $.
Using Corollary 2.12, we get
$ LM3(Mh)=24h+8+(h−2)8+(h−1)12+h(4)−4=48h−24 $
|
$ LM3(Ph)=24h+8+(h−2)8+(h−1)12+4h−4=48h−24. $
|
Next, we shall see an application related to the chain graph $ \mathcal{C} $. The spiro-chain $ SPC_4(d, 3) $ is a chain graph formed using $ d\ge 5 $ copies of the cycle $ C_4 $.
Here the number $ 3 $ in the construction denotes the position of the vertices $ v $ and $ w $ in the spiro-chain (refer Figure 8).
The spiro-chain $ SPC_6(d, 4) $ is a chain graph formed using $ d\ge 5 $ copies of the cycle $ C_6 $ or hexagon where the vertices $ v $ and $ w $ are connected in the $ 4^{th} $ position (refer Figure 9).
By applying Corollary 19, we get
$ LM1(SPC4(d,3))=dLM1(G)+∑u∈NG(w)[2μd2(u:G)+μ2]+∑u∈NG(v)[2λd2(u:G)+λ2]+(d−2)∑u∈NG(w)∖NG(v)[2μd2(u:G)+μ2]+(d−2)∑u∈NG(v)∖NG(w)[2λd2(u:G)+λ2]+2(d−2)∑u∈NG(v)∩NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d−2)∑u∈NG(v)∩NG(w)(λ2+μ2)+2(d−1)δν=54d−66. $
|
Similarly, from Corollary 19, we have $ LM_1(SPC_6(d, 4)) = 80d-56 $.
By applying Corollary 22, we get
$ LM3(SPC4(d,3))=8d+2(2+2)+2(2+2)+(d−2)(16)+(d−1)(4)=28d−20 $
|
Similarly, from Corollary 22, we have $ LM_3(SPC_6(d, 4)) = 48d-24 $.
We have computed exact values of one of the recent topological invariants namely first and third leap Zagreb indices for bridge and chain graphs. It is worth mentioning that computing second leap Zagreb index of bridges and chain graphs has not yet addressed and interested researchers may work on it. Also these indices need to be explored for several other interesting graph structures arising from mathematical chemistry and other branches of science.
The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions. This work was supported in part by the National Key Technologies R & D Program of China under Grant 2017YFB0802300, 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.
The authors declare that no competing interests exist.
[1] | Rodríguez FEF (2016) Vacunología y Ciencias Veterinarias. In: Vacunas y Salud Pública. II Reunión de Academias Sanitarias de Castilla y León, Salamanca, 107–199. |
[2] |
Traidl-Hoffmann C (2017) On the way to allergy prevention-future perspective or illusory aim? AIMS Allergy Immunol 1: 15–20. doi: 10.3934/Allergy.2017.1.15
![]() |
[3] |
Fleischmann RD, Adams MD, White O, et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269: 496–512. doi: 10.1126/science.7542800
![]() |
[4] |
Staats HF, Jackson RJ, Marinaro M, et al. (1994) Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol 6: 572–583. doi: 10.1016/0952-7915(94)90144-9
![]() |
[5] |
Georgiou G, Podetschke HL, Strathopoulos C, et al. (1993) Practical applications of engineering Gram negative bacterial cell surfaces. Trends Biotechnol 11: 6–10. doi: 10.1016/0167-7799(93)90068-K
![]() |
[6] |
Gerdts V, Mutwiri GK, Tikoo SK, et al. (2006) Mucosal delivery of vaccines in domestic animals. Vet Res 37: 487–510. doi: 10.1051/vetres:2006012
![]() |
[7] | Maclachlan NJ, Balasuriya UB, Davis NL, et al. (2007) Experiences with new generation vaccines against equine viral arteritis. West Nile Disease and African horse sickness. Vaccine 254: 5577–5582. |
[8] | Swayne DE (2008) Avian influenza vaccines and therapies for poultry. Comp Immunol Microbiol Infect Dis 32: 351–363. |
[9] |
Rodríguez LL, Grubman MJ (2009) Foot and mouth disease virus vaccine. Vaccine 27: D90–D94. doi: 10.1016/j.vaccine.2009.08.039
![]() |
[10] |
Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402. doi: 10.1093/nar/25.17.3389
![]() |
[11] | Sánchez VJM (2007) Manual de Inmunología Veterinaria. Gómez-Lucía E, Blanco MM and Domenech A ed. Pearson-Prentice Hall, Madrid, Spain. |
[12] | European Medicine Agency (2002) Guideline: requirement for concurrent administration of immunological veterinary medical products. London: EMEA (EMEA/CVMP/550/02). |
[13] | European Medicine Agency (1997) Note for guidance on duration of protection achieved by veterinary vaccines. London: EMEA (EMEA/CVMP/Iwp/52/97). |
[14] | European Medicine Agency (1999) Note for guidance on duration of protection achieved by veterinary vaccines. London: EMEA (EMEA/CVMP/IWP/682/99). |
[15] |
Tang DC, Devit M, Johnston SA (1992) Genetic immunization is a simple method for eliciting an immune response. Nature 356: 152–154. doi: 10.1038/356152a0
![]() |
[16] |
Ulmer JB, Donnelly JJ, Parker SE, et al. (1993) Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259: 1745–1749. doi: 10.1126/science.8456302
![]() |
[17] |
Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application and optimization. Annu Rev Immunol 18: 927–974. doi: 10.1146/annurev.immunol.18.1.927
![]() |
1. | Mamo Solomon Emire, Bisrat Zeleke Shiferaw, Srikanth Umakanthan, Attitudes towards receiving COVID-19 vaccine and its associated factors among Southwest Ethiopian adults, 2021, 2023, 18, 1932-6203, e0280633, 10.1371/journal.pone.0280633 | |
2. | Malik Sallam, Mariam Al-Sanafi, Mohammed Sallam, A Global Map of COVID-19 Vaccine Acceptance Rates per Country: An Updated Concise Narrative Review, 2022, Volume 15, 1178-2390, 21, 10.2147/JMDH.S347669 | |
3. | Gizaw Sisay, Bahru Mantefardo, Aster Beyene, Time from symptom onset to severe COVID-19 and risk factors among patients in Southern Ethiopia: a survival analysis, 2022, 50, 0300-0605, 030006052211193, 10.1177/03000605221119366 | |
4. | Bedasa Taye Merga, Galana Mamo Ayana, Belay Negash, Addisu Alemu, Mohammed Abdurke, Ahmedmenewer Abdu, Bikila Balis, Miressa Bekana, Gelana Fekadu, Temam Beshir Raru, Health-care Workers’ Willingness to Pay for COVID-19 Vaccines in Eastern Ethiopia: Using Contingent Valuation Method, 2022, Volume 14, 1178-6981, 395, 10.2147/CEOR.S361199 | |
5. | Hsuan-Wei Lee, Cheng-Han Leng, Ta-Chien Chan, Srikanth Umakanthan, Determinants of personal vaccination hesitancy before and after the mid-2021 COVID-19 outbreak in Taiwan, 2022, 17, 1932-6203, e0270349, 10.1371/journal.pone.0270349 | |
6. | Cathy Bulley, Vaibhav Tyagi, Eleanor Curnow, Kath Nicol, Lisa Salisbury, Kim Stuart, Brendan McCormack, Ruth Magowan, Olivia Sagan, Jan Dewing, Support after COVID-19 study: a mixed-methods cross-sectional study to develop recommendations for practice, 2022, 12, 2044-6055, e056568, 10.1136/bmjopen-2021-056568 | |
7. | Huong Thi Le, Thao Thi Phuong Nguyen, Corey Jacinto, Cuong Tat Nguyen, Linh Gia Vu, Hien Thu Nguyen, Minh Le Vu, Xuan Thi Thanh Le, Thao Thanh Nguyen, Quan Thi Pham, Nhung Ta, Quynh Thi Nguyen, Carl A Latkin, Cyrus SH Ho, Roger CM Ho, Factors Associated with Community Awareness on COVID-19 in a Developing Country: Implications for Optimal Risk Communication, 2022, Volume 15, 1179-1594, 415, 10.2147/RMHP.S356690 | |
8. | Srikanth Umakanthan, Sam Lawrence, Predictors of COVID-19 vaccine hesitancy in Germany: a cross-sectional, population-based study, 2022, 98, 0032-5473, 756, 10.1136/postgradmedj-2021-141365 | |
9. | Srikanth Umakanthan, Maryann M. Bukelo, Somu Sekhar Gajula, The Commonwealth Caribbean COVID-19: Regions Resilient Pathway During Pandemic, 2022, 10, 2296-2565, 10.3389/fpubh.2022.844333 | |
10. | Walid Al-Qerem, Anan Jarab, Alaa Hammad, Alaa Hussein Alsajri, Shadan Waleed Al-Hishma, Jonathan Ling, Asal Saad Alabdullah, Ali Salama, Rami Mosleh, Knowledge, Attitudes, and Practices of Adult Iraqi Population Towards COVID-19 Booster Dose: A Cross-Sectional Study, 2022, Volume 16, 1177-889X, 1525, 10.2147/PPA.S370124 | |
11. | Tilahun Beyene Handiso, Markos Selamu Jifar, Shemsu Nuriye Hagisso, Coronavirus’s (SARS-CoV-2) airborne transmission: A review, 2022, 10, 2050-3121, 205031212210941, 10.1177/20503121221094185 | |
12. | Rukiye Çelik, Birgül Erdoğan, Gizem Çakır, Naime Altay, Ebru Kılıçarslan Törüner, Impact of the COVID-19 Pandemic on the Emotional State of School Children, 2025, 15, 2459-1459, 182, 10.33808/clinexphealthsci.1542187 | |
13. | Marshall Kerr Tulloch-Reid, Jacqueline Duncan, Keri-Ann Facey, Akil Williams, Marsha Ivey, Shelly-Ann Hunte, Eden Agustus, Simon Anderson, Maria Jackson, Using data systems to conduct health research in the Caribbean: challenges during the COVID-19 pandemic, 2025, 49, 1020-4989, 1, 10.26633/RPSP.2025.29 |