Loading [MathJax]/jax/output/SVG/jax.js
Review

The impact of p38 MAPK, 5-HT/DA/E signaling pathways in the development and progression of cardiovascular diseases and heart failure in type 1 diabetes

  • Serotonin or 5-HT, DA and E, all monoamine neurotransmitters, work also as hormones, plays crucial role in the brain and body. This 5-HT, DA and E increased significantly, and regulated by activated p38 MAPK in type I diabetes mellitus (T1DM), and that has been shown to involve in metabolic disorders as well as cardiovascular diseases, leading to heart failure. Even though these molecules are being considered for clinical trials in the treatments of various cardiovascular diseases, the synergistic-pathophysiological mechanisms of these p38 MAPK and neurotransmitters on target molecules, cells and tissues in heart failure are not completely understood in T1DM. However, T1DM results in metabolic dysregulation, impairment/loss of insulin secretion, hyperglycemia and acidosis. These changes are widely reported to be involved in abnormal functions of receptors, which provide binding site for signaling molecules. We are constantly focusing on the mechanisms of alloxan-induced-diabetes, glucose-induced-hyperglycemia and ammonium chloride-induced-acidosis (non-diabetic hyperglycemia (NDH) and non-diabetic acidosis (NDA), respectively) on the levels and functions of neurotransmitters and p38 MAPK. Here, in this review, we are proposing the mechanisms of insulin and/or some of the pharmacological agents on the level and functions of p38 MAPK and neurotransmitters in various areas of rat brain under diabetic or its associated conditions, which leads to cardiovascular dysfunctions. Targeting these molecules/pathways may be useful in the treatment of cardiovascular diseases and diabetes mediated heart failure.

    Citation: Ramakrishnan Ramugounder. The impact of p38 MAPK, 5-HT/DA/E signaling pathways in the development and progression of cardiovascular diseases and heart failure in type 1 diabetes[J]. AIMS Molecular Science, 2020, 7(4): 349-373. doi: 10.3934/molsci.2020017

    Related Papers:

    [1] Tianyuan Xu, Shanming Ji, Chunhua Jin, Ming Mei, Jingxue Yin . EARLY AND LATE STAGE PROFILES FOR A CHEMOTAXIS MODEL WITH DENSITY-DEPENDENT JUMP PROBABILITY. Mathematical Biosciences and Engineering, 2018, 15(6): 1345-1385. doi: 10.3934/mbe.2018062
    [2] Wenjie Zhang, Lu Xu, Qiao Xin . Global boundedness of a higher-dimensional chemotaxis system on alopecia areata. Mathematical Biosciences and Engineering, 2023, 20(5): 7922-7942. doi: 10.3934/mbe.2023343
    [3] Sunwoo Hwang, Seongwon Lee, Hyung Ju Hwang . Neural network approach to data-driven estimation of chemotactic sensitivity in the Keller-Segel model. Mathematical Biosciences and Engineering, 2021, 18(6): 8524-8534. doi: 10.3934/mbe.2021421
    [4] Qianhong Zhang, Fubiao Lin, Xiaoying Zhong . On discrete time Beverton-Holt population model with fuzzy environment. Mathematical Biosciences and Engineering, 2019, 16(3): 1471-1488. doi: 10.3934/mbe.2019071
    [5] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [6] Xu Song, Jingyu Li . Asymptotic stability of spiky steady states for a singular chemotaxis model with signal-suppressed motility. Mathematical Biosciences and Engineering, 2022, 19(12): 13988-14028. doi: 10.3934/mbe.2022652
    [7] Tingting Yu, Sanling Yuan . Dynamics of a stochastic turbidostat model with sampled and delayed measurements. Mathematical Biosciences and Engineering, 2023, 20(4): 6215-6236. doi: 10.3934/mbe.2023268
    [8] Lin Zhang, Yongbin Ge, Zhi Wang . Positivity-preserving high-order compact difference method for the Keller-Segel chemotaxis model. Mathematical Biosciences and Engineering, 2022, 19(7): 6764-6794. doi: 10.3934/mbe.2022319
    [9] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
    [10] Marcin Choiński, Mariusz Bodzioch, Urszula Foryś . A non-standard discretized SIS model of epidemics. Mathematical Biosciences and Engineering, 2022, 19(1): 115-133. doi: 10.3934/mbe.2022006
  • Serotonin or 5-HT, DA and E, all monoamine neurotransmitters, work also as hormones, plays crucial role in the brain and body. This 5-HT, DA and E increased significantly, and regulated by activated p38 MAPK in type I diabetes mellitus (T1DM), and that has been shown to involve in metabolic disorders as well as cardiovascular diseases, leading to heart failure. Even though these molecules are being considered for clinical trials in the treatments of various cardiovascular diseases, the synergistic-pathophysiological mechanisms of these p38 MAPK and neurotransmitters on target molecules, cells and tissues in heart failure are not completely understood in T1DM. However, T1DM results in metabolic dysregulation, impairment/loss of insulin secretion, hyperglycemia and acidosis. These changes are widely reported to be involved in abnormal functions of receptors, which provide binding site for signaling molecules. We are constantly focusing on the mechanisms of alloxan-induced-diabetes, glucose-induced-hyperglycemia and ammonium chloride-induced-acidosis (non-diabetic hyperglycemia (NDH) and non-diabetic acidosis (NDA), respectively) on the levels and functions of neurotransmitters and p38 MAPK. Here, in this review, we are proposing the mechanisms of insulin and/or some of the pharmacological agents on the level and functions of p38 MAPK and neurotransmitters in various areas of rat brain under diabetic or its associated conditions, which leads to cardiovascular dysfunctions. Targeting these molecules/pathways may be useful in the treatment of cardiovascular diseases and diabetes mediated heart failure.


    Baló's concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2]. Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is most often characterized by an acute onset with steady progression to major disability and death with months, thus resembling Marburg's acute MS [3,4]. Its pathological hallmarks are oligodendrocyte loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning theory and the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon, Khonsari and Calvez [6] established the following chemotaxis model

    ˜uτ=DΔX˜udiffusion ofactivated macrophagesX(˜χ˜u(ˉu˜u)˜v)chemoattractant attractssurrounding activated macrophages+μ˜u(ˉu˜u)production of activated macrophages,˜ϵΔX˜vdiffusion of chemoattractant=˜α˜v+˜β˜wdegradationproduction of chemoattractant,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w)destruction of oligodendrocytes, (1.1)

    where ˜u, ˜v and ˜w are, respectively, the density of activated macrophages, the concentration of chemoattractants and density of destroyed oligodendrocytes. ˉu and ˉw represent the characteristic densities of macrophages and oligodendrocytes respectively.

    By numerical simulation, the authors in [6,7] indicated that model (1.1) only produces heterogeneous concentric demyelination and homogeneous demyelinated plaques as χ value gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes, "classically activated'' M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear production term into the second equation of model (1.1), and establish the following BCS chemotaxis model with linear production term

    {˜uτ=DΔX˜uX(˜χ˜u(ˉu˜u)˜v)+μ˜u(ˉu˜u),˜ϵΔX˜v+˜α˜v=˜β˜w+˜γ˜u,˜wτ=κ˜uˉu+˜u˜u(ˉw˜w). (1.2)

    Before going to details, let us simplify model (1.2) with the following scaling

    u=˜uˉu,v=μˉu˜ϵD˜v,w=˜wˉw,t=μˉuτ,x=μˉuDX,χ=˜χ˜ϵμ,α=D˜α˜ϵμˉu,β=˜βˉw,γ=˜γˉu,δ=κμ,

    then model (1.2) takes the form

    {ut=Δu(χu(1u)v)+u(1u),xΩ,t>0,Δv+αv=βw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0,ηu=ηv=0,xΩ,t>0,u(x,0)=u0(x),w(x,0)=w0(x),xΩ, (1.3)

    where ΩRn(n1) is a smooth bounded domain, η is the outward normal vector to Ω, η=/η, δ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The parameters χ,α and δ are positive constants as well as β,γ are nonnegative constants.

    If δ=0, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter [9,10] considered the finite size of individual cells-"volume-filling'' and derived volume-filling models

    {ut=(Du(q(u)q(u)u)uq(u)uχ(v)v)+f(u,v),vt=DvΔv+g(u,v). (1.4)

    q(u) is the probability of the cell finding space at its neighbouring location. It is also called the squeezing probability, which reflects the elastic properties of cells. For the linear choice of q(u)=1u, global existence of solutions to model (1.4) in any space dimension are investigated in [9]. Wang and Thomas [11] established the global existence of classical solutions and given necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic source, the global boundedness and finite time blow-up of solutions are obtained in [12]. Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and both linear diffusion and nonlinear diffusion are shown in [13,14,15] by the weakly nonlinear analysis. For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability, asymptotic behavior of solutions is studied both in the whole space Rn [16] and on bounded domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18,19].

    Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the following chemotaxis model of multiple sclerosis

    {ut=Δu(χ(u)v)+u(1u),χ(u)=χu1+u,xΩ,t>0,τvt=Δvβv+αw+γu,xΩ,t>0,wt=δu1+uu(1w),xΩ,t>0,

    subject to the homogeneous Neumann boundary conditions.

    In this paper, we are first devoted to studying the local existence and uniform boundedness of the unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing Lyapunov function.

    Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy 0<u0(x)1,w0(x)=0, we mathematically assume that

    {u0(x)C0(ˉΩ)with0,u0(x)1inΩ,w0(x)C2+ν(ˉΩ)with0<ν<1and0w0(x)1inΩ. (1.5)

    It is because the condition (1.5) implies u(x,t0)>0 for any t0>0 by the strong maximum principle.

    The following theorems give the main results of this paper.

    Theorem 1.1. Assume that the initial data (u0(x),w0(x)) satisfy the condition (1.5). Then model (1.3) possesses a unique global solution (u(x,t),v(x,t),w(x,t)) satisfying

    u(x,t)C0(ˉΩ×[0,))C2,1(ˉΩ×(0,)),v(x,t)C0((0,),C2(ˉΩ)),w(x,t)C2,1(ˉΩ×[0,)), (1.6)

    and

    0<u(x,t)1,0v(x,t)β+γα,w0(x)w(x,t)1,inˉΩ×(0,).

    Moreover, there exist a ν(0,1) and M>0 such that

    uC2+ν,1+ν/2(ˉΩ×[1,))+vC0([1,),C2+ν(ˉΩ))+wCν,1+ν/2(ˉΩ×[1,))M. (1.7)

    Theorem 1.2. Assume that β0,γ0,β+γ>0 and

    χ<{min{22αβ,22αγ},β>0,γ>0,22αβ,β>0,γ=0,22αγ,β=0,γ>0. (1.8)

    Let (u,v,w) be a positive classical solution of the problem (1.3), (1.5). Then

    u(,t)uL(Ω)+v(,t)vL(Ω)+w(,t)wL(Ω)0,ast. (1.9)

    Furthermore, there exist positive constants λ=λ(χ,α,γ,δ,n) and C=C(|Ω|,χ,α,β,γ,δ) such that

    uuL(Ω)Ceλt,vvL(Ω)Ceλt,wwL(Ω)Ceλt,t>0, (1.10)

    where (u,v,w)=(1,β+γα,1) is the unique positive equilibrium point of the model (1.3).

    The paper is organized as follows. In section 2, we prove the local existence, the boundedness and global existence of a unique classical solution. In section 3, we firstly establish the uniform convergence of the positive global classical solution, then discuss the exponential asymptotic stability of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief concluding remarks.

    The aim of this section is to develop the existence and boundedness of a global classical solution by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory.

    Proof of Theorem 1.1 (ⅰ) Existence. For p(1,), let A denote the sectorial operator defined by

    Au:=ΔuforuD(A):={φW2,p(Ω)|ηφ|Ω=0}.

    λ1>0 denote the first nonzero eigenvalue of Δ in Ω with zero-flux boundary condition. Let A1=Δ+α and Xl be the domains of fractional powers operator Al,l0. From the Theorem 1.6.1 in [21], we know that for any p>n and l(n2p,12),

    zL(Ω)CAl1zLp(Ω)forallzXl. (2.1)

    We introduce the closed subset

    S:={uX|uL((0,T);L(Ω))R+1}

    in the space X:=C0([0,T];C0(ˉΩ)), where R is a any positive number satisfying

    u0(x)L(Ω)R

    and T>0 will be specified later. Note F(u)=u1+u, we consider an auxiliary problem with F(u) replaced by its extension ˜F(u) defined by

    ˜F(u)={F(u)uifu0,F(u)(u)ifu<0.

    Notice that ˜F(u) is a smooth globally Lipshitz function. Given ˆuS, we define Ψˆu=u by first writing

    w(x,t)=(w0(x)1)eδt0˜F(ˆu)ˆuds+1,xΩ,t>0, (2.2)

    and

    w0w(x,t)1,xΩ,t>0,

    then letting v solve

    {Δv+αv=βw+γˆu,xΩ,t(0,T),ηv=0,xΩ,t(0,T), (2.3)

    and finally taking u to be the solution of the linear parabolic problem

    {ut=Δuχ(ˆu(1ˆu)v)+ˆu(1ˆu),xΩ,t(0,T),ηu=0,xΩ,t(0,T),u(x,0)=u0(x),xΩ.

    Applying Agmon-Douglas-Nirenberg Theorem [22,23] for the problem (2.3), there exists a constant C such that

    vW2p(Ω)C(βwLp(Ω)+γˆuLp(Ω))C(β|Ω|1p+γ(R+1)) (2.4)

    for all t(0,T). From a variation-of-constants formula, we define

    Ψ(ˆu)=etΔu0χt0e(ts)Δ(ˆu(1ˆu)v(s))ds+t0e(ts)Δˆu(s)(1ˆu(s))ds.

    First we shall show that for T small enough

    Ψ(ˆu)L((0,T);L(Ω))R+1

    for any ˆuS. From the maximum principle, we can give

    etΔu0L(Ω)u0L(Ω), (2.5)

    and

    t0etΔˆu(s)(1ˆu(s))L(Ω)dst0ˆu(s)(1ˆu(s))L(Ω)ds(R+1)(R+2)T (2.6)

    for all t(0,T). We use inequalities (2.1) and (2.4) to estimate

    χt0e(ts)Δ(ˆu(1ˆu)v(s))L(Ω)dsCt0(ts)lets2Δ(ˆu(1ˆu)v(s))Lp(Ω)dsCt0(ts)l12(ˆu(1ˆu)v(s)Lp(Ω)dsCT12l(R+1)(R+2)(β|Ω|1p+γ(R+1)) (2.7)

    for all t(0,T). This estimate is attributed to T<1 and the inequality in [24], Lemma 1.3 iv]

    etΔzLp(Ω)C1(1+t12)eλ1tzLp(Ω)forallzCc(Ω).

    From inequalities (2.5), (2.6) and (2.7) we can deduce that Ψ maps S into itself for T small enough.

    Next we prove that the map Ψ is a contractive on S. For ˆu1,ˆu2S, we estimate

    Ψ(ˆu1)Ψ(ˆu2)L(Ω)χt0(ts)l12[ˆu2(s)(1ˆu2(s))ˆu1(s)(1ˆu1(s))]v2(s)Lp(Ω)ds+χt0ˆu1(s)(1ˆu1(s))(v1(s)v2(s))Lp(Ω)ds+t0e(ts)Δ[ˆu1(s)(1ˆu1(s))ˆu2(s)(1ˆu2(s))]L(Ω)dsχt0(ts)l12(2R+1)ˆu1(s)ˆu2(s)Xv2(s)Lp(Ω)ds+χt0(R+1)(R+2)(βw1(s)w2(s)Lp(Ω)+γˆu1(s)ˆu2(s)Lp(Ω))ds+t0(2R+1)ˆu1(s)ˆu2(s)Xdsχt0(ts)l12(2R+1)ˆu1(s)ˆu2(s)Xv2(s)Lp(Ω)ds+2βδχt0(R+1)(R+2)tˆu1(s)ˆu2(s)Lp(Ω)+γˆu1(s)ˆu2(s)Lp(Ω)ds+t0(2R+1)ˆu1(s)ˆu2(s)Xds(CχT12l(2R+1)(β|Ω|1p+γ(R+1))+2βδχT(R2+3R+γ+2)+T(2R+1))ˆu1(s)ˆu2(s)X.

    Fixing T(0,1) small enough such that

    (CχT12l(2R+1)(β|Ω|1p+γ(R+1))+2βδχT(R2+3R+γ+2)+T(2R+1))12.

    It follows from the Banach fixed point theorem that there exists a unique fixed point of Ψ.

    (ⅱ) Regularity. Since the above of T depends on u0L(Ω) and w0L(Ω) only, it is clear that (u,v,w) can be extended up to some maximal Tmax(0,]. Let QT=Ω×(0,T] for all T(0,Tmax). From uC0(ˉQT), we know that wC0,1(ˉQT) by the expression (2.2) and vC0([0,T],W2p(Ω)) by Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic Lp-estimate and the embedding relation W1p(Ω)Cν(ˉΩ),p>n, we can get uW2,1p(QT). By applying the following embedding relation

    W2,1p(QT)Cν,ν/2(ˉQT),p>n+22, (2.8)

    we can derive u(x,t)Cν,ν/2(ˉQT) with 0<ν2n+2p. The conclusion wCν,1+ν/2(ˉQT) can be obtained by substituting uCν,ν/2(ˉQT) into the formulation (2.2). The regularity uC2+ν,1+ν/2(ˉQT) can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly, we can get vC0((0,T),C2+ν(ˉΩ)) by using Agmon-Douglas-Nirenberg Theorem [22,23]. From the regularity of u we have wC2+ν,1+ν/2(ˉQT).

    Moreover, the maximal principle entails that 0<u(x,t)1, 0v(x,t)β+γα. It follows from the positivity of u that ˜F(u)=F(u) and because of the uniqueness of solution we infer the existence of the solution to the original problem.

    (ⅲ) Uniqueness. Suppose (u1,v1,w1) and (u2,v2,w2) are two deferent solutions of model (1.3) in Ω×[0,T]. Let U=u1u2, V=v1v2, W=w1w2 for t(0,T). Then

    12ddtΩU2dx+Ω|U|2dxχΩ|u1(1u1)u2(1u2)|v1||U|+u2(1u2)|V||U|dx+Ω|u1(1u1)u2(1u2)||U|dxχΩ|U||v1||U|+14|V||U|dx+Ω|U|2dxΩ|U|2dx+χ232Ω|V|2dx+χ2K2+22Ω|U|2dx, (2.9)

    where we have used that |v1|K results from v1C0([0,T],C0(ˉΩ)).

    Similarly, by Young inequality and w0w11, we can estimate

    Ω|V|2dx+α2Ω|V|2dxβ2αΩ|W|2dx+γ2αΩ|U|2dx, (2.10)

    and

    ddtΩW2dxδΩ|U|2+|W|2dx. (2.11)

    Finally, adding to the inequalities (2.9)–(2.11) yields

    ddt(ΩU2dx+ΩW2dx)C(ΩU2dx+ΩW2dx)forallt(0,T).

    The results U0, W0 in Ω×(0,T) are obtained by Gronwall's lemma. From the inequality (2.10), we have V0. Hence (u1,v1,w1)=(u2,v2,w2) in Ω×(0,T).

    (ⅳ) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22,23] for the second equation of the model (1.3) to get

    vC0([t,t+1],W2p(Ω))C(uLp(Ω×[t,t+1])+wLp(Ω×[t,t+1]))C2 (2.12)

    for all t1 and C2 is independent of t. From the embedded relationship W1p(Ω)C0(ˉΩ),p>n, the parabolic Lp-estimate and the estimation (2.12), we have

    uW2,1p(Ω×[t,t+1])C3

    for all t1. The estimate uCν,ν2(ˉΩ×[t,t+1])C4 for all t1 obtained by the embedded relationship (2.8). We can immediately compute wCν,1+ν2(ˉΩ×[t,t+1])C5 for all t1 according to the regularity of u and the specific expression of w. Further, bootstrapping argument leads to vC0([t,t+1],C2+ν(ˉΩ))C6 and uC2+ν,1+ν2(ˉΩ×[t,t+1])C7 for all t1. Thus the uniform estimation (1.7) is proved.

    Remark 2.1. Assume the initial data 0<u0(x)1 and w0(x)=0. Then the BCS model (1.3) has a unique classical solution.

    In this section we investigate the global asymptotic stability of the unique positive equilibrium point (1,β+γα,1) to model (1.3). To this end, we first introduce following auxiliary problem

    {uϵt=Δuϵ(uϵ(1uϵ)vϵ)+uϵ(1uϵ),xΩ,t>0,Δvϵ+αvϵ=βwϵ+γuϵ,xΩ,t>0,wϵt=δu2ϵ+ϵ1+uϵ(1wϵ),xΩ,t>0,ηuϵ=ηvϵ=0,xΩ,t>0,uϵ(x,0)=u0(x),wϵ(x,0)=w0(x),xΩ. (3.1)

    By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical solution (uϵ,vϵ,wϵ), and there exist a ν(0,1) and M1>0 which is independent of ϵ such that

    uϵC2+ν,1+ν/2(ˉΩ×[1,))+vϵC2+ν,1+ν/2(ˉΩ×[1,))+wϵCν,1+ν/2(ˉΩ×[1,))M1. (3.2)

    Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform convergence of homogeneous steady state for the problem (3.1).

    Let us give following lemma which is used in the proof of Lemma 3.2.

    Lemma 3.1. Suppose that a nonnegative function f on (1,) is uniformly continuous and 1f(t)dt<. Then f(t)0 as t.

    Lemma 3.2. Assume that the condition (1.8) is satisfied. Then

    uϵ(,t)1L2(Ω)+vϵ(,t)vL2(Ω)+wϵ(,t)1L2(Ω)0,t, (3.3)

    where v=β+γα.

    Proof We construct a positive function

    E(t):=Ω(uε1lnuϵ)+12δϵΩ(wϵ1)2,t>0.

    From the problem (3.1) and Young's inequality, we can compute

    ddtE(t)χ24Ω|vϵ|2dxΩ(uϵ1)2dxΩ(wϵ1)2dx,t>0. (3.4)

    We multiply the second equations in system (3.1) by vϵv, integrate by parts over Ω and use Young's inequality to obtain

    Ω|vϵ|2dxγ22αΩ(uϵ1)2dx+β22αΩ(wϵ1)2dx,t>0, (3.5)

    and

    Ω(vϵv)2dx2γ2α2Ω(uϵ1)2dx+2β2α2Ω(wϵ1)2dx,t>0. (3.6)

    Substituting inequality (3.5) into inequality (3.4) to get

    ddtE(t)C8(Ω(uϵ1)2dx+Ω(wϵ1)2dx),t>0,

    where C8=min{1χ2β28α,1χ2γ28α}>0.

    Let f(t):=Ω(uϵ1)2+(wϵ1)2dx. Then

    1f(t)dtE(1)C8<,t>1.

    It follows from the uniform estimation (3.2) and the Arzela-Ascoli theorem that f(t) is uniformly continuous in (1,). Applying Lemma 3.1, we have

    Ω(uϵ(,t)1)2+(wϵ(,t)1)2dx0,t. (3.7)

    Combining inequality (3.6) and the limit (3.7) to obtain

    Ω(vϵ(,t)v)2dx0,t.

    Proof of Theorem 1.2 As we all known, each bounded sequence in C2+ν,1+ν2(ˉΩ×[1,)) is precompact in C2,1(ˉΩ×[1,)). Hence there exists some subsequence {uϵn}n=1 satisfying ϵn0 as n such that

    limnuϵnuC2,1(ˉΩ×[1,))=0.

    Similarly, we can get

    limnvϵnvC2(ˉΩ)=0,

    and

    limnwϵnwC0,1(ˉΩ×[1,))=0.

    Combining above limiting relations yields that (u,v,w) satisfies model (1.3). The conclusion (u,v,w)=(u,v,w) is directly attributed to the uniqueness of the classical solution of the model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal line method, we can deduce

    u(,t)1L2(Ω)+v(,t)vL2(Ω)+w(,t)1L2(Ω)0,t. (3.8)

    By applying Gagliardo-Nirenberg inequality

    zLCz2/(n+2)L2(Ω)zn/(n+2)W1,(Ω),zW1,(Ω), (3.9)

    comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained immediately.

    Since limtu(,t)1L(Ω)=0, so there exists a t1>0 such that

    u(x,t)12forallxΩ,t>t1. (3.10)

    Using the explicit representation formula of w

    w(x,t)=(w0(x)1)eδt0F(u)uds+1,xΩ,t>0

    and the inequality (3.10), we have

    w(,t)1L(Ω)eδ6(tt1),t>t1. (3.11)

    Multiply the first two equations in model (1.3) by u1 and vv, respectively, integrate over Ω and apply Cauchy's inequality, Young's inequality and the inequality (3.10), to find

    ddtΩ(u1)2dxχ232Ω|v|2dxΩ(u1)2dx,t>t1. (3.12)
    Ω|v|2dx+α2Ω(vv)2dxβ2αΩ(w1)2dx+γ2αΩ(u1)2dx,t>0. (3.13)

    Combining the estimations (3.11)–(3.13) leads us to the estimate

    ddtΩ(u1)2dx(χ2γ232α1)Ω(u1)2dx+χ2β232αeδ3(tt1),t>t1.

    Let y(t)=Ω(u1)2dx. Then

    y(t)(χ2γ232α1)y(t)+χ2β232αeδ3(tt1),t>t1.

    From comparison principle of ODE, we get

    y(t)(y(t1)3χ2β232α(3δ)χ2γ2)e(1χ2γ232α)(tt1)+3χ2β232α(3δ)χ2γ2eδ3(tt1),t>t1.

    This yields

    Ω(u1)2dxC9eλ2(tt1),t>t1, (3.14)

    where λ2=min{1χ2γ232α,δ3} and C9=max{|Ω|3χ2β232α(3δ)χ2γ2,3χ2β232α(3δ)χ2γ2}.

    From the inequalities (3.11), (3.13) and (3.14), we derive

    Ω(vβ+γα)2dxC10eλ2(tt1),t>t1, (3.15)

    where C10=max{2γ2α2C9,2β2α2}. By employing the uniform estimation (1.7), the inequalities (3.9), (3.14) and (3.15), the exponential decay estimation (1.10) can be obtained.

    The proof is complete.

    In this paper, we mainly study the uniform boundedness of classical solutions and exponential asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for Baló's concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are {uniformly} bounded and dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is exponentially asymptotically stable if

    ˜χ<2ˉw˜β2Dμ˜α˜ϵˉu,

    and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if

    ˜χ<22Dμ˜α˜ϵˉumin{1ˉw˜β,1ˉu˜γ}.

    According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.

    The authors would like to thank the editors and the anonymous referees for their constructive comments. This research was supported by the National Natural Science Foundation of China (Nos. 11761063, 11661051).

    We have no conflict of interest in this paper.


    Abbreviation 5-HT: 5-hydroxytryptamine; CaMKII: Ca-calmodulin dependent protein kinase II; CNS: central nervous system; CPST: Ca-dependent-phorbol esters sensitive,-and a family of serine/threonine protein kinases; CVDs: cardiovascular diseases; DA: dopamine; DMHF: diabetes-mediated heart failure; E: epinephrine; GLUT-4: glucose transporter type-4; HF: heart failure; IL1-β: interleukin 1 beta; IRS-1: Insulin receptor substrate-1; LV: left ventricle; MD: metabolic disorders; NDA: non-diabetic acidosis; NDH: non-diabetic hyperglycemia; NHCl: ammonium chloride; p38 MAPK: p38-mitogen activated protein kinase; PDB: phorbol 12, 13-dibutyrate; PKC-α: protein kinase C-alpha; T1DM: type I diabetes mellitus; TGF-β: transforming growth factor beta; TNF-α: tumor necrosis factor alpha;
    Acknowledgments



    The author(s) are thankful to University of Madras for their financial support in part, during this study.

    Conflict of interest



    There is no potential conflict of interest relevant to this article.

    [1] Ramakrishnan R, Namasivayam A (1995) Norepinephrine and epinephrine levels in the brain of alloxan diabetic rats. Neurosci Lett 186: 200-202. doi: 10.1016/0304-3940(95)11315-N
    [2] Ramakrishnan R, Suthanthirarajan N, Namasivayam A (1996) Brain dopamine in experimental diabetes. Indian J Physiol Pharmacol 40: 193-195.
    [3] Ramakrishnan R, Nazer MY, Suthanthirarajan N, et al. (2003) An experimental analysis of the catecholamine's in hyperglycemia and acidosis induced rat brain. Int J Immunopathol Pharmacol 16: 233-239. doi: 10.1177/039463200301600308
    [4] Ramakrishnan R, Kempuraj D, Prabhakaran K, et al. (2005) A short-term diabetes induced changes of catecholamine's and p38 MAPK in discrete areas of rat brain. Life Sci 77: 1825-1835. doi: 10.1016/j.lfs.2004.12.038
    [5] Ramakrishnan R (2014)  Brain Biogenic Amines in Diabetes LAP Lambert Academic Publishing, 1-148.
    [6] Ramakrishnan R (2019) Brain signaling systems: A target for treating type 1 diabetes mellitus. Brain Res Bull 152: 191-201. doi: 10.1016/j.brainresbull.2019.07.017
    [7] Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1: FSO25. doi: 10.4155/fso.15.23
    [8] Watson AMD, Gould EAM, Penfold SA, et al. (2019) Diabetes and Hypertension Differentially Affect Renal Catecholamines and Renal Reactive Oxygen Species. Front Physiol 10: 309. doi: 10.3389/fphys.2019.00309
    [9] Akalu Y, Birhan A (2020) Peripheral arterial disease and its associated factors among type 2 diabetes mellitus patients at Debre Tabor general hospital, Northwest Ethiopia. J Diabetes Res 9419413.
    [10] Ramakrishnan R, Sheeladevi R, Suthanthirarajan N (2004) PKC-alpha mediated alterations of indoleamine contents in diabetic rat brain. Brain Res Bull 64: 189-194. doi: 10.1016/j.brainresbull.2004.07.002
    [11] Ramakrishnan R, Prabhakaran K, Jayakumar AR, et al. (2005) Involvement of Ca(2+)/calmodulin-dependent protein kinase II in the modulation of indolamines in diabetic and hyperglycemic rats. J Neurosci Res 80: 518-528. doi: 10.1002/jnr.20499
    [12] Ramakrishnan R, Sheeladevi R, Suthanthirarajan N, et al. (2005) An acute hyperglycemia or acidosis-induced changes of indolamines level correlates with PKC-alpha expression in rat brain. Brain Res Bull 67: 46-52. doi: 10.1016/j.brainresbull.2005.06.001
    [13] Ramakrishnan R, Sheeladevi R, Namasivayam A (2009) Regulation of protein kinases and co-regulatory interplay of S-100β between PKAII and PKC-α on serotonin level in diabetic rat brain. J Neurosci Res 87: 246-259. doi: 10.1002/jnr.21833
    [14] Moran C, Phan TG, Chen J, et al. (2013) Brain Atrophy in Type 2 Diabetes: Regional distribution and influence on cognition. Diabetes Care 36: 4036-4042. doi: 10.2337/dc13-0143
    [15] Moran C, Beare R, Wang W, et al. (2019) Type 2 diabetes mellitus, brain atropy, and cognitive decline. Neurology 92. doi: 10.1212/WNL.0000000000006955
    [16] Chen K (2004) Organization of MAO A and MAO B promoters and regulation of gene expression. Neurotoxicology 25: 31-36. doi: 10.1016/S0161-813X(03)00113-X
    [17] Fang C, Wu B, Le NTT, et al. (2018) Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog 14: e1007283. doi: 10.1371/journal.ppat.1007283
    [18] Dewi DAMS, Wiryana M (2019) The interaction of neuroimmunology, neuromodulator, and neurotransmitter with nociceptor and MAPK signaling. J Immunol Res Ther 4: 9.
    [19] Yang X, Guo Z, Lu J, et al. (2017) The Role of MAPK and Dopaminergic Synapse Signaling Pathways in Antidepressant Effect of Electroacupuncture Pretreatment in Chronic Restraint Stress Rats. Evid Based Complement Alternat Med 2357653.
    [20] Elliott G, Juan BG, Jacqueline HF, et al. (2017) Serotonin and catecholamine's in the development and progression of heart valve diseases. Cardiovasc Res 113: 849-857. doi: 10.1093/cvr/cvx092
    [21] Rosano GMC, Vitale C, Seferovic P (2017) Heart Failure in Patients with Diabetes Mellitus. Card Fail Rev 3: 52-55. doi: 10.15420/cfr.2016:20:2
    [22] Packer M (2018) Heart Failure: The Most Important, Preventable, and Treatable Cardiovascular Complication of Type 2 Diabetes. Diabetes Care 41: 11-13. doi: 10.2337/dci17-0052
    [23] Kenny HC, Abel ED (2019) Heart Failure in Type 2 Diabetes Mellitus: Impact of Glucose-Lowering Agents, Heart Failure Therapies, and Novel Therapeutic Strategies. Circ Res 124: 121-141. doi: 10.1161/CIRCRESAHA.118.311371
    [24] De Vecchis R, Cantatrione C, Mazzei D, et al. (2016) Non-Ergot-Dopamine Agonists don't Increase the Risk of Heart Failure in Parkinson's disease Patients: A Meta-Analysis of Randomized Controlled Trials. J Clin Med Res 8: 449-460. doi: 10.14740/jocmr2541e
    [25] Evangelista I, Nuti R, Picchioni T, et al. (2019) Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci 20: 3264. doi: 10.3390/ijms20133264
    [26] Tank AW, Lee WD (2015) Peripheral and central effects of circulating catecholamine's. Compr Physiol 5: 1-15.
    [27] Duarte AI, Moreira PI, Oliveira CR (2012) Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 384: 1414-1431.
    [28] Zheng J, Wang Y, Han S, et al. (2018) Identification of Protein Kinase C Isoforms Involved in Type 1 Diabetic Encephalopathy in Mice. J Diabetes Res 8431249.
    [29] Das SK, Yuan YF, Li MQ (2018) Specific PKC βII inhibitor: one stone two birds in the treatment of diabetic foot ulcers. Biosci Rep 38: BSR20171459. doi: 10.1042/BSR20171459
    [30] Nokkaew N, Mongkolpathumrat P, Junsiri R, et al. (2019) p38 MAPK Inhibitor (SB203580) and Metformin Reduces Aortic Protein Carbonyl and Inflammation in Non-obese Type 2 Diabetic Rats. Ind J Clin Biochem 1–7.
    [31] Nokkaew N, Sanit J, Mongkolpathumrat P, et al. (2019) Anti-diabetic drug, metformin, and the p38 inhibitor (SB203580) reduces internal organs oxidative stress in non-obese type 2 diabetic rats. J Appl Pharm Sci 9: 12-20.
    [32] Cramer SC, Sur M, Dobkin BH, et al. (2011) Harnessing neuroplasticity for clinical applications. Brain 134: 1591-1609. doi: 10.1093/brain/awr039
    [33] Hui C, Jingli L, Jiao D, et al. (2015) TAK1 inhibition prevents the development of autoimmune diabetes in NOD mice. Sci Rep 5: 14593. doi: 10.1038/srep14593
    [34] Luchsinger JA, Reitz C, Patel B, et al. (2007) Mayeux, Relation of diabetes to mild cognitive impairment. Arch Neurol 64: 570-575. doi: 10.1001/archneur.64.4.570
    [35] Carvalho C, Cardoso S, Correia SC, et al. (2012) Metabolic alterations induced by sucrose intake and Alzheimer's disease promote similar brain mitochondrial abnormalities. Diabetes 61: 1234-1242. doi: 10.2337/db11-1186
    [36] Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care 26: 2949-2951. doi: 10.2337/diacare.26.10.2949
    [37] Tschope C, Walther T, Koniger J, et al. (2004) Prevention of cardiac fibrosis and left ventricular dysfunction in diabetic cardiomyopathy in rats by transgenic expression of the human tissue kallikrein gene. Faseb J 18: 828-835. doi: 10.1096/fj.03-0736com
    [38] Fischer TA, Ludwig S, Flory E, et al. (2001) Activation of cardiac c-Jun NH(2)-terminal kinases and p38-mitogen-activated protein kinases with abrupt changes in hemodynamic load. Hypertension 37: 1222-1228. doi: 10.1161/01.HYP.37.5.1222
    [39] Zhang GX, Kimura S, Nishiyama A, et al. (2004) ROS during the acute phase of Ang-II hypertension participates in cardiovascular MAPK activation but not vasoconstriction. Hypertension 43: 117-124. doi: 10.1161/01.HYP.0000105110.12667.F8
    [40] Steendijk P, Staal E, Jukema JW, et al. (2001) Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am J Physiol Heart Circ Physiol 281: H755-H763. doi: 10.1152/ajpheart.2001.281.2.H755
    [41] Steenbergen C (2002) The role of p38 mitogen-activated protein kinase in myocardial ischemia/reperfusion injury; relationship to ischemic preconditioning. Basic Res Cardiol 97: 276-285. doi: 10.1007/s00395-002-0364-9
    [42] Gorog DA, Tanno M, Cao X, et al. (2004) Inhibition of p38 MAPK activity fails to attenuate contractile dysfunction in a mouse model of low-flow ischemia. Cardiovasc Res 61: 123-131. doi: 10.1016/j.cardiores.2003.09.034
    [43] Westermann D, Rutschow S, Van Linthout S, et al. (2006) Inhibition of p38 mitogen-activated protein kinase attenuates left ventricular dysfunction by mediating pro-inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 49: 2507-2513. doi: 10.1007/s00125-006-0385-2
    [44] Pereira S, Yu WQ, Moore J, et al. (2016) Effect of a p38 MAPK inhibitor on FFA-induced hepatic insulin resistance in-vivo. Nutr Diabetes 6: e210. doi: 10.1038/nutd.2016.11
    [45] Xu J, Li J, Hou R, et al. (2019) JPQ downregulates the P38 MAPK signal pathway in skeletal muscle of diabetic rats and increases the insulin sensitivity of Skeletal Muscle. Int J Clin Exp Med 12: 5130-5137.
    [46] Erik V, Marjut L, Hanna F, et al. (2010) Sirtuin1-p53, forkhead box O3a, p38 and post-infarct cardiac remodeling in the spontaneously diabetic Goto-Kakizaki rat. Cardiovasc Diabetol 9: 1-13. doi: 10.1186/1475-2840-9-1
    [47] Wang S, Ding L, Ji H, et al. (2016) The Role of p38 MAPK in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 17: 1037. doi: 10.3390/ijms17071037
    [48] Jantira S, Eakkapote P, Punyanuch A, et al. (2019) Combination of metformin and p38 MAPK inhibitor, SB203580, reduced myocardial ischemia/reperfusion injury in non-obese type 2 diabetic Goto-Kakizaki rats. Exp Ther Med 18: 1701-1714.
    [49] Xie D, Zhao J, Guo R (2020) Sevoflurane pre-conditioning ameliorates diabetic myocardial ischemia/reperfusion injury via differential regulation of p38 and ERK. Sci Rep 10: 23. doi: 10.1038/s41598-019-56897-8
    [50] Gao F, Yue TL, Shi DW, et al. (2002) p38 MAPK inhibition reduces myocardial reperfusion injury via inhibition of endothelial adhesion molecule expression and blockade of PMN accumulation. Cardiovasc Res 53: 414-422. doi: 10.1016/S0008-6363(01)00488-6
    [51] Dubash AD, Kam CY, Aguado BA, et al. (2016) Plakophilin-2 loss promotes TGF-β1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J Cell Biol 212: 425. doi: 10.1083/jcb.201507018
    [52] Umbarkar P, Singh AP, Gupte M, et al. (2019) Cardiomyocyte SMAD4-Dependent TGF-β Signaling is Essential to Maintain Adult Heart Homeostasis. JACC Basic Transl Sci 4: 41-53. doi: 10.1016/j.jacbts.2018.10.003
    [53] Palojoki E, Saraste A, Eriksson A, et al. (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280: H2726-H2731. doi: 10.1152/ajpheart.2001.280.6.H2726
    [54] Dong H, Cui B, Hao X (2019) MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol Med Rep 20: 735-744.
    [55] Yu L, Li Z, Dong X, et al. (2018) Polydatin Protects Diabetic Heart against Ischemia-Reperfusion Injury via Notch1/Hes1-Mediated Activation of Pten/Akt Signaling. Oxid Med Cell Longev 2018: 2750695.
    [56] Stockand JD, Meszaros JG (2003) Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-Ras A and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol 284: H176-H184. doi: 10.1152/ajpheart.00421.2002
    [57] Koga Y, Tsurumaki H, Aoki-Saito H, et al. (2019) Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signaling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 20: 1346. doi: 10.3390/ijms20061346
    [58] Turner NA, Blythe NM (2019) Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. J Cardiovasc Dev Dis 6: 27. doi: 10.3390/jcdd6030027
    [59] Thum T, Gross C, Fiedler J, et al. (2008) Micro RNA-21 contributes to myocardial disease by stimulating MAP kinase signaling in fibroblasts. Nature 456: 980-984. doi: 10.1038/nature07511
    [60] Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35: 1385-1394. doi: 10.1016/j.yjmcc.2003.10.001
    [61] Xu Z, Sun J, Tong Q, et al. (2016) The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 17: 2001. doi: 10.3390/ijms17122001
    [62] Ruiz M, Coderre L, Allen BG, et al. (2018) Protecting the heart through MK2 modulation, toward a role in diabetic cardiomyopathy and lipid metabolism. Biochim Biophys Acta Mol Basis Dis 1864: 1914-1922. doi: 10.1016/j.bbadis.2017.07.015
    [63] Liao P, Georgakopoulos D, Kovacs A, et al. (2001) The in-vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A 98: 12283-12288. doi: 10.1073/pnas.211086598
    [64] Jia G, Hill MA, Sowers JR (2018) Diabetic Cardiomyopathy An Update of Mechanisms Contributing to This Clinical Entity. Circ Res 122: 624-638. doi: 10.1161/CIRCRESAHA.117.311586
    [65] Streicher JM, Ren S, Herschman H, et al. (2010) MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ Res 106: 1434-1443. doi: 10.1161/CIRCRESAHA.109.213199
    [66] Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358: 1370-1380. doi: 10.1056/NEJMra072139
    [67] Vikas K, Kumar A, Rahul S, et al. (2019) Chronic Pressure Overload Results in Deficiency of Mitochondrial Membrane Transporter ABCB7 Which Contributes to Iron Overload, Mitochondrial Dysfunction, Metabolic Shift and Worsens Cardiac Function. Sci Rep 9: 13170. doi: 10.1038/s41598-019-49666-0
    [68] Takeda N, Manabe I, Uchino Y, et al. (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 120: 254-265. doi: 10.1172/JCI40295
    [69] Small EM (2012) The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 5: 794-804. doi: 10.1007/s12265-012-9397-0
    [70] Zent J, Guo LW (2018) Signaling Mechanisms of Myofibroblastic Activation: Outside-in and Inside-Out. Cell Physiol Biochem 49: 848-868. doi: 10.1159/000493217
    [71] Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74: 184-195. doi: 10.1016/j.cardiores.2006.10.002
    [72] Ieda M, Tsuchihashi T, Ivey KN, et al. (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16: 233-244. doi: 10.1016/j.devcel.2008.12.007
    [73] Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105: 1164-1176. doi: 10.1161/CIRCRESAHA.109.209809
    [74] Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106: 47-57. doi: 10.1161/CIRCRESAHA.109.207456
    [75] Martin ML, Blaxall BC (2012) Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? J Cardiovasc Transl Res 5: 768-782. doi: 10.1007/s12265-012-9404-5
    [76] Furtado MB, Costa MW, Pranoto EA, et al. (2014) Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res 114: 1422-1434. doi: 10.1161/CIRCRESAHA.114.302530
    [77] Miyazaki T, Haraguchi S, Kim-Kaneyama JR, et al. (2019) Endothelial calpain systems orchestrate myofibroblast differentiation during wound healing. FASEB J 33: fj.201800588RR. doi: 10.1096/fj.201800588RR
    [78] Zhang ZY, Wang N, Qian LL, et al. (2020) Glucose fluctuations promote aortic fibrosis through the ROS/p38 MAPK/Runx2 signaling pathway. J Vasc Res 57: 24-33. doi: 10.1159/000503608
    [79] Nian M, Lee P, Khaper N, et al. (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94: 1543-1553. doi: 10.1161/01.RES.0000130526.20854.fa
    [80] Lee MMY, McMurray JJV, Lorenzo-Almorós A, et al. (2016) Diabetic cardiomyopathy. Heart 105.
    [81] Kocabaş U, Yılmaz Ö, Kurtoğlu V (2019) Diabetic cardiomyopathy: acute and reversible left ventricular systolic dysfunction due to cardiotoxicity of hyperglycaemic hyperosmolar state—a case report. Eur Heart J Case Rep 3: ytz049. doi: 10.1093/ehjcr/ytz049
    [82] Gao M, Wang X, Zhang X, et al. (2015) Attenuation of Cardiac Dysfunction in Polymicrobial Sepsis by MicroRNA-146a Is Mediated via Targeting of IRAK1 and TRAF6 Expression. J Immunol 195: 672-682. doi: 10.4049/jimmunol.1403155
    [83] Mann DL (2003) Stress-activated cytokines and the heart: from adaptation to maladaptation. Annu Rev Physiol 65: 81-101. doi: 10.1146/annurev.physiol.65.092101.142249
    [84] Fiordelisi A, Iaccarino G, Morisco C, et al. (2019) NFkappaB is a Key Player in the Crosstalk between Inflammation and Cardiovascular Diseases. Int J Mol Sci 20: 1599. doi: 10.3390/ijms20071599
    [85] Frati G, Schirone L, Chimenti I, et al. (2017) An overview of the inflammatory signaling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 113: 378-388. doi: 10.1093/cvr/cvx011
    [86] Sharov VG, Todor A, Suzuki G, et al. (2003) Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1. Eur J Heart Fail 5: 121-129. doi: 10.1016/S1388-9842(02)00254-4
    [87] Kaiser RA, Bueno OF, Lips DJ, et al. (2004) Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in-vivo. J Biol Chem 279: 15524-15530. doi: 10.1074/jbc.M313717200
    [88] Wakeman D, Guo J, Santos JA, et al. (2012) p38 MAPK regulates Bax activity and apoptosis in enterocytes at baseline and after intestinal resection. Am J Physiol Gastrointest Liver Physiol 302: G997-1005. doi: 10.1152/ajpgi.00485.2011
    [89] Xu Q, Fang H, Zhao L, et al. (2019) Mechano growth factor attenuates mechanical overload-induced nucleus pulposus cell apoptosis through inhibiting the p38 MAPK pathway. Biosci Rep 39: BSR20182462. doi: 10.1042/BSR20182462
    [90] Aggeli IK, Beis I, Gaitanaki C (2008) Oxidative stress and calpain inhibition induces alpha B-crystallin phosphorylation via p38 MAPK and calcium signaling pathways in H9c2 cells. Cell Signal 20: 1292-1302. doi: 10.1016/j.cellsig.2008.02.019
    [91] Mitra A, Ray A, Datta R, et al. (2014) Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of alpha-crystallin B and Nrf2. J Cell Physiol 229: 1272-1282. doi: 10.1002/jcp.24565
    [92] Kim JK, Pedram A, Razandi M, et al. (2006) Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 281: 6760-6767. doi: 10.1074/jbc.M511024200
    [93] Liu H, Pedram A, Kim JK (2011) Oestrogen prevents cardiomyocyte apoptosis by suppressing p38alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38beta. Cardiovasc Res 89: 119-128. doi: 10.1093/cvr/cvq265
    [94] Wu H, Wang G, Li S, et al. (2015) TNF-α- Mediated-p38-Dependent Signaling Pathway Contributes to Myocyte Apoptosis in Rats Subjected to Surgical Trauma. Cell Physiol Biochem 35: 1454-1466. doi: 10.1159/000373965
    [95] Zuo G, Ren X, Qian X, et al. (2019) Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 234: 1925-1936. doi: 10.1002/jcp.27070
    [96] Li Z, Ma JY, Kerr I, et al. (2006) Selective inhibition of p38alpha MAPK improves cardiac function and reduces myocardial apoptosis in rat model of myocardial injury. Am J Physiol Heart Circ Physiol 291: H1972-H1977. doi: 10.1152/ajpheart.00043.2006
    [97] Adhikary L, Chow F, Nikolic-Paterson DJ, et al. (2004) Abnormal p38 mitogen-activated protein kinase signaling in human and experimental diabetic nephropathy. Diabetologia 47: 1210-1222. doi: 10.1007/s00125-004-1437-0
    [98] Kojonazarov B, Novoyatleva T, Boehm M, et al. (2017) p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy. Am J Respir Cell Mol Biol 57: 603-614. doi: 10.1165/rcmb.2016-0374OC
    [99] Seeger FH, Sedding D, Langheinrich AC, et al. (2010) Inhibition of the p38 MAP kinase in-vivo improves number and functional activity of vasculogenic cells and reduces atherosclerotic disease progression. Basic Res Cardiol 105: 389-397. doi: 10.1007/s00395-009-0072-9
    [100] Nediani C, Borchi E, Giordano C, et al. (2007) NADPH oxidase-dependent redox signaling in human heart failure: relationship between the left and right ventricle. J Mol Cell Cardiol 42: 826-834. doi: 10.1016/j.yjmcc.2007.01.009
    [101] Newby LK, Marber MS, Melloni C, et al. (2014) SOLSTICE Investigators. Losmapimod, a novel p38 mitogen-activated protein kinase inhibitor, in non-ST-segment elevation myocardial infarction: a randomised phase 2 trial. Lancet 384: 1187-1195. doi: 10.1016/S0140-6736(14)60417-7
    [102] Halpern CH, Tekriwal A, Santollo J, et al. (2013) Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci 33: 7122-7129. doi: 10.1523/JNEUROSCI.3237-12.2013
    [103] Ter Horst KW, Lammers NM, Trinko R, et al. (2018) Striatal dopamine regulates systemic glucose metabolism in humans and mice. Sci Transl Med 10: eaar3752. doi: 10.1126/scitranslmed.aar3752
    [104] Figee M, De Koning P, Klaassen S, et al. (2014) Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol Psychiatry 75: 647-652. doi: 10.1016/j.biopsych.2013.06.021
    [105] Boot E, Booij J, Hasler G, et al. (2008) AMPT-induced monoamine depletion in humans: Evaluation of two alternative (123I) IBZM SPECT procedures. Eur J Nucl Med Mol Imaging 35: 1350-1356. doi: 10.1007/s00259-008-0739-8
    [106] Zeng C, Zhang M, Asico LD, et al. (2007) The dopaminergic system in hypertension. Clin Sci 112: 583-597. doi: 10.1042/CS20070018
    [107] Channabasappa S, Sanjay K (2011) Bromocriptine in type 2 diabetes mellitus. Indian J Endocrinol Metab 15: S17-S24. doi: 10.4103/2230-8210.83058
    [108] Reda E, Hassaneen S, El-Abhar HS (2018) Novel Trajectories of Bromocriptine Antidiabetic Action: Leptin-IL-6/ JAK2/p-STAT3/SOCS3, p-IR/p-AKT/GLUT4, PPAR-γ/Adiponectin, Nrf2/PARP-1, and GLP-1. Front Pharmacol 9: 771. doi: 10.3389/fphar.2018.00771
    [109] Leicht M, Briest W, Zimmer HG (2003) Regulation of norepinephrine-induced proliferation in cardiac fibroblasts by interleukin-6 and p42/p44 mitogen activated protein kinase. Mol Cell Biochem 243: 65-72. doi: 10.1023/A:1021655023870
    [110] Lubahn CL, Lorton D, Schaller JA, et al. (2014) Targeting a-and b-adrenergic receptors differentially shift Th1, Th2, and inflammatory cytokine profiles in immune organs to attenuate adjuvant arthritis. Front Immunol 5: 346. doi: 10.3389/fimmu.2014.00346
    [111] Moliner P, Enjuanes C, Tajes M, et al. (2019) Association Between Norepinephrine Levels and Abnormal Iron Status in Patients With Chronic Heart Failure: Is Iron Deficiency More Than a Comorbidity? J Am Heart Assoc 8: e010887. doi: 10.1161/JAHA.118.010887
    [112] Zhang P, Li Y, Nie K, et al. (2018) Hypotension and bradycardia, a serious adverse effect of piribedil, a case report and literature review. BMC Neurol 18: 221. doi: 10.1186/s12883-018-1230-1
    [113] Michael E, Shuqin L, Nicholas C, et al. (2019) 1793-P: Dopamine D1 plus D2 Receptor Coactivation Ameliorates Metabolic Syndrome (MS) and Nonalcoholic Fatty Liver Disease (NAFLD) in Mice. Diabetes 68.
    [114] Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11: 113-133. doi: 10.1016/j.smrv.2006.08.003
    [115] Wang X, Wang ZB, Luo C, et al. (2019) The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J Cancer 10: 1622-1632. doi: 10.7150/jca.27780
    [116] Chávez-Castillo M, Ortega Á, Nava M, et al. (2018) Metabolic risk in depression and treatment with selective serotonin reuptake inhibitors: are the metabolic syndrome and an increase in cardiovascular risk unavoidable? Vessel Plus 2: 6. doi: 10.20517/2574-1209.2018.02
    [117] Fortier JH, Pizzarotti B, Shaw RE, et al. (2019) Drug-associated valvular heart diseases and serotonin-related pathways: a meta-analysis. Heart 105: 1140-1148.
    [118] Mawe GM, Hoffman JM (2013) Serotonin signaling in the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 10: 473-486. doi: 10.1038/nrgastro.2013.105
    [119] Selim AM, Sarswat N, Kelesidis I, et al. (2017) Plasma Serotonin in Heart Failure: Possible Marker and Potential Treatment Target. Heart Lung Circ 26: 442-449. doi: 10.1016/j.hlc.2016.08.003
    [120] Guo S, Chen L, Cheng S, et al. (2019) Comparative cardiovascular safety of selective serotonin reuptake inhibitors (SSRIs) among Chinese senile depression patients: A network meta-analysis of randomized controlled trials. Medicine 98: e15786. doi: 10.1097/MD.0000000000015786
    [121] Lancellotti P, Nchimi A, Hego A, et al. (2015) High-dose oral intake of serotonin induces valvular heart disease in rabbits. Int J Cardiol 197: 72-75. doi: 10.1016/j.ijcard.2015.06.035
    [122] Seferovic PM, Ponikowski P, Anker SD, et al. (2019) Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21: 1169-1186. doi: 10.1002/ejhf.1531
    [123] Shimizu Y, Minatoguchi S, Hashimoto K, et al. (2002) The role of serotonin in ischemic cellular damage and the infarct size-reducing effect of sarpogrelate, a 5-hydroxytryptamine-2 receptor blocker, in rabbit hearts. J Am Coll Cardiol 40: 1347-1355. doi: 10.1016/S0735-1097(02)02158-7
    [124] Chen YG, Mathews CE, Driver JP (2018) The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Front Endocrinol 9: 51. doi: 10.3389/fendo.2018.00051
    [125] Pei Y, Cui F, Du X, et al. (2019) Antioxidative nanofullerol inhibits macrophage activation and development of osteoarthritis in rats. Int J Nanomedicine 14: 4145-4155. doi: 10.2147/IJN.S202466
    [126] Kullmann S, Heni M, Hallschmid M, et al. (2016) Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans. Physiol Rev 96: 169-209. doi: 10.1152/physrev.00032.2015
    [127] Grillo CA, Woodruff JL, Macht VA, et al. (2019) Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Exp Neurol 318: 71-77. doi: 10.1016/j.expneurol.2019.04.012
    [128] Nakabeppu Y (2019) Origins of brain insulin and its function. In: Diabetes Mellitus. Advances in Experimental Medicine and Biology. Adv Exp Med Biol 1128: 1-11. doi: 10.1007/978-981-13-3540-2_1
    [129] Bode BW, Garg SK (2016) The Emerging Role of Adjunctive Noninsulin Anti-hyperglycemic Therapy in the Management of Type 1 Diabetes. Endocr Pract 22: 220-230. doi: 10.4158/EP15869.RA
    [130] Otto-Buczkowska E, Nowowiejska B, Jarosz-Chobot P, et al. (2009) Could oral antidiabetic agents be useful in the management of different types of diabetes and syndromes of insulin resistance in children and adolescents? Przegl Lek 66: 388-393.
    [131] Otto-Buczkowska E, Natalia J (2018) Pharmacological Treatment in Diabetes Mellitus Type 1 – Insulin and What Else? Int J Endocrinol Metab 16: e13008.
    [132] Grizzanti J, Corrigan R, Casadesusa G (2018) Neuroprotective Effects of Amylin Analogues on Alzheimer's Disease Pathogenesis and Cognition. J Alzheimers Dis 66: 11-23. doi: 10.3233/JAD-180433
    [133] Alicic RZ, Neumiller JJ, Johnson EJ, et al. (2019) Sodium-Glucose Cotransporter 2 Inhibition and Diabetic Kidney Disease. Diabetes 68: 248-257. doi: 10.2337/dbi18-0007
    [134] Mullane K, Williams M (2019) Preclinical Models of Alzheimer's Disease: Relevance and Translational Validity. Curr Protoc Pharmacol 84: e57. doi: 10.1002/cpph.57
    [135] Antal Z, Baker JC, Smith C, et al. (2012) Beyond HLA-A*0201: new HLA-transgenic non-obese diabetic mouse models of type 1 diabetes identify the insulin C-peptide as a rich source of CD8+T cell epitopes. J Immunol 188: 5766-5775. doi: 10.4049/jimmunol.1102930
    [136] Serr P, Santamaria P (2019) Antigen-specific therapeutic approaches for autoimmunity. Nature Biotechnol 37: 238-251. doi: 10.1038/s41587-019-0015-4
    [137] Singer-Englar T, Barlow G, Mathur R (2018) Obesity, diabetes, and the gut microbiome: an updated review. Expert Rev Gastroenterol Hepatol 13: 3-15. doi: 10.1080/17474124.2019.1543023
    [138] Siljandera H, Honkanenb J, Knipa M (2019) Microbiome and type 1 diabetes. Ebiomedicine 46: 512-521. doi: 10.1016/j.ebiom.2019.06.031
    [139] Escós A, Risco A, Alsina-Beauchamp D, et al. (2016) p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), New Stars in the MAPK Galaxy. Front Cell Dev Biol 4: 31. doi: 10.3389/fcell.2016.00031
    [140] Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773: 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
    [141] Beardmore VA, Hinton HJ, Eftychi C, et al. (2005) Generation and characterization of p38beta (MAPK11) gene-targeted mice. Mol Cell Biol 25: 10454-10464. doi: 10.1128/MCB.25.23.10454-10464.2005
    [142] Remy G, Risco AM, Iñesta-Vaquera FA, et al. (2010) Differential activation of p38 MAPK isoforms by MKK6 and MKK3. Cell Signal 22: 660-667. doi: 10.1016/j.cellsig.2009.11.020
    [143] Jiang Y, Gram H, Zhao M, et al. (1997) Characterization of the structure and function of the fourth member of p38 group mitogen activated protein kinases, p38δJ Biol Chem 272: 30122-30128. doi: 10.1074/jbc.272.48.30122
    [144] Sumara G, Formentini I, Collinsetal S (2009) Regulation of PKD by the MAPK p38 delta in insulin secretion and glucose homeostasis. Cell 136: 235-248. doi: 10.1016/j.cell.2008.11.018
    [145] Lee JC, Laydon JT, McDonnelletal PC (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746. doi: 10.1038/372739a0
    [146] Jiang Y, Chen C, Li Z, et al. (1996) Characterization of the structure and function of a new mitogen activated protein kinase (p38β). J Biol Chem 271: 17920-17926. doi: 10.1074/jbc.271.30.17920
    [147] Cuenda A, Rouse J, Dozaetal YN (1995) SB203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Letters 364: 229-233. doi: 10.1016/0014-5793(95)00357-F
    [148] Ramachandra CJ, Mehta A, Wong P, et al. (2016) ErbB4 Activated p38gamma MAPK isoform mediates early cardiogenesis through NKx2.5 in human pluripotent stem cells. Stem Cells 34: 288-298. doi: 10.1002/stem.2223
    [149] González-Terán B, López JA, Rodríguez E, et al. (2016) p38gamma and delta promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat Commun 7: 10477. doi: 10.1038/ncomms10477
    [150] Cuevas BD, Abell AN, Johnson GL (2007) Role of mitogen-activated protein kinase kinase kinases in signal integration. Oncogene 26: 3159-3171. doi: 10.1038/sj.onc.1210409
    [151] Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773: 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
    [152] Chang CI, Xu BE, Akella R, et al. (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9: 1241-1249. doi: 10.1016/S1097-2765(02)00525-7
    [153] Biondi RM, Nebreda AR (2003) Signaling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372: 1-13. doi: 10.1042/bj20021641
    [154] Enslen H, Brancho DM, Davis RJ (2000) Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 19: 1301-1311. doi: 10.1093/emboj/19.6.1301
    [155] Tomlinson DR (1999) Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 42: 1271-1281. doi: 10.1007/s001250051439
    [156] Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278: C81-C91. doi: 10.1152/ajpcell.2000.278.1.C81
    [157] Chen S, Qiong Y, Gardner DG (2006) Aroleforp38mitogen-activatedproteinkinase and c-Myc inendothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension 47: 252-258. doi: 10.1161/01.HYP.0000198424.93598.6b
    [158] Natarajan R, Scott S, Bai W, et al. (1999) Angiotensin II signaling in vascular smoothmuscle cells under high glucose conditions. Hypertension 33: 378-384. doi: 10.1161/01.HYP.33.1.378
    [159] Igarashi M, Wakasaki H, Takahara N, et al. (1999) Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest 103: 185-195. doi: 10.1172/JCI3326
    [160] Dorenkamp M, Riad AS, Stiehl S, et al. (2005) Protection against oxidative stress indiabetic rats: role of angiotensinAT1 receptor and beta 1-adrenoceptor antagonism. Eur J Pharmacol 520: 179-187. doi: 10.1016/j.ejphar.2005.07.020
    [161] Begum N, Ragolia L (2000) High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol 278: C81-C91. doi: 10.1152/ajpcell.2000.278.1.C81
    [162] Chen S, Qiong Y, Gardner DG (2006) A role for p38 mitogen-activated protein kinase and c-Myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension 47: 252-258. doi: 10.1161/01.HYP.0000198424.93598.6b
    [163] Cain BS, Meldrum DR, Meng X, et al. (1999) p38 MAPK inhibition decreases TNF-α production and enhances post ischemic human myocardial function. J Surg Res 83: 7-12. doi: 10.1006/jsre.1998.5548
    [164] Communal C, Colucci WS, Singh K (2000) p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes againstβ-adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 275: 19395-19400. doi: 10.1074/jbc.M910471199
    [165] Liang Q, Molkentin JD (2003) Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models. J Mol Cell Cardiol 35: 1385-1394. doi: 10.1016/j.yjmcc.2003.10.001
    [166] Li M, Georgakopoulos D, Luetal G (2005) p38MAPkinase mediates inflammatory cytokine induction in cardiomyocytes and extracellular matrix remodeling in heart. Circulation 111: 2494-2502. doi: 10.1161/01.CIR.0000165117.71483.0C
    [167] Hu SS, Kong LZ, Gaoetal RL (2010) Outline of the report on cardiovascular disease in China. Biomed Environ Sci 25: 251-256.
    [168] Yang HS, Zheng QY, Duetal YY (2016) Influence of different acupoint combinations on immediate effect of surface electromyography of patients with cervical spondylosis. World J Acupunct Moxibustion 26: 7-13. doi: 10.1016/S1003-5257(17)30056-9
    [169] Pan YX, Chen KF, Lin YX, et al. (2013) Intracisternal administration of SB203580, a p38 mitogen-activated protein kinase tumor necrosis factor-alpha. J Clin Neurosci 20: 726-730. doi: 10.1016/j.jocn.2012.09.012
    [170] Wu S, Li J, Hong YQ, et al. (2012) Efects of electroacupuncture at Neiguan (PC 6) on p38 MAPK signaling pathway in rats with cardiac hypertrophy. Chin Acupunct Moxibustion 32: 145-148.
    [171] Du Y, Tang J, Li G, et al. (2010) Effects of p38 MAPK Inhibition on Early Stages of Diabetic Retinopathy and Sensory Nerve Function. Invest Ophthalmol Vis Sci 51: 2158-2164. doi: 10.1167/iovs.09-3674
    [172] Wang S, Ding L, Zheng Y, et al. (2016) The role of p38 MAPK in the development of diabetic cardiomyopathy. Int J Mol Sci 17: 1037. doi: 10.3390/ijms17071037
    [173] Muslin AJ (2008) MAPK signaling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin Sci (Lond) 115: 203-218. doi: 10.1042/CS20070430
    [174] Radi ZA, Marusak RA, Morris DL (2009) Species comparison of the role of p38 MAPK in the female reproductive system. J Toxicol Pathol 22: 109-124. doi: 10.1293/tox.22.109
  • This article has been cited by:

    1. Lu Xu, Chunlai Mu, Qiao Xin, Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion, 2023, 28, 1531-3492, 1215, 10.3934/dcdsb.2022118
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6162) PDF downloads(100) Cited by(3)

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog