Citation: Lisa Ott. Adhesion properties of toxigenic corynebacteria[J]. AIMS Microbiology, 2018, 4(1): 85-103. doi: 10.3934/microbiol.2018.1.85
[1] | Jasmine S. Ritschard, Lea Amato, Yadhu Kumar, Britta Müller, Leo Meile, Markus Schuppler . The role of the surface smear microbiome in the development of defective smear on surface-ripened red-smear cheese. AIMS Microbiology, 2018, 4(4): 622-641. doi: 10.3934/microbiol.2018.4.622 |
[2] | Tatyana V. Polyudova, Daria V. Eroshenko, Vladimir P. Korobov . Plasma, serum, albumin, and divalent metal ions inhibit the adhesion and the biofilm formation of Cutibacterium (Propionibacterium) acnes. AIMS Microbiology, 2018, 4(1): 165-172. doi: 10.3934/microbiol.2018.1.165 |
[3] | Almaris N. Alonso . Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca. AIMS Microbiology, 2015, 1(1): 1-10. doi: 10.3934/microbiol.2015.1.1 |
[4] | Afraa Said Al-Adawi, Christine C. Gaylarde, Jan Sunner, Iwona B. Beech . Transfer of bacteria between stainless steel and chicken meat: A CLSM and DGGE study of biofilms. AIMS Microbiology, 2016, 2(3): 340-358. doi: 10.3934/microbiol.2016.3.340 |
[5] | Lucy McMullen, Steven T Leach, Daniel A Lemberg, Andrew S Day . Current roles of specific bacteria in the pathogenesis of inflammatory bowel disease. AIMS Microbiology, 2015, 1(1): 82-91. doi: 10.3934/microbiol.2015.1.82 |
[6] | Jan-Peter Hildebrandt . Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiology, 2015, 1(1): 11-36. doi: 10.3934/microbiol.2015.1.11 |
[7] | Joseph O. Falkinham . Mycobacterium avium complex: Adherence as a way of life. AIMS Microbiology, 2018, 4(3): 428-438. doi: 10.3934/microbiol.2018.3.428 |
[8] | Yusuke Morita, Mai Okumura, Issay Narumi, Hiromi Nishida . Sensitivity of Deinococcus grandis rodZ deletion mutant to calcium ions results in enhanced spheroplast size. AIMS Microbiology, 2019, 5(2): 176-185. doi: 10.3934/microbiol.2019.2.176 |
[9] | Jessica Bannon, Mohammad Melebari, Cleso Jordao Jr, Carlos G Leon-Velarde, Keith Warriner . Incidence of Top 6 shiga toxigenic Escherichia coli within two Ontario beef processing facilities: Challenges in screening and confirmation testing. AIMS Microbiology, 2016, 2(3): 278-291. doi: 10.3934/microbiol.2016.3.278 |
[10] | Itziar Chapartegui-González, María Lázaro-Díez, Santiago Redondo-Salvo, Elena Amaro-Prellezo, Estefanía Esteban-Rodríguez, José Ramos-Vivas . Biofilm formation in Hafnia alvei HUMV-5920, a human isolate. AIMS Microbiology, 2016, 2(4): 412-421. doi: 10.3934/microbiol.2016.4.412 |
Recently the Polyvinylidene fluoride (PVDF) is studied extensively due to its interesting piezoelectric and pyroelctric properties. PVDF based composites found application in lithium ion batteries, capacitors, hydrophones and variety of sensors [1,2,3]. The most attractive property of PVDF is polymorphism. It exists in five α, β, γ, δ, ϵ phases but the first two phases are dominate phases [4,5,6]. The piezoelectric and pyrolectric properties are mainly governed by α and β phase. So researchers are investigating the various methods to promote these phases. Fillers/dopants are used to make PVDF composite film so as to improve the dielectric, magnetic and mechanical properties. The addition of dopant in polymer enhances the physical properties, thus widening the application are of PVDF polymer. In various studies, the researchers confirm the changes in the morphology and crystalline structure of PVDF doped with different types of fillers/dopant [7,8]. For PVDF film having dominated α, and β phase the prepared films were to be mechanical stretched as well as poled [9]. This technique enhances the piezoelectric response which is desirable for sensing applications. Plasma treatment was also used to enhance the hydrophilic property of PVDF membranes [10]. Different types of organic and inorganic fillers were utilized to investigate the effect on various physical and chemical properties of PVDF. The degree of crystallinity and electrical response of PVDF also depends upon the weight percentage of fillers [11]. Few researches have added nanoclay as filler to PVDF so as to study the changes in structure PVDF matrix [12,13]. Some groups focused on use of high polarity solvent used for casting the PVDF film. Recently Zeolite was actively used as filler to develop a Zeolilite/PVDF composite. Additions of Zeolite improvise the tensile strength as well as mechanical properties of PVDF thin films, thus widening the application are of these composites [14]. Some of the common fillers used as dopant includes Ba, Co, Mn, Fe, Cr, Ti, Li and so on [15,16,17,18]. In this research work, the MgCl2 is selected as dopant material. It was revealed that addition of MgCl2 significantly modifies the crystalline structure and reduction in crystalline structure was observed. The other objective was to evaluate the effect of MgCl2 on the dielectric constant and application of sensing properties of PVDF composite films.
The PVDF composite films were prepared by solution casting technique. The MgCl2 powder was dissolved in DMF for 30 minutes on magnetic stirrer. PVDF powder was dissolved in DMF for 60 minutes at temperature of 60 °C. Then the dopant solution is mixed with appropriate amount of PVDF solution. The mixed solution of MgCl2/PVDF was again stirred continuously for 30 minutes. The solutions of different weight percentage were casted on the glass slides and placed in furnace for 6 hrs at temperature of 70 °C. PVDF composite films were then peeled off from the glass slides and washed with DI water to remove any solvent traces. Then the films of different wt% of MgCl2 were coated with Al on both sides using vacuum coating unit and poled subsequently. The detailed regarding different weight percentage of MgCl2 is given in Table 1.
Solution | MgCl2 wt% | PVDF wt% | DMF |
S0 | 0% | 10% | 100 ml |
S1 | 2% | 10% | 100 ml |
S2 | 4% | 10% | 100 ml |
S3 | 6% | 10% | 100 ml |
The phase structure of MgCl2/PVDF composite was analysed using X ray diffractometer (PANalytical). The FTIR spectra were carried out using spectrum 400 (Perkin Elmer). The dielectric parameters were measured using LCR meter (Hioki 3532). Vacuum coating unit were used to deposit Al on both sides of films. The sensor response was observed using Digital oscilloscope (Yokoga DL9140). The poling of PVDF samples were done using setup shown in Figure 1. Poling was done in two fold process. The samples were initially placed in temperature controlled furnace. Firstly 250 volts DC was applied at temperature of 70 °C for 1 hour. After 1 hour the temperature was brought down to the room temperature and electric field was still applied for another 30 minutes. After this two fold process the PVDF samples were removed from furnace for sensing and dielectric measurements.
The XRD scans of MgCl2/PVDF composite for pure and various wt% of dopant is shown in Figure 2. The pure PVDF exhibits the semi crystalline structure comprising of both amorphous and crystalline phase. The peaks at 18.40°, 26.50°, 38.60° corresponds to α phase. The peak at 20.2° indicates the presence of β phase [2,19]. As the concentration of filler increase to 6 wt%, all other peaks disappeared only one broader peak related to β phase remains present. The piezoelectric property of PVDF is affected by crystallinity appreciably. Without crystallinity, the PVDF would not exhibit any piezoelectric properties. The level of crystallinity is key parameter affecting the PVDF chemical, piezoelectric, mechanical and thermodynamic properties. The crystallinity is calculated using relation (1).
${X_c} = \frac{{{K_c}({A_1} + {A_2})}}{{{K_c}({A_1} + {A_2}) + {K_a}({A_3})}} \times {\rm{ }}100$ | (1) |
Where A3 is the area concerned with amorphous hump, A1 & A2 is area of two crystalline peaks as depicted in Figure 3. Ka & Kc are proptionallity constant for amorphous and crystalline phases [20,21]. The crystallinity of Pristine PVDF as determined from XRD is 51.8%. With the addition of MgCl2 into PVDF, the crystallinity decrease to 42.6%. The decrease in crystallinity indicates the modification in crystalline structure with the addition of MgCl2.
The FTIR scans for pure and doped PVDF is shows in Figure 4. Most of the peaks at frequency corresponds to α and β phase. The peaks at 610 cm−1, 760 cm−1 and 1420 cm−1 belong to α phase [22,23]. The other peaks at 508 cm−1and 836 cm−1 related to β phase. With increase in dopant concentration to higher level, some of peaks intensity reduces to lower level.
The dielectric constant or permittivity ε′(ω) is a measure of the polarization of the medium between two charges when an electric field is applied. The dielectric constant of a PVDF polymer depends on structural morphology and presence fillers in crystalline structure. The dielectric constant ε′(ω) was calculated using following equation:
${C_p} = {\varepsilon _0}\varepsilon '\frac{A}{D}$ | (2) |
Where, ε0 is the dielectric constant/permittivity (8.86 × 10−12 F/cm) for free space, d (in cm) is thickness and A (in cm2) is the cross sectional area of PVDF thin films. As the dopant wt% increase to 6 wt% (Figure 5), the dielectric constant increase indicating the large polarization in PVDF composite. As the frequency increase to higher level, the decrease in dielectric constant was observed. Figure 6(a) and 6(b) shows the output voltage from pristine and doped PVDF composite sensor when force of 19 N was applied to the surface.
The present work shows the MgCl2 has significantly affected the structural properties of the PVDF composite films. The reduction in crystallinity was also observed which confirms the modification in morphology of PVDF films. The enhancement in dielectric constant was observed as the dopant concentration reaches to higher level. This present study reveals the application of PVDF composite in sensing areas which includes tactile as well as pressure sensing.
This work was supported by Department of Instrumentation, Kurukshetra University via TEQIP-II World Bank grant.
The authors declare no conflicts of interest regarding this paper.
[1] | Tauch A, Sandbote J (2014) The family Corynebacteriaceae, Rosenberg E, DeLong E, Lory S, et al., Editors, Berlin: Springer. |
[2] |
Ventura M, Canchaya C, Tauch A, et al. (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71: 495–548. doi: 10.1128/MMBR.00005-07
![]() |
[3] |
Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Micr 59: 589–608. doi: 10.1099/ijs.0.65780-0
![]() |
[4] | Burkovski A (2013) Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol 2013: 935736. |
[5] | Daffé M (2005) The cell envelope of corynebacteria, Boca Raton, Fla, USA: Taylor & Francis. |
[6] |
Puech V, Chami M, Lemassu A, et al. (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147: 1365–1382. doi: 10.1099/00221287-147-5-1365
![]() |
[7] |
Sutcliffe IC (1997) Macroamphiphilic cell envelope components of Rhodococcus equi and closely related bacteria. Vet Microbiol 56: 287–299. doi: 10.1016/S0378-1135(97)00097-7
![]() |
[8] |
Gebhardt H, Meniche X, Tropis M, et al. (2007) The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae. Microbiology 153: 1424–1434. doi: 10.1099/mic.0.2006/003541-0
![]() |
[9] |
Hsu FF, Soehl K, Turk J, et al. (2011) Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Anal Biochem 409: 112–122. doi: 10.1016/j.ab.2010.10.006
![]() |
[10] |
Nishiuchi Y, Baba T, Yano I (2000) Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Meth 40: 1–9. doi: 10.1016/S0167-7012(99)00116-5
![]() |
[11] |
Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18: 81–101. doi: 10.1128/CMR.18.1.81-101.2005
![]() |
[12] |
Ott L, Hacker E, Kunert T, et al. (2017) Analysis of Corynebacterium diphtheriae macrophage interaction: dispensability of corynomycolic acids for inhibition of phagolysosome maturation and identification of a new gene involved in synthesis of the corynomycolic acid layer. PLoS One 12: e0180105. doi: 10.1371/journal.pone.0180105
![]() |
[13] | Burkovski A (2013) Diphtheria, In: Rosenberg E, DeLong EF, Lory S, et al., Editors, The Prokaryotes Human Microbiology, 4 Eds., New York: Springer, 237–245. |
[14] | Murphy JR (1996) Corynebacterium diphtheriae, In: Baron S, Editor, Medical Microbiology, Galveston (TX): University of Texas Mdical Branch at Galveston. |
[15] |
Puliti M, von Hunolstein C, Marangi M, et al. (2006) Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J Med Microbiol 55: 229–235. doi: 10.1099/jmm.0.46135-0
![]() |
[16] |
Galazka A (2000) The changing epidemiology of diphtheria in the vaccine era. J Infect Dis 181: 2–9. doi: 10.1086/315215
![]() |
[17] |
Hadfield TL, McEvoy P, Polotsky Y, et al. (2000) The pathology of Diphtheria. J Infect Dis 181: 116–120. doi: 10.1086/315551
![]() |
[18] |
von Hunolstein C, Alfarone G, Scopetti F, et al. (2003) Molecular epidemiology and characteristics of Corynebacterium diphtheriae and Corynebacterium ulcerans strains isolated in Italy during the 1990s. J Med Microbiol 52: 181–188. doi: 10.1099/jmm.0.04864-0
![]() |
[19] |
Kantsone I, Lucenko I, Perevoscikovs J (2016) More than 20 years after re-emerging in the 1990s, diphtheria remains a public health problem in Latvia. Eurosurveillance 21: 30414. doi: 10.2807/1560-7917.ES.2016.21.48.30414
![]() |
[20] | Buck GA, Cross RE, Wong TP, et al. (1985) DNA relationships among some tox-bearing corynebacteriophages. Infect Immun 49: 679–684. |
[21] | Cianciotto NP, Groman NB (1996) Extended host range of a beta-related corynebacteriophage. FEMS Micrbiol Lett 140: 221–225. |
[22] | Groman NB, Schiller J, Russel J (1984) Corynebacterium ulcerans and Corynebacterium pseudotuberculosis responses to DNA probes derived from corynephage β and Corynebacterium diphtheriae. Infect Immun 45: 511–517. |
[23] |
Sangal V, Nieminen L, Weinhardt B, et al. (2014) Diphtheria-like disease caused by toxigenic Corynebacterium ulcerans strain. Emerg Infect Dis 20: 1257–1258. doi: 10.3201/eid2007.140216
![]() |
[24] | Aleman M, Spier SJ, Wilson WD, et al. (1996) Corynebacterium pseudotuberculosis infection in horses: 538 cases (1982-1993). J Am Vet Med Assoc 209: 804–809. |
[25] |
Baird GJ, Fontaine MC (2007) Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J Comp Path 137: 179–210. doi: 10.1016/j.jcpa.2007.07.002
![]() |
[26] |
Dorella FA, Pacheco LGC, Oliveira CS, et al. (2006) Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet Res 37: 201–218. doi: 10.1051/vetres:2005056
![]() |
[27] |
Batey RG (1986) Pathogenesis of caeous lymphadenitis in sheep and goats. Aust Vet J 63: 269–272. doi: 10.1111/j.1751-0813.1986.tb08064.x
![]() |
[28] | Hodgson ALM, Krywult J, Corner LA, et al. (1992) Rational attenuation of Corynebacterium pseudotuberculosis: potential cheesy gland vaccine and live delivery vehicle. Infect Immun 60: 2900–2905. |
[29] |
McNamara PJ, Bradley GA, Songer JG (1994) Targeted mutagenesis of the phospholipase D gene results in decreased virulence of Corynebacterium pseudotuberculosis. Mol Microbiol 12: 921–930. doi: 10.1111/j.1365-2958.1994.tb01080.x
![]() |
[30] | Gilbert R, Stewart FC (1927) Corynebacterium ulcerans; a pathogenic microorganism resembling Corynebacterium diphtheriae. J Lab Clin Med 12: 756–761. |
[31] |
Hacker E, Antunes CA, Mattos-Guaraldi AL, et al. (2016) Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol 11: 1191–1208. doi: 10.2217/fmb-2016-0085
![]() |
[32] | Hommez J, Devriese LA, Vaneechoutte M, et al. (1999) Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis. J Clin Microbiol 37: 954–957. |
[33] |
Schuhegger R, Schoerner C, Dlugaiczyk J, et al. (2009) Pigs as source for toxigenic Corynebacterium ulcerans. Emerg Infect Dis 15: 1314–1315. doi: 10.3201/eid1508.081568
![]() |
[34] |
De Zoysa A, Hawkey PM, Engler K, et al. (2005) Characterization of toxigenic Corynebacterium ulcerans strains isolated from humans and domestic cats in the United Kingdom. J Clin Microbiol 43: 4377–4381. doi: 10.1128/JCM.43.9.4377-4381.2005
![]() |
[35] | Hogg RA, Wessels J, Hart J, et al. (2009) Possible zoonotic transmission of toxigenic Corynebacterium ulcerans from companion animals in a human case of fatal diphtheria. Vet Rec 165: 691–692. |
[36] |
Meinel DM, Konrad R, Berger A, et al. (2015) Zoonotic transmission of toxigenic Corynebacterium ulcerans strain, Germany, 2012. Emerg Infect Dis 21: 356–358. doi: 10.3201/eid2102.141160
![]() |
[37] | Bonnet JM, Begg NT (1999) Control of diphtheria: guidance for consultants in communicable disease control. Commun Dis Public Health 2: 242–249. |
[38] |
Konrad R, Hörmansdorfer S, Sing A (2015) Possible human-to-human transmission of toxigenic Corynebacterium ulcerans. Clin Microbiol Infec 21: 768–771. doi: 10.1016/j.cmi.2015.05.021
![]() |
[39] |
Dias AA, Santos LS, Sabbadini PS, et al. (2011) Corynebacterium ulcerans diphtheria: an emerging zoonosis in Brazil and worldwide. Rev Saude Publ 45: 1176–1191. doi: 10.1590/S0034-89102011000600021
![]() |
[40] |
Wagner KS, White JM, Crowcroft NS, et al. (2010) Diphtheria in the United Kingdom, 1986-2008: the increasing role of Corynebacterium ulcerans. Epidemiol Infect 138: 1519–1530. doi: 10.1017/S0950268810001895
![]() |
[41] |
Baldassari L, Bertuccini L, Ammendolia CR, et al. (2001) Effect of iron limitation on slime production by Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 20: 343–345. doi: 10.1007/PL00011274
![]() |
[42] | Deighton M, Bordland R (1993) Regulation of slime production in Staphylococcus epidermidis by iron limitation. Infect Immun 61: 4473–4479. |
[43] | Scharfman A, Kroczynski H, Carnoy C, et al. (1996) Adhesion of Pseudomonas aeruginosa to respiratory mucins and expression of mucin-binding proteins are increased by limiting iron during growth. Infect Immun 64: 5417–5420. |
[44] | Dai JA, Lee Y, Wong H (1992) Effects of iron limitation on production of a siderophore, outer membrane proteins, and hemolysin and on hydrophobicity, cell adherence, and lethality for mice of Vibrio parahaemolyticus. Infect Immun 60: 2952–2956. |
[45] | Russel LM, Cryz SJ, Holmes RK (1984) Genetic and biochemical evidence for siderophore-dependent iron transport system in Corynebacterium diphtheriae. Infect Immun 45: 143–149. |
[46] | Schmitt MP, Talley BG, Holmes KK (1997) Characterization of lipoprotein IRP1 from Corynebacterium diphtheriae, which is regulated by diphtheria toxin repressor (DtxR) and iron. Infect Immun 65: 5364–5367. |
[47] |
Moreira LO, Andrade AFB, Vale MD, et al. (2003) Effects of iron limitation on adherence and cell surface carbohydrates of Corynebacterium diphtheriae. Appl Environ Microb 69: 5907–5913. doi: 10.1128/AEM.69.10.5907-5913.2003
![]() |
[48] |
Vimr ER (1994) Microbial sialidases: does bigger always mean better? Trends Microbiol 2: 271–277. doi: 10.1016/0966-842X(94)90003-5
![]() |
[49] |
Vimr ER, Kalivoda KA, Deszo EL, et al. (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68: 132–153. doi: 10.1128/MMBR.68.1.132-153.2004
![]() |
[50] |
Trost E, Al-Dilaimi A, Papavasiliou P, et al. (2011) Comparative analysis of two complete Corynebacterium ulcerans genomes and detection of candidate virulence factors. BMC Genomics 12: 383–400. doi: 10.1186/1471-2164-12-383
![]() |
[51] | Arden AB, Chang WH, Barksdale L (1972) Distribution of neuraminidase and N-acetylneuraminate lyase activities among Corynebacteria, Mycobacteria, and Nocardias. J Bacteriol 112: 1206–1212. |
[52] |
Brennan PJ, Nikaido H (1995) The envelope of mycobacteria. Annu Rev Biochem 64: 29–63. doi: 10.1146/annurev.bi.64.070195.000333
![]() |
[53] |
Nigou J, Zelle-Rieser C, Gilleron M, et al. (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166: 7477–7485. doi: 10.4049/jimmunol.166.12.7477
![]() |
[54] |
Dao DN, Kremer L, Guérardel Y, et al. (2004) Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect Immun 72: 2067–2074. doi: 10.1128/IAI.72.4.2067-2074.2004
![]() |
[55] |
Puissegur MP, Lay G, Gilleron M, et al. (2007) Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway. J Immunol 178: 3161–3169. doi: 10.4049/jimmunol.178.5.3161
![]() |
[56] |
Moreira LO, Mattos-Guaraldi AL, Andrade AFB (2008) Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol 190: 521–530. doi: 10.1007/s00203-008-0398-y
![]() |
[57] | Garton NJ, Gilleron M, Brando T, et al. (2002) A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J Biol Chem 277: 31722–31733. |
[58] |
Gilleron M, Garton NJ, Nigou J, et al. (2005) Characterization of a truncated lipoarabinomannan from the Actinomycete Turicella otitidis. J Bacteriol 187: 854–861. doi: 10.1128/JB.187.3.854-861.2005
![]() |
[59] |
Gibson KJC, Gilleron M, Constant P, et al. (2003) Structural and functional features of Rhodococcus ruber lipoarabinomannan. Microbiology 149: 1437–1445. doi: 10.1099/mic.0.26161-0
![]() |
[60] | Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63: 174–229. |
[61] |
Ton-That H, Schneewind O (2003) Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol 50: 1429–1438. doi: 10.1046/j.1365-2958.2003.03782.x
![]() |
[62] | Ott L, Burkovski A (2014) Toxigenic Corynebacteria: Adhesion, Invasion and Host Response, In: Corynebacterium diphtheriae and Related Toxigenic Species, Dordrecht: Springer, 143–170. |
[63] |
Ton-That H, Marraffini LA, Schneewind O (2004) Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol Microbiol 53: 251–261. doi: 10.1111/j.1365-2958.2004.04117.x
![]() |
[64] |
Mandlik A, Das A, Ton-That H (2008) The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc Natl Acad Sci USA 105: 14147–14152. doi: 10.1073/pnas.0806350105
![]() |
[65] |
Mandlik A, Swierczynski A, Das A, et al. (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16: 33–40. doi: 10.1016/j.tim.2007.10.010
![]() |
[66] |
Mandlik A, Swierczynski A, Das A, et al. (2007) Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol 64: 111–124. doi: 10.1111/j.1365-2958.2007.05630.x
![]() |
[67] |
Dramsi S, Caliot E, Bonne I, et al. (2006) Assembly and role of pili in group B streptococci. Mol Microbiol 60: 1401–1413. doi: 10.1111/j.1365-2958.2006.05190.x
![]() |
[68] |
Ott L, Hoeller M, Rheinlaender J, et al. (2010) Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 10: 257. doi: 10.1186/1471-2180-10-257
![]() |
[69] |
Sangal V, Blom J, Sutcliffe IC, et al. (2015) Adherence and invasive properties of Corynebacterium diphtheriae strains correlates with the predicted membrane-associated and secreted proteome. BMC Genomics 16: 765–780. doi: 10.1186/s12864-015-1980-8
![]() |
[70] |
Trost E, Blom J, Soares SC, et al. (2012) Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194: 3199–3215. doi: 10.1128/JB.00183-12
![]() |
[71] |
Broadway MM, Rogers EA, Chan C, et al. (2013) Pilus gene pool variation and the virulence of Corynebacterium diphtheriae clinical isolates during infection of a nematode. J Bacteriol 195: 3774–3783. doi: 10.1128/JB.00500-13
![]() |
[72] |
Trost E, Ott L, Schneider J, et al. (2010) The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 11: 728. doi: 10.1186/1471-2164-11-728
![]() |
[73] |
Soares SC, Silva A, Trost E, et al. (2013) The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS One 8: e53818. doi: 10.1371/journal.pone.0053818
![]() |
[74] |
Anantharaman V, Aravind L (2003) Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes. Genome Biol 4: R11. doi: 10.1186/gb-2003-4-2-r11
![]() |
[75] |
Hansmeier N, Chao TC, Kanlinowski J, et al. (2006) Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 6: 2465–2476. doi: 10.1002/pmic.200500360
![]() |
[76] |
Kolodkina V, Denisevich T, Titov L (2011) Identification of Corynebacterium diphtheriae gene involved in adherence to epithelial cells. Infect Genet Evol 11: 518–521. doi: 10.1016/j.meegid.2010.11.004
![]() |
[77] |
Ott L, Hoeller M, Gerlach RG, et al. (2010) Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol 10: 2. doi: 10.1186/1471-2180-10-2
![]() |
[78] |
Chagnot C, Listrat A, Astruc T, et al. (2012) Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 14: 1687–1696. doi: 10.1111/cmi.12002
![]() |
[79] |
Birkenhauer E, Neethirajan S, Weese JS (2014) Collagen and hyaluronan at wound sites influence early polymicrobial biofilm adhesive events. BMC Microbiol 14: 191–203. doi: 10.1186/1471-2180-14-191
![]() |
[80] |
Sabbadini P, Genovez MRN, da Silva CF, et al. (2010) Fibrinogen binds to nontoxigenic and toxigenic Corynebacterium diphtheriae strains. Mem I Oswaldo Cruz 105: 706–711. doi: 10.1590/S0074-02762010000500018
![]() |
[81] |
Peixoto RS, Antunes CA, Louredo LS, et al. (2017) Functional characterization of the collagen-binding protein DIP2093 and its influence on host-pathogen interaction and arthritogenic potential of Corynebacterium diphtheriae. Microbiology 163: 692–701. doi: 10.1099/mic.0.000467
![]() |
[82] | Rivera J, Vannakambadi G, Höök M, et al. (2007) Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemostasi 98: 503–511. |
[83] | Mosher DF (1975) Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor. J Biol Chem 250: 6614–6621. |
[84] |
Ruoslahti E, Vaheri A (1975) Interaction of soluble fibroblast surface antigen with fibrinogen and fibrin. J Exp Med 141: 497–501. doi: 10.1084/jem.141.2.497
![]() |
[85] |
Engvall E, Ruoslahti E, Miller EJ (1978) Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 147: 1584–1595. doi: 10.1084/jem.147.6.1584
![]() |
[86] | Livornese LL, Korzeniowski OM (1992) Pathogenesis of infective endocarditis, In: Kaye D, Editor, Infective endocarditis, 2 Eds., New York: Raven Press, 19–35. |
[87] |
Simpson-Louredo L, Ramos JN, Peixoto RS, et al. (2014) Corynebacterium ulcerans isolates from humans and dogs: fibrinogen, fibronectin and collagen-binding, antimicrobial and PFGE profiles. Anton Leeuw Int J G 105: 343–352. doi: 10.1007/s10482-013-0080-5
![]() |
[88] |
Colombo AV, Hirata RJ, de Souza CMR, et al. (2001) Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Micrbiol Lett 197: 235–239. doi: 10.1111/j.1574-6968.2001.tb10609.x
![]() |
[89] |
Hirata R, Souza SMS, Rocha-de-Souza CM, et al. (2004) Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathogenesis 36: 125–130. doi: 10.1016/j.micpath.2003.10.002
![]() |
[90] |
Sabbadini PS, Assis MC, Trost E, et al. (2012) Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathogenesis 52: 165–176. doi: 10.1016/j.micpath.2011.12.003
![]() |
[91] |
Antunes CA, Sanches dos Santos L, Hacker E, et al. (2015) Characterization of DIP0733, a multi-functional virulence factor of Corynebacterium diphtheriae. Microbiology 161: 639–647. doi: 10.1099/mic.0.000020
![]() |
[92] |
Hacker E, Ott L, Hasselt K, et al. (2015) Colonization of human epithelial cell lines by Corynebacterium ulcerans from human and animal sources. Microbiology 161: 1582–1591. doi: 10.1099/mic.0.000121
![]() |
[93] |
Kim S, Oh DB, Kwon O, et al. (2010) Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. J Biochem 147: 523–533. doi: 10.1093/jb/mvp198
![]() |
[94] |
Ott L, McKenzie A, Baltazar MT, et al. (2012) Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol Med Mic 65: 413–421. doi: 10.1111/j.1574-695X.2012.00963.x
![]() |
[95] |
Ott L, Scholz B, Hoeller M, et al. (2013) Induction of the NFkappa-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology 159: 126–135. doi: 10.1099/mic.0.061879-0
![]() |
[96] |
Peixoto RS, Hacker E, Antunes CA, et al. (2016) Pathogenic properties of a Corynebacterium diphtheriae strain isolated from a case of osteomyelitis. J Med Microbiol 65: 1311–1321. doi: 10.1099/jmm.0.000362
![]() |
[97] |
Valdivia J, Real F, Acosta F, et al. (2013) Interaction of Corynebacterium pseudotuberculosis with ovine cells in vitro. Vet Pathol 50: 318–323. doi: 10.1177/0300985812452579
![]() |
[98] | Knight PA, Roberts PA (1986) Studies on the minimal number of animals required to achieve assurance of satisfactory potency in diphtheria and tetanus vaccines. Dev Biol Stand 65: 245–253. |
[99] | Mochizuki Y, Saeki H, Iwaki M, et al. (2016) A novel experimental platform for toxigenic and non-toxigenic Corynebacterium ulcerans infection in mice. Pathog Dis 74: 1–7. |
[100] |
Antunes CA, Clark L, Wanuske MT, et al. (2016) Caenorhabditis elegans star formation and negative chemotaxis induced by infection with corynebacteria. Microbiology 162: 84–93. doi: 10.1099/mic.0.000201
![]() |
[101] |
Hill C (2012) Virulence or niche factors: what's in a name? J Bacteriol 194: 5725–5727. doi: 10.1128/JB.00980-12
![]() |
[102] | Tauch A, Burkovski A (2015) Molecular armory or niche factors: virulence determinants of Corynebacterium species. FEMS Micrbiol Lett 362: 1–6. |
1. | Carlos Leonardo Araújo, Jorianne Alves, Alyne Lima, Larissa Dias, Patricia Silva, Joana Marques, Vasco Azevedo, Artur Silva, Adriana Folador, 2018, Chapter 4, 978-1-78984-614-0, 10.5772/intechopen.80445 | |
2. | G. G. Kharseeva, S. Yu. Tyukavkina, A. Yu. Mironov, Diphtheria: characteristics of the pathogen and laboratory diagnostics (lecture), 2020, 65, 2412-1320, 699, 10.18821/0869-2084-2020-65-11-699-706 | |
3. | I. V. Yeliseyeva, E. M. Babich, L. A. Zhdamarova, V. I. Belozersky, S. A. Kolpak, TO THE DEVELOPMENT OF THE COMPLEX DIPHTERIА VACCINE WITH BACTERIAL ADJUVANT, 2019, 3, 2077-4214, 264, 10.29254/2077-4214-2019-3-152-264-268 | |
4. | Rebecca A. Stern, Nagissa Mahmoudi, Caroline O. Buckee, Amina T. Schartup, Petros Koutrakis, Stephen T. Ferguson, Jack M. Wolfson, Steven C. Wofsy, Bruce C. Daube, Elsie M. Sunderland, The Microbiome of Size-Fractionated Airborne Particles from the Sahara Region, 2021, 55, 0013-936X, 1487, 10.1021/acs.est.0c06332 | |
5. | Jens Möller, Anne Busch, Christian Berens, Helmut Hotzel, Andreas Burkovski, Newly Isolated Animal Pathogen Corynebacterium silvaticum Is Cytotoxic to Human Epithelial Cells, 2021, 22, 1422-0067, 3549, 10.3390/ijms22073549 | |
6. | Elisabete Alves Cappelli, Andrezza do Espírito Santo Cucinelli, Liliane Simpson-Louredo, Maria Eurydice Freire Canellas, Camila Azevedo Antunes, Andreas Burkovski, Jemima Fuentes Ribeiro da Silva, Ana Luíza Mattos-Guaraldi, Alessandra Mattos Saliba, Louisy Sanches dos Santos, Insights of OxyR role in mechanisms of host–pathogen interaction of Corynebacterium diphtheriae, 2022, 53, 1517-8382, 583, 10.1007/s42770-022-00710-8 | |
7. | Lisa Ott, Jens Möller, Andreas Burkovski, Interactions between the Re-Emerging Pathogen Corynebacterium diphtheriae and Host Cells, 2022, 23, 1422-0067, 3298, 10.3390/ijms23063298 | |
8. | Lincoln de Oliveira Sant’Anna, Elisabete Alves Cappelli, Max Roberto Batista Araújo, Juliana Nunes Ramos, Liliane Simpson-Lourêdo, Andrezza do Espirito Santo Cucinelli, Paulo Victor Pereira Baio, Verônica Viana Vieira, Louisy Sanches dos Santos, Ana Luíza Mattos-Guaraldi, Virulence potential of the first Corynebacterium mycetoides strain isolated from human urine: a rare species of Corynebacterium, 2022, 24, 12864579, 105001, 10.1016/j.micinf.2022.105001 | |
9. | Matthew E. Griffin, Steven Klupt, Juliel Espinosa, Howard C. Hang, Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions, 2022, 24519456, 10.1016/j.chembiol.2022.11.001 | |
10. | Bao-Hong Lee, Wei-Hsuan Hsu, You-Zuo Chen, Kung-Ting Hsu, Tzu-Ming Pan, Limosilactobacillus fermentum SWP-AFFS02 Improves the Growth and Survival Rate of White Shrimp via Regulating Immunity and Intestinal Microbiota, 2021, 7, 2311-5637, 179, 10.3390/fermentation7030179 | |
11. | Julian Ott, Mona M. Spilhaug, Simone Maschauer, Waqas Rafique, Jimmy E. Jakobsson, Karoline Hartvig, Harald Hübner, Peter Gmeiner, Olaf Prante, Patrick J. Riss, Pharmacological Characterization of Low-to-Moderate Affinity Opioid Receptor Agonists and Brain Imaging with18F-Labeled Derivatives in Rats, 2020, 63, 0022-2623, 9484, 10.1021/acs.jmedchem.0c00683 | |
12. | Latife Çakır Bayram, Seçil Abay, İzzet Burçin Satıcıoğlu, Tolga Güvenç, Görkem Ekebaş, Fuat Aydın, The ocular pyogranulomatous lesion in a Gentoo penguin (Pygoscelis papua) from the Antarctic Peninsula: evaluation of microbiological and histopathological analysis outcomes, 2021, 45, 0165-7380, 143, 10.1007/s11259-021-09796-1 | |
13. | Simone Maschauer, Julian J. Ott, Günther Bernhardt, Torsten Kuwert, Max Keller, Olaf Prante, 18F-labelled triazolyl-linked argininamides targeting the neuropeptide Y Y1R for PET imaging of mammary carcinoma, 2019, 9, 2045-2322, 10.1038/s41598-019-49399-0 | |
14. | О. П. Корнійчук, О. Б. Надрага, О. І. Мотика, СУЧАСНИЙ ПОГЛЯД НА ВИДОВИЙ СПЕКТР ЗБУДНИКІВ «КЛАСИЧНИХ» ІНФЕКЦІЙНИХ БАКТЕРІЙНИХ ХВОРОБ, 2023, 2414-9969, 66, 10.11603/1681-2727.2023.1.13470 | |
15. | Zhongyuan Li, Mengmeng Gu, Huanhuan Sun, Xiangliang Chen, Junshan Zhou, Yingdong Zhang, The Potential of Gut Microbiota in Prediction of Stroke-Associated Pneumonia, 2023, 13, 2076-3425, 1217, 10.3390/brainsci13081217 | |
16. | Mélanie Hennart, Chiara Crestani, Sébastien Bridel, Nathalie Armatys, Sylvie Brémont, Annick Carmi-Leroy, Annie Landier, Virginie Passet, Laure Fonteneau, Sophie Vaux, Julie Toubiana, Edgar Badell, Sylvain Brisse, A global Corynebacterium diphtheriae genomic framework sheds light on current diphtheria reemergence , 2023, 3, 2804-3871, 10.24072/pcjournal.307 | |
17. | Joshua T. Huffines, RaNashia L. Boone, Megan R. Kiedrowski, Sarah E. F. D'Orazio, Temperature influences commensal-pathogen dynamics in a nasal epithelial cell co-culture model, 2024, 2379-5042, 10.1128/msphere.00589-23 | |
18. | Bao-Hong Lee, Yeh-Fang Hu, Yu-Ting Chu, Yu-Sheng Wu, Wei-Hsuan Hsu, Fan-Hua Nan, Lactic Acid Bacteria-Fermented Diet Containing Bacterial Extracellular Vesicles Inhibited Pathogenic Bacteria in Striped Beakfish (Oplegnathus fasciatus), 2024, 10, 2311-5637, 49, 10.3390/fermentation10010049 | |
19. | Ramiro Ortiz Moyano, Stefania Dentice Maidana, Yoshiya Imamura, Mariano Elean, Fu Namai, Yoshihito Suda, Keita Nishiyama, Vyacheslav Melnikov, Haruki Kitazawa, Julio Villena, Antagonistic Effects of Corynebacterium pseudodiphtheriticum 090104 on Respiratory Pathogens, 2024, 12, 2076-2607, 1295, 10.3390/microorganisms12071295 | |
20. | A. A. Gallardo, V. Azevedo, R. Malena, M. Oppedisano, M. R. Leunda, F. A. Paolicchi, Cytopathic effects in MDBK cell lines after adhesion and internalization of Corynebacterium pseudotuberculosis biovar ovis, 2025, 1517-8382, 10.1007/s42770-025-01697-8 |
Solution | MgCl2 wt% | PVDF wt% | DMF |
S0 | 0% | 10% | 100 ml |
S1 | 2% | 10% | 100 ml |
S2 | 4% | 10% | 100 ml |
S3 | 6% | 10% | 100 ml |