Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Bioresorbable Scaffolds: The Revolution in Coronary Stenting?

Interventional Cardiology & Department of Medicine, Montreal Heart Institute, Department of Medicine, University of Montreal, Montreal, QC, Canada.

Special Issues: Coronary artery disease and role of percutaneous interventions

Bioresorbable scaffolds (BRS) represent the latest revolution in interventional cardiology. Thanks to their reabsorptive properties, they provide temporary scaffolding that helps stabilizing the plaque and promotes healing, and then disappear, thus restoring a functional endothelium and vasomotion. Several devices have been tested at the preclinical and clinical stage. Here we review the rationale, development, design and clinical data of the BRS platforms, providing a comprehensive review of the literature.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Grüntzig AR, Senning A, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis— percutaneous transluminal coronary angioplasty. New Engl J Med 301:61–68.    

2. De Feyter PJ, de Jaegere PP, Serruys PW (1994) Incidence, predictors, and management of acute coronary occlusion after coronary angioplasty. Am Heart J 127: 643–651.    

3. Serruys PW, Luijten HE, Beatt KJ, et al. (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77: 361–371.

4. Gruentzig AR, King SB 3rd, Schlumpf M, et al. (1987) Long-term follow-up after percutaneous transluminal coronary angioplasty. The early Zurich experience. New Engl J Med 316: 1127–1132.    

5. Farooq V, Gogas BD, Serruys PW (2001) Restenosis: delineating the numerous causes of
drug-eluting stent restenosis. Circ Cardiovasc Interv 4: 195–205.    

6. Macander PJ, Agrawal SK, Roubin GS (1991) The Gianturco-Roubin balloon-expandable intracoronary flexible coil stent. J Invasive Cardiol 3: 85–94.

7. Schatz RA, Palmaz JC, Tio FO, et al. (1987) Balloon-expandable intracoronary stents in the adult dog. Circulation 76: 450–457.    

8. Sigwart U, Gold S, Kaufman U, et al. (1988) Analysis of complications associated with coronary stenting (abstract). J Am Coll Cardiol 11: 66A.    

9. Sigwart U, Puel J, Mirkovitch V, et al. (1987) Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. New Engl J Med 316: 701–706.    

10. Lansky AJ, Roubin GS, O’Shaughnessy CD, et al. (2000) Randomized comparison of GR-II stent and Palmaz-Schatz stent for elective treatment of coronary stenoses. Circulation 102: 1364–1368.    

11. Baim DS, Cutlip DE, Midei M, et al. (2001) Final results of a randomized trial comparing the MULTI-LINK stent with the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 157–162.    

12. Baim DS, Cutlip DE, O’Shaughnessy CD, et al. (2001) Final results of a randomized trial comparing the NIR stent to the Palmaz-Schatz stent for narrowings in native coronary arteries. Am J Cardiol 87: 152–156.

13. Colombo A, Hall P, Nakamura S, et al. (1995) Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation 91: 1676–1688.    

14. Duckers HJ, Nabel EG, Serruys PW, editors. (2007) Essentials of restenosis: for the interventional cardiologist. Totowa, NJ: Humana Press.

15. Tada T, Byrne RA, Simunovic I, et al. (2013) Risk of stent thrombosis among bare-metal stents, first-generation drug-eluting stents, and second-generation drug-eluting stents: results from a registry of 18,334 patients. JACC Cardiovasc Interv 6: 1267–1274.    

16. Daemen J, Wenaweser P, Tsuchida K, et al. (2007) Early and late coronary stent thrombosis of sirolimus-eluting and paclitaxel-eluting stents in routine clinical practice: data from a large
two-institutional cohort study. Lancet 369: 667–678.    

17. Wenaweser P, Daemen J, Zwahlen M, et al. (2008) Incidence and correlates of drug-eluting stent thrombosis in routine clinical practice. 4-year results from a large 2-institutional cohort study. J Am Coll Cardiol 52: 1134–1140.

18. Sarno G, Lagerqvist B, Fröbert O, et al. (2012) Lower risk of stent thrombosis and restenosis with unrestricted use of “new-generation” drug-eluting stents: A report from the nationwide Swedish Coronary Angiography and Angioplasty Registry (SCAAR). Eur Heart J 33: 606–613.

19. Togni M, Windecker S, Cocchia R, et al. (2005) Sirolimus-eluting stents associated with paradoxic coronary vasoconstriction. J Am Coll Cardiol 46: 231–236.    

20. Hofma SH, Van Der Giessen WJ, Van Dalen BM, et al. (2006) Indication of long-term endothelial dysfunction after sirolimus-eluting stent implantation. Eur Heart J 27: 166–170.

21. Onuma Y, Serruys PW (2011) Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation 123: 779–797.    

22. Wayangankar SA, Ellis SG (2015) Bioresorbable stents: is this where we are headed? Prog Cardiovasc Dis 26.

23. Van der Giessen WJ, Slager CJ, van Beusekom HM, et al. (1992) Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J Invasive Cardiol 5: 175–185.

24. Van der Giessen WJ, Lincoff AM, Schwartz RS, et al. (1996) Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation 94: 1690–1697.    

25. Lincoff AM, Furst JG, Ellis SG, et al. (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29: 808–816.    

26. Yamawaki T, Shimokawa H, Kozai T, et al. (1998) Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol 32: 780–786.

27. Iqbal J, Onuma Y, Ormiston J, et al. (2013) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35: 765–776.

28. Tamai H, Igaki K, Kyo E, et al. (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102: 399–404.    

29. Serruys PW, Ormiston JA, Onuma Y, et al. (2009) A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 373: 897–910.

30. Verheye S, Ormiston JA, Stewart J, et al. (2014) A next-generation bioresorbable coronary scaffold system: from bench to first clinical evaluation: 6- and 12-month clinical and multimodality imaging results. JACC Cardiovasc Interv 7: 89–99.    

31. Abizaid A (2014) DESolve NX Trial clinical and imaging results. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Washington, DC; September 13-17.

32. Costa RA (2012) REVA ReZolve clinical program update. Presented at: Transcatheter Cardiovascular Therapeutics (TCT). Miami Beach, FL; October 22-28.

33. Muller D (2014) ReZolve 2: Bioresorbable coronary scaffold clinical program update. Presented at: EuroPCR. Paris, France; May 20-23.

34. Erbel R, Di Mario C, Bartunek J, et al. (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369: 1869–1875.

35. Haude M, Erbel R, Erne P, et al. (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. The Lancet 381: 836–844.

36. Waksman R (2014) Long-term clinical data of the BIOSOLVE-I study with the paclitaxel-eluting absorbable magnesium scaffold (DREAMS 1st generation) and multi- modality imaging analysis.

37. Onuma Y, Dudek D, Thuesen L, et al. (2013) Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbable polymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort A trial. JACC Cardiovasc Interv 6: 999–1009.    

38. Serruys PW, Onuma Y, Garcia-Garcia HM, et al. (2014) Dynamics of vessel wall changes following the implantation of the Absorb everolimus-eluting bioresorbable vascular scaffold: a multi-imaging modality study at 6, 12, 24 and 36 months. EuroIntervention 9: 1271–1284.    

39. Serruys PW, Chevalier B, Dudek D, et al. (2015) A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from. Lancet 385: 43–54.

40. Ellis SG, Kereiakes DJ, Metzger DC, et al. (2015) Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med 373: 1905–1915.    

41. Sabaté M, Windecker S, Iñiguez A, et al. (2015) Everolimus-eluting bioresorbable stent vs. durable polymer everolimus-eluting metallic stent in patients with ST-segment elevation myocardial infarction: results of the randomized ABSORB ST-segment elevation myocardial
infarction-TROFI II trial. Eur Heart J 23.

42. Gao R, Yang Y, Han Y, et al. (2015) Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol 25.

43. Capodanno D, Gori T, Nef H, et al. (2015) Percutaneous coronary intervention with
everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry. EuroIntervention 10: 1144–1153.    

44. Palmerini T, Biondi-Zoccai G, Della Riva D, et al. (2012) Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet 379: 1393–1402.    

45. Abizaid A, Costa JR, Bartorelli AL, et al. (2015) The ABSORB EXTEND study: preliminary report of the twelve-month clinical outcomes in the first 512 patients enrolled. EuroIntervention 10: 1396–1401.

46. Džavík V, Colombo A (2014) The Absorb bioresorbable vascular scaffold in coronary bifurcations: insights from bench testing. JACC Cardiovasc Interv 7: 81–88.    

47. Rundeken MJ, Hassell MECJ, Kraak RP, et al. (2014) Treatment of coronary bifurcation lesions with the Absorb bioresorbable vascular scaffold in combination with the Tryton dedicated coronary bifurcation stent: evaluation using two- and three-dimensional optical coherence tomography. EuroIntervention 30.

48. Capranzano P, Gargiulo G, Capodanno D, et al. (2014) Treatment of coronary bifurcation lesions with bioresorbable vascular scaffolds. Minerva Cardioangiol 62: 229–234.

49. Kawamoto H, Latib A, Ruparelia N, et al. (2015) Clinical outcomes following bioresorbable scaffold implantation for bifurcation lesions: overall outcomes and comparison between provisional and planned double stenting strategy. Catheter Cardiovasc Interv 86: 644–652.    

50. Cortese B, Silva Orrego P, Sebik R, et al. (2014) Biovascular scaffolding of distal left main trunk: experience and follow up from the multicenter prospective RAI registry (Registro Italiano Absorb). Int J Cardiol 177: 497–499.

51. Panoulas VF, Miyazaki T, Sato K, et al. (2015) Procedural outcomes of patients with calcified lesions treated with bioresorbable vascular scaffolds. EuroIntervention 30.

52. Vaquerizo B, Barros A, Pujadas S, et al. (2014) Bioresorbable everolimus-eluting vascular scaffold for the treatment of chronic total occlusions: CTO-ABSORB pilot study. EuroIntervention 16.

53. Diletti R, Karanasos A, Muramatsu T, et al. (2014) Everolimus-eluting bioresorbable vascular scaffolds for treatment of patients presenting with ST-segment elevation myocardial infarction: BVS STEMI first study. Eur Heart J 35: 777–786.    

54. Kocka V, Maly M, Tousek P, et al. (2014) Bioresorbable vascular scaffolds in acute ST-segment elevation myocardial infarction: a prospective multicentre study “Prague 19.” Eur Heart J 35: 787–794.

55. Ielasi A, Cortese B, Varricchio A, et al. (2015) Immediate and midterm outcomes following primary PCI with bioresorbable vascular scaffold implantation in patients with ST-segment myocardial infarction: insights from the multicentre “Registro ABSORB Italiano” (RAI registry). EuroIntervention 11: 157–162.    

56. Brugaletta S, Gori T, Low AF, et al. (2015) Absorb bioresorbable vascular scaffold versus everolimus-eluting metallic stent in ST-segment elevation myocardial infarction: 1-year results of a propensity score matching comparison: the BVS-EXAMINATION Study (bioresorbable vascular scaffold-a clinical evaluation of everolimus eluting coronary stents in the treatment of patients with ST-segment elevation myocardial infarction). JACC Cardiovasc Interv 8: 189–197.

57. Ong PJ, Jafary FH, Ho HH (2013) “First-in-man” use of bioresorbable vascular scaffold in saphenous vein graft. EuroIntervention 9: 165.

58. Deora S, Shah S, Patel T (2014) First-in-man implantation of bioresorbable vascular scaffold in left internal mammary artery graft. J Invasive Cardiol 26: 92–93.

59. Moscarella E, Varricchio A, Stabile E, et al. (2015) Bioresorbable vascular scaffold implantation for the treatment of coronary in-stent restenosis: results from a multicenter Italian experience. Int J Cardiol 199: 366–372.    

60. Tamburino C, Latib A, van Geuns R-J, et al. (2015) Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention 11: 45–52.    

61. Azzalini L, L’Allier PL (2015) Bioresorbable vascular scaffold thrombosis in an all-comer patient population: single center experience. J Invasive Cardiol 27: 85–92.

62. Azzalini L, Al-Hawwas M, L’Allier PL (2015) Very late bioresorbable vascular scaffold thrombosis: a new clinical entity. Eurointervention 11: e1–2.

63. Karanasos A, van Geuns R-J, Zijlstra F, et al. (2014) Very late bioresorbable scaffold thrombosis after discontinuation of dual antiplatelet therapy. Eur Heart J 35: 1781.    

64. Karanasos A, Van Mieghem N, van Ditzhuijzen N, et al. (2015) Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ Cardiovasc Interv 8: e002369.    

65. Nakatani S, Onuma Y, Ishibashi Y, et al. (2015) Early (before 6 months), late (6-12 months) and very late (after 12 months) angiographic scaffold restenosis in the ABSORB Cohort B trial. EuroIntervention 10: 1288–1298.    

66. Longo G, Granata F, Capodanno D, et al. (2015) Anatomical features and management of bioresorbable vascular scaffolds failure: A case series from the GHOST registry. Catheter Cardiovasc Interv 85: 1150–1161.    

67. Felix C, Everaert B, Jepson N, et al. (2015) Treatment of bioresorbable scaffold failure. EuroIntervention 11: V175–180.    

68. Cassese S, Byrne RA, Ndrepepa G, et al. (2015) Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. The Lancet 6736: 1–8.

Copyright Info: © 2016, Jean-François Tanguay, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved