Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Solving scalar reaction diffusion equations with cubic non-linearity having time-dependent coefficients by the wavelet method of lines

  • Received: 06 February 2024 Revised: 24 May 2024 Accepted: 11 June 2024 Published: 24 June 2024
  • This paper aims to conduct the numerical solutions of the scalar reaction diffusion model with cubic non-linearity having constant and time-dependent coefficients. The proposed method is hybrid in nature in which Haar wavelets are used to approximate the spatial derivatives and the Runge-Kutta (RK) routines are used to solve the resultant system of ordinary differential equations. We illustrate the applicability and efficiency of the proposed method by computing , , and error estimates for various test models. The numerical accuracy and stability of the Haar wavelet-based method of lines for solving the scaler reaction-diffusion model provides further insight into the use of this scheme for model equations across various disciplines.

    Citation: Aslam Khan, Abdul Ghafoor, Emel Khan, Kamal Shah, Thabet Abdeljawad. Solving scalar reaction diffusion equations with cubic non-linearity having time-dependent coefficients by the wavelet method of lines[J]. Networks and Heterogeneous Media, 2024, 19(2): 634-654. doi: 10.3934/nhm.2024028

    Related Papers:

    [1] Yali Ouyang, Zhuhuang Zhou, Weiwei Wu, Jin Tian, Feng Xu, Shuicai Wu, Po-Hsiang Tsui . A review of ultrasound detection methods for breast microcalcification. Mathematical Biosciences and Engineering, 2019, 16(4): 1761-1785. doi: 10.3934/mbe.2019085
    [2] Qun Xia, Yangmei Cheng, Jinhua Hu, Juxia Huang, Yi Yu, Hongjuan Xie, Jun Wang . Differential diagnosis of breast cancer assisted by S-Detect artificial intelligence system. Mathematical Biosciences and Engineering, 2021, 18(4): 3680-3689. doi: 10.3934/mbe.2021184
    [3] Yue Zhang, Haitao Gan, Furong Wang, Xinyao Cheng, Xiaoyan Wu, Jiaxuan Yan, Zhi Yang, Ran Zhou . A self-supervised fusion network for carotid plaque ultrasound image classification. Mathematical Biosciences and Engineering, 2024, 21(2): 3110-3128. doi: 10.3934/mbe.2024138
    [4] Haiyan Song, Cuihong Liu, Shengnan Li, Peixiao Zhang . TS-GCN: A novel tumor segmentation method integrating transformer and GCN. Mathematical Biosciences and Engineering, 2023, 20(10): 18173-18190. doi: 10.3934/mbe.2023807
    [5] Xiaoyue Fang, Ran Zhou, Haitao Gan, Mingyue Ding, Ming Yuchi . Time-of-flight completion in ultrasound computed tomography based on the singular value threshold algorithm. Mathematical Biosciences and Engineering, 2022, 19(10): 10160-10175. doi: 10.3934/mbe.2022476
    [6] Salman Lari, Hossein Rajabzadeh, Mohammad Kohandel, Hyock Ju Kwon . A holistic physics-informed neural network solution for precise destruction of breast tumors using focused ultrasound on a realistic breast model. Mathematical Biosciences and Engineering, 2024, 21(10): 7337-7372. doi: 10.3934/mbe.2024323
    [7] Hong Yu, Wenhuan Lu, Qilong Sun, Haiqiang Shi, Jianguo Wei, Zhe Wang, Xiaoman Wang, Naixue Xiong . Design and analysis of a robust breast cancer diagnostic system based on multimode MR images. Mathematical Biosciences and Engineering, 2021, 18(4): 3578-3597. doi: 10.3934/mbe.2021180
    [8] Chenkai Chang, Fei Qi, Chang Xu, Yiwei Shen, Qingwu Li . A dual-modal dynamic contour-based method for cervical vascular ultrasound image instance segmentation. Mathematical Biosciences and Engineering, 2024, 21(1): 1038-1057. doi: 10.3934/mbe.2024043
    [9] Xiaochen Liu, Weidong He, Yinghui Zhang, Shixuan Yao, Ze Cui . Effect of dual-convolutional neural network model fusion for Aluminum profile surface defects classification and recognition. Mathematical Biosciences and Engineering, 2022, 19(1): 997-1025. doi: 10.3934/mbe.2022046
    [10] Jiajun Zhu, Rui Zhang, Haifei Zhang . An MRI brain tumor segmentation method based on improved U-Net. Mathematical Biosciences and Engineering, 2024, 21(1): 778-791. doi: 10.3934/mbe.2024033
  • This paper aims to conduct the numerical solutions of the scalar reaction diffusion model with cubic non-linearity having constant and time-dependent coefficients. The proposed method is hybrid in nature in which Haar wavelets are used to approximate the spatial derivatives and the Runge-Kutta (RK) routines are used to solve the resultant system of ordinary differential equations. We illustrate the applicability and efficiency of the proposed method by computing , , and error estimates for various test models. The numerical accuracy and stability of the Haar wavelet-based method of lines for solving the scaler reaction-diffusion model provides further insight into the use of this scheme for model equations across various disciplines.




    [1] N. F. Britton, Reaction-Diffusion Equations and Their Applications to Biology, London: Academic Press, 1986.
    [2] R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, 2004. https://doi.org/10.1002/0470871296
    [3] J. Smoller, Shock Waves and Reaction–-Diffusion Equations, New York: Springer, 2012. https://doi.org/10.1007/978-1-4612-0873-0
    [4] J. D. Murray, Animal coat patterns and other practical applications of reaction diffusion mechanisms, Mathematical Biology II: Spatial Models and Biomedical Applications, New York: Springer, 3 (2003), 141–191. https://doi.org/10.1007/b98869
    [5] M. G. Neubert, H. Caswell, Demography and dispersal: Calculation and sensitivity analysis of invasion speed for structured populations, Ecology, 81 (2000), 1613–1628. https://doi.org/10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2 doi: 10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2
    [6] J. Canosa, On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev., 17 (1973), 307–313. https://doi.org/10.1147/rd.174.0307 doi: 10.1147/rd.174.0307
    [7] R. Luther, Propagation of chemical reactions in space, J. Chem. Educ., 64 (1987), 740. https://doi.org/10.1021/ed064p740 doi: 10.1021/ed064p740
    [8] M. A. J. Chaplain, Reaction-diffusion prepatterning and its potential role in tumour invasion, J. Biol. Syst., 3 (1995), 929–936. https://doi.org/10.1142/S0218339095000824 doi: 10.1142/S0218339095000824
    [9] J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189–192. https://doi.org/10.1126/science.261.5118.189 doi: 10.1126/science.261.5118.189
    [10] M. M. Tang, P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Ration. Mech. Anal., 73 (1980), 69–77.
    [11] E. Bodenschatz, W. Pesch, G. Ahlers, Recent developments in Rayleigh-Bénard convection, Annu. Rev. Fluid Mech., 32 (2000), 709–778. https://doi.org/10.1146/annurev.fluid.32.1.709 doi: 10.1146/annurev.fluid.32.1.709
    [12] Y. B. Zeldovich, D. A. Frank-Kamenetskii, The theory of thermal propagation of flames, Zh. Fiz. Khim, 12 (1938), 100–105.
    [13] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445–466. https://doi.org/10.1016/S0006-3495(61)86902-6 doi: 10.1016/S0006-3495(61)86902-6
    [14] J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061–2070. https://doi.org/10.1109/JRPROC.1962.288235 doi: 10.1109/JRPROC.1962.288235
    [15] A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol., 117 (1952), 500–544. https://doi.org/10.1113/jphysiol.1952.sp004764 doi: 10.1113/jphysiol.1952.sp004764
    [16] M. Argentina, P. Coullet, V. Krinsky, Head-on collisions of waves in an excitable Fitzhugh-Nagumo system: A transition from wave annihilation to classical wave behavior, J. Theor. Biol., 205 (2000), 47–52. https://doi.org/10.1006/jtbi.2000.2044 doi: 10.1006/jtbi.2000.2044
    [17] M. P. Zorzano, L. Vázquez, Emergence of synchronous oscillations in neural networks excited by noise, Physica D, 179 (2003), 105–114. https://doi.org/10.1016/S0167-2789(03)00007-1 doi: 10.1016/S0167-2789(03)00007-1
    [18] A. H. Bhrawy, A Jacobi-Gauss-Lobatto collocation method for solving generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Appl. Math. Comput., 222 (2013), 255–264. https://doi.org/10.1016/j.amc.2013.07.056 doi: 10.1016/j.amc.2013.07.056
    [19] D. Cebrían-Lacasa, P. Parra-Rivas, D. Ruiz-Reynés, L. Gelens, Six decades of the Fitzhugh-Nagumo model: A guide through its spatio-temporal dynamics and influence across disciplines, preprint, arXiv: 2404.11403
    [20] M. Shih, E. Momoniat, F. M. Mahomed, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation, J. Math. Phys., 46 (2005), 023503. https://doi.org/10.1063/1.1839276 doi: 10.1063/1.1839276
    [21] A. Mehta, G. Singh, H. Ramos, Numerical solution of time dependent nonlinear partial differential equations using a novel block method coupled with compact finite difference schemes, Comput. Appl. Math., 42 (2023), 201. https://doi.org/10.1007/s40314-023-02345-3 doi: 10.1007/s40314-023-02345-3
    [22] H. Li, Y. Guo, New exact solutions to the Fitzhugh-Nagumo equation, Appl. Math. Comput., 180 (2006), 524–528. https://doi.org/10.1016/j.amc.2005.12.035 doi: 10.1016/j.amc.2005.12.035
    [23] S. Abbasbandy, Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method, Appl. Math. Model., 32 (2008), 2706–2714. https://doi.org/10.1016/j.apm.2007.09.019 doi: 10.1016/j.apm.2007.09.019
    [24] T. Kawahara, M. Tanaka, Interactions of traveling fronts: An exact solution of a nonlinear diffusion equation, Phys. Lett. A, 97 (1983), 311–314. https://doi.org/10.1016/0375-9601(83)90648-5 doi: 10.1016/0375-9601(83)90648-5
    [25] R. A. Van Gorder, K. Vajravelu, A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation, Nonlinear Anal. Real World Appl., 11 (2010), 2957–2962. https://doi.org/10.1016/j.nonrwa.2009.10.016 doi: 10.1016/j.nonrwa.2009.10.016
    [26] H. Ali, M. Kamrujjaman, M. S. Islam, Numerical computation of Fitzhugh-Nagumo equation: A novel galerkin finite element approach, Int. J. Math. Res., 9 (2020), 20–27. https://doi.org/10.18488/journal.24.2020.91.20.27 doi: 10.18488/journal.24.2020.91.20.27
    [27] M. Namjoo, S. Zibaei, Numerical solutions of Fitzhugh-Nagumo equation by exact finite-difference and NSFD schemes, Comput. Appl. Math., 37 (2018), 1395–1411. https://doi.org/10.1007/s40314-016-0406-9 doi: 10.1007/s40314-016-0406-9
    [28] R. A. V. Gorder, Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function h (x, t) in the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1233–1240. https://doi.org/10.1016/j.cnsns.2011.07.036 doi: 10.1016/j.cnsns.2011.07.036
    [29] H. Triki, A. M. Wazwaz, On soliton solutions for the Fitzhugh-Nagumo equation with time-dependent coefficients, Appl. Math. Model., 37 (2013), 3821–3828. https://doi.org/10.1016/j.apm.2012.07.031 doi: 10.1016/j.apm.2012.07.031
    [30] K. U. Rehman, W. Shatanawi, M. Y. Malik, Group theoretic thermal analysis (GTTA) of Powell-Eyring fluid flow with identical free stream (FS) and heated stretched porous (HSP) boundaries: AI Decisions, Case Stud. Therm. Eng., 55 (2024), 104101. https://doi.org/10.1016/j.csite.2024.104101 doi: 10.1016/j.csite.2024.104101
    [31] N. Jamal, M. Sarwar, N. Mlaiki, A. Aloqaily, Solution of linear correlated fuzzy differential equations in the linear correlated fuzzy spaces, AIMS Math., 9 (2024), 2695–2721. https://doi.org/10.3934/math.2024134 doi: 10.3934/math.2024134
    [32] R. Jiwari, R. Gupta, V. Kumar, Polynomial differential quadrature method for numerical solutions of the generalized Fitzhugh-Nagumo equation with time-dependent coefficients, Ain Shams Eng. J., 5 (2014), 1343–1350. https://doi.org/10.1016/j.asej.2014.06.005 doi: 10.1016/j.asej.2014.06.005
    [33] S. Singh, Mixed-type discontinuous galerkin approach for solving the generalized Fitzhugh-Nagumo reaction-diffusion model, Int. J. Appl. Comput. Math., 7 (2021), 207. https://doi.org/10.1007/s40819-021-01153-9 doi: 10.1007/s40819-021-01153-9
    [34] S. S. Khayyam, M. Sarwar, A. Khan, N. Mlaiki, F. M. Azmi, Solving integral equations via fixed point results involving rational-type inequalities, Axioms, 12 (2023), 685. https://doi.org/10.3390/axioms12070685 doi: 10.3390/axioms12070685
    [35] Ü. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comput. Simul., 68 (2005), 127–143. https://doi.org/10.1016/j.matcom.2004.10.005 doi: 10.1016/j.matcom.2004.10.005
    [36] R. Jiwari, A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation, Comput. Phys. Commun., 183 (2012), 2413–2423. https://doi.org/10.1016/j.cpc.2012.06.009 doi: 10.1016/j.cpc.2012.06.009
    [37] M. Kumar, S. Pandit, A composite numerical scheme for the numerical simulation of coupled Burgers' equation, Comput. Phys. Commun., 185 (2014), 809–817. https://doi.org/10.1016/j.cpc.2013.11.012 doi: 10.1016/j.cpc.2013.11.012
    [38] S. C. Shiralashetti, A. B. Deshi, P.B. M. Desai, Haar wavelet collocation method for the numerical solution of singular initial value problems, Ain Shams Eng. J., 7 (2016), 663–670. https://doi.org/10.1016/j.asej.2015.06.006 doi: 10.1016/j.asej.2015.06.006
    [39] A. Ghafoor, Numerical solutions of time dependent partial differential equations via Haar wavelets, Nat. Appl. Sci. Int. J., 1 (2020), 39–52. https://doi.org/10.47264/idea.nasij/1.1.4 doi: 10.47264/idea.nasij/1.1.4
    [40] A. Ghafoor, N. Khan, M. Hussain, R. Ullah, A hybrid collocation method for the computational study of multi-term time fractional partial differential equations, Comput. Math. Appl., 128 (2022), 130–144. https://doi.org/10.1016/j.camwa.2022.10.005 doi: 10.1016/j.camwa.2022.10.005
    [41] S. Haq, A. Ghafoor, M. Hussain, S. Arifeen, Numerical solutions of two dimensional sobolev and generalized Benjamin-Bona-Mahony-Burgers equations via Haar wavelets, Comput. Math. Appl., 77 (2019), 565–575. https://doi.org/10.1016/j.camwa.2018.09.058 doi: 10.1016/j.camwa.2018.09.058
    [42] I. Ahmad, M. Ahsan, Z. Din, A. Masood, P. Kumam, An efficient local formulation for time-dependent PDEs, Mathematics, 7 (2019), 216. https://doi.org/10.3390/math7030216 doi: 10.3390/math7030216
    [43] H. Ramos, A. Kaur, V. Kanwar, Using a cubic B-spline method in conjunction with a one-step optimized hybrid block approach to solve nonlinear partial differential equations, Comput. Appl. Math., 41 (2022), 34. https://doi.org/10.1007/s40314-021-01729-7 doi: 10.1007/s40314-021-01729-7
    [44] B. Inan, K. K. Ali, A. Saha, T. Ak, Analytical and numerical solutions of the Fitzhugh-Nagumo equation and their multistability behavior, Numer. Methods Partial Differ. Equations, 37 (2021), 7–23. https://doi.org/10.1002/num.22516 doi: 10.1002/num.22516
    [45] G. Arora, V. Joshi, A computational approach for solution of one dimensional parabolic partial differential equation with application in biological processes, Ain Shams Eng. J., 9 (2018), 1141–1150. https://doi.org/10.1016/j.asej.2016.06.013 doi: 10.1016/j.asej.2016.06.013
    [46] N. Dhiman, M. Tamsir, A collocation technique based on modified form of trigonometric cubic B-spline basis functions for Fisher's reaction-diffusion equation, Multidiscip. Model. Mater. Struct., 14 (2018), 923–939. https://doi.org/10.1108/MMMS-12-2017-0150 doi: 10.1108/MMMS-12-2017-0150
    [47] J. Butcher, Runge-kutta methods, Scholarpedia, 2 (2007), 3147. https://doi.org/10.4249/scholarpedia.3147
    [48] Ö. Oruç, Numerical simulation of two-dimensional and three-dimensional generalized Klein-Gordon-Zakharov equations with power law nonlinearity via a meshless collocation method based on barycentric rational interpolation, Numer. Methods Partial Differ. Equations, 38 (2022), 1068–1089. https://doi.org/10.1002/num.22806 doi: 10.1002/num.22806
  • This article has been cited by:

    1. Leonid Shaikhet, About one method of stability investigation for nonlinear stochastic delay differential equations, 2021, 1049-8923, 10.1002/rnc.5440
    2. Leonid Shaikhet, Stability of a positive equilibrium state for a stochastically perturbed mathematical model ofglassy-winged sharpshooter population, 2014, 11, 1551-0018, 1167, 10.3934/mbe.2014.11.1167
    3. Federico Lessio, Alberto Alma, Models Applied to Grapevine Pests: A Review, 2021, 12, 2075-4450, 169, 10.3390/insects12020169
    4. Sofia G. Seabra, Ana S.B. Rodrigues, Sara E. Silva, Ana Carina Neto, Francisco Pina-Martins, Eduardo Marabuto, Vinton Thompson, Michael R. Wilson, Selçuk Yurtsever, Antti Halkka, Maria Teresa Rebelo, Paulo A.V. Borges, José A. Quartau, Chris D. Jiggins, Octávio S. Paulo, Population structure, adaptation and divergence of the meadow spittlebug, Philaenus spumarius (Hemiptera, Aphrophoridae), revealed by genomic and morphological data, 2021, 9, 2167-8359, e11425, 10.7717/peerj.11425
    5. Leonid Shaikhet, Some Generalization of the Method of Stability Investigation for Nonlinear Stochastic Delay Differential Equations, 2022, 14, 2073-8994, 1734, 10.3390/sym14081734
    6. Leonid Shaikhet, About stability of a mathematical model of Glassy-winged Sharpshooter population under Poisson’s jumps, 2025, 08939659, 109523, 10.1016/j.aml.2025.109523
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1295) PDF downloads(72) Cited by(3)

Article outline

Figures and Tables

Figures(15)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog