$\phi_t + (\phi v(\phi/{a(x)})_x = 0, \quad \phi(x,0)=\phi_0(x),\quad x \in \mathbb{R},\quad t\in (0,T),$ (*)
where $v(z)$ is the velocity function.
We adapt to (*)
a new notion
of entropy solutions (Bürger, Karlsen, and Towers
[Submitted, 2007]), which involves a Kružkov-type
entropy inequality based on a specific flux connection $(A,B)$, and
which we interpret in terms of traffic flow. This concept
is consistent with both the driver's ride impulse
and the desire of
drivers to speed up.
We prove that entropy solutions
of type $(A,B)$ are unique. This
solution concept also leads to simple, transparent, and unified
convergence proofs for
numerical schemes. Indeed, we adjust to (*)
new variants of the Engquist-Osher (EO) scheme
(Bürger, Karlsen, and Towers [Submitted, 2007]),
and of the Hilliges-Weidlich (HW) scheme analyzed
by the authors
[ J. Engrg. Math., to appear].
It is proven that the EO and HW schemes and a related Godunov scheme
converge to the unique entropy solution of type $(A,B)$ of (*).
For the Godunov version,
this is the first rigorous convergence and well-posedness result, since no
unnecessarily restrictive regularity assumptions are imposed on the solution.
Numerical experiments for first-order schemes and
formally second-order
MUSCL/Runge-Kutta versions are presented.
Citation: Raimund Bürger, Antonio García, Kenneth H. Karlsen, John D. Towers. Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model[J]. Networks and Heterogeneous Media, 2008, 3(1): 1-41. doi: 10.3934/nhm.2008.3.1
$\phi_t + (\phi v(\phi/{a(x)})_x = 0, \quad \phi(x,0)=\phi_0(x),\quad x \in \mathbb{R},\quad t\in (0,T),$ (*)
where $v(z)$ is the velocity function.
We adapt to (*)
a new notion
of entropy solutions (Bürger, Karlsen, and Towers
[Submitted, 2007]), which involves a Kružkov-type
entropy inequality based on a specific flux connection $(A,B)$, and
which we interpret in terms of traffic flow. This concept
is consistent with both the driver's ride impulse
and the desire of
drivers to speed up.
We prove that entropy solutions
of type $(A,B)$ are unique. This
solution concept also leads to simple, transparent, and unified
convergence proofs for
numerical schemes. Indeed, we adjust to (*)
new variants of the Engquist-Osher (EO) scheme
(Bürger, Karlsen, and Towers [Submitted, 2007]),
and of the Hilliges-Weidlich (HW) scheme analyzed
by the authors
[ J. Engrg. Math., to appear].
It is proven that the EO and HW schemes and a related Godunov scheme
converge to the unique entropy solution of type $(A,B)$ of (*).
For the Godunov version,
this is the first rigorous convergence and well-posedness result, since no
unnecessarily restrictive regularity assumptions are imposed on the solution.
Numerical experiments for first-order schemes and
formally second-order
MUSCL/Runge-Kutta versions are presented.