Research article Special Issues

EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network


  • This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.

    Citation: Hafiz Ghulam Murtza Qamar, Muhammad Farrukh Qureshi, Zohaib Mushtaq, Zubariah Zubariah, Muhammad Zia ur Rehman, Nagwan Abdel Samee, Noha F. Mahmoud, Yeong Hyeon Gu, Mohammed A. Al-masni. EMG gesture signal analysis towards diagnosis of upper limb using dual-pathway convolutional neural network[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5712-5734. doi: 10.3934/mbe.2024252

    Related Papers:

    [1] Pan Yang, Jianwen Feng, Xinchu Fu . Cluster collective behaviors via feedback pinning control induced by epidemic spread in a patchy population with dispersal. Mathematical Biosciences and Engineering, 2020, 17(5): 4718-4746. doi: 10.3934/mbe.2020259
    [2] Mingtao Li, Xin Pei, Juan Zhang, Li Li . Asymptotic analysis of endemic equilibrium to a brucellosis model. Mathematical Biosciences and Engineering, 2019, 16(5): 5836-5850. doi: 10.3934/mbe.2019291
    [3] Rajanish Kumar Rai, Pankaj Kumar Tiwari, Yun Kang, Arvind Kumar Misra . Modeling the effect of literacy and social media advertisements on the dynamics of infectious diseases. Mathematical Biosciences and Engineering, 2020, 17(5): 5812-5848. doi: 10.3934/mbe.2020311
    [4] Andrey V. Melnik, Andrei Korobeinikov . Lyapunov functions and global stability for SIR and SEIR models withage-dependent susceptibility. Mathematical Biosciences and Engineering, 2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369
    [5] Yu Ji . Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences and Engineering, 2015, 12(3): 525-536. doi: 10.3934/mbe.2015.12.525
    [6] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [7] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [8] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [9] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [10] Yuhua Long, Yining Chen . Global stability of a pseudorabies virus model with vertical transmission. Mathematical Biosciences and Engineering, 2020, 17(5): 5234-5249. doi: 10.3934/mbe.2020283
  • This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.



    We are concerned with Atangana-Baleanu variable order fractional problems:

    {Lu(x)=ABCDα(x)u(x)+a(x)u(x)=f(x,u),x[0,1],B(u)=0, (1.1)

    where 0<α(x)<1, ABCDα(x)(x) denotes the α(x) order Atangana-Baleanu Caputo derivatives, B(u) is the linear boundary condition, which includes initial value condition, periodic condition, final value condition and so on.

    The α(x)(0<α(x)<1) order Atangana-Baleanu Caputo derivatives of a function u(x) is firstly defined by Atangana and Baleanu [1]

    ABCDα(x)u(x)=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))u(t)dt, (1.2)

    where Eα(x)(x) is the Mittag-Leffler function.

    Fractional order differential equations (FDEs) have important applications in several fields such as materials, chemistry transmission dynamics, optimal control and engineering [2,3,4,5,6]. In fact, the classical fractional derivatives are defined with weak singular kernels and the solutions of FDEs inherit the weak singularity. The Mittag-Leffler (ML) function was firstly introduced by Magnus Gösta Mittag-Leffler. Recently, it is found that this function has close relation to FDEs arising in real applications.

    Atangana and Baleanu [1] introduced a new fractional derivative by using the ML function, which is nonlocal and nonsingular. The new fractional derivatives is very important and have been applied to several different fields (see e.g. [7,8,9]). Up to now, several numerical algorithms have been developed for solving Atangana-Baleanu FDEs. Akgül et al. [10,11,12] proposed effective difference techniques and kernels based approaches for Atangana-Baleanu FDEs. On the basis of the Sobolev kernel functions, Arqub et al. [13,14,15,16,17] proposed the numerical techniques for Atangana-Baleanu fractional Riccati and Bernoulli equations, Bagley-Torvik and Painlev equations, Volterra and Fredholm integro-differential equations. Yadav et al. [18] introduced the numerical algorithms and application of Atangana-Baleanu FDEs. El-Ajou, Hadid, Al-Smadi et al. [19] developed approximated technique for solutions of population dynamics of Atangana-Baleanu fractional order.

    Reproducing kernel Hilbert space (RKHS) is ideal for function approximation and estimate of fractional derivatives. In recent years, reproducing kernel functions (RKF) theory have been employed to solve linear and nonlinear fractional order problems, singularly perturbed problems, singular integral equations, fuzzy differential equations, and so on (see, e.g. [10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]). However, there exists little discussion on numerical schemes for solving variable order Atangana-Baleanu FDEs.

    In this paper, by using polynomials RKF, we will present a new collocation method for solving variable order Atangana-Baleanu FDEs.

    This work is organized as follows. We summarize fractional derivatives and RKHS theory in Section 2. In Section 3, we develop RKF based collocation technique for Atangana-Baleanu variable order FDEs. Numerical experiments are provided in Section 4. Concluding remarks are included in the last section.

    Definition 2.1. Let H be a Hilbert function space defined on E. The function K:E×ER is known as an RKF of space H if

    (1)K(,t)HforalltE,(2)w(t)=(w(),K(,t)),foralltEandallwH.

    If there exists a RKF in a Hilbert space, then the space is a RKHS.

    Definition 2.2. Symmetric function K:E×ER is known as a positive definite kernel (PDK) if ni,j=1cicjK(xi,xj)0 for any nN, x1,x2,,xnE,c1,c2,,cnR.

    Theorem 2.1. [36] The RKF of an RKHS is positive definite. Besides, every PDK can define a unique RKHS, of which it is the RKF.

    Definition 2.3. Let q>0. The one parameter Mittag-Leffler function of order q is defined by

    Eq(z)=j=0zjΓ(jq+1). (2.1)

    Definition 2.4. Let q1,q2>0. The two-parameter Mittag-Leffler function is defined by

    Eq1,q2(z)=j=0zjΓ(jq1+q2). (2.2)

    For the domains of convergence of the Mittag-Leffler functions, please refer to the following theorem.

    Theorem 2.2. [37] For q1,q2>0, the two-parameter Mittag-Leffler function Eq1,q2(z) is convergent for all zC.

    Definition 2.5. The Sobolev space H1(0,T) is defined as follows

    H1(0,T)={u|uL2(0,T),uL2(0,T)}.

    Definition 2.6. The α(0,1) order Atangana- Baleanu fractional derivative of a function uH1(a,b) is defined

    ABCDαu(x)=M(α)1αx0Eα(α1α(xt)α)u(t)dt, (2.3)

    where M(α) is the normalization term satisfying M(0)=M(1)=1.

    Theorem 2.3. [38] The function k(x,y)=(xy+c)m for c>0,mN is a PDK.

    According to Theorem 2.1, there exists an associated RKHS Qm with k as an RKF.

    To solve (1.1), we will construct the RKF which satisfies the homogenous boundary condition.

    Definition 3.1.

    Qm,0={w(t)w(t)Qm,B(w)=0}.

    Theorem 3.1. The space Qm,0 is an RKHS and its RKF is expressed by

    K(x,y)=k(x,y)Bxk(x,y)Byk(x,y)BxByk(x,y).

    Proof. If Byk(x,y)=0 or Bxk(x,y)=0, then

    K(x,y)=k(x,y).

    If Byk(x,y)0, then

    BxK(x,y)=Bxk(x,y)Bxk(x,y)BxByk(x,y)BxByk(x,y),=0,

    and naturally K(x,y)Qm,0.

    For all u(y)Qm,0, we have u(y)Qm and Byu(y)=0.

    We have

    (u(y),K(x,y))=(u(y),k(x,y))(u(y),Bxk(x,y)Byk(x,y)BxByk(x,y)=u(x)Byk(x,y)BxByk(x,y)(u(y),Bxk(x,y))=u(x)Byk(x,y)BxByk(x,y)Bx(u(y),k(x,y))=u(x)Byk(x,y)BxByk(x,y)Bxu(x)=u(x)0=0.

    Thus, K(x,y) is the RKF of space Qm,0 and the proof is complete.

    Suppose that L:Qm,0H1 is a bounded linear operator. It is easy to proved that its inverse operator L1 is also bounded since both Qm,0 and H1 are Banach spaces.

    Choose N distinct scattered points in [0,1], such as {x1,x2,,xN}. Put ψi(x)=K(x,xi),i=1,2,,N. By using RKF basis, the RKF collocation solution uN(x) for (1.1) can be written as follows

    uN(x)=Ni=1ciψi(x), (3.1)

    where {ci}Ni=1 are undetermined constants.

    Collocating (1.1) at N nodes x1,x2,,xN provides N equations:

    LuN(xk)=Ni=1ciLψi(xk)=f(xk,uN(xk)),k=1,2,,N. (3.2)

    System (3.3) of equations is simplified to the matrix form:

    Ac=f, (3.3)

    where Aik=Lxψk(x)|x=xi,i,k=1,2,,N, f=(f(x1,uN(x1)),f(x2,uN(x2)),,f(xN,uN(xN)).

    Theorem 3.2. If γ>0, then

    ABCDα(x)xγ=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)),

    and therefore matrix A can be computed exactly.

    Proof. It is noticed that

    ABCDα(x)xγ=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))γtγ1dt=M(α(x))1α(x)x0j=0(α(x)1α(x)(xt)α(x))jΓ(jα(x)+1)γtγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)x0(xt)α(x)tγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)Γ(jα(x)+1)Γ(γ)Γ(jα(x)+γ+1)xjα(x)+γ=M(α(x))1α(x)Γ(γ+1)xγj=0(α(x)1α(x)xα(x))jΓ(jα(x)+γ+1)=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)).

    Since RKF K(x,y) is a polynomials, matrix A in (3.3) can be calculated exactly. The proof is complete.

    If f(x,u) is linear, then (3.3) is a system of linear equations and it is convenient to determine the value of the unknowns {ci}Ni=1. If f(x,u) is nonlinear, then (3.3) is a system of nonlinear equations, we solve it by using the tool "FindRoot" in soft Mathematica 11.0.

    The residual function is defined as

    RN(x)=LuN(x)f(x,uN(x)).

    Theorem 3.3. If a(x) and f(x,u)C4[0,1], then

    RN(x)maxx[x1,xN]RN(x)∣≤ch4,

    where c>0 is a real number, h=max1iNxi+1xi.

    Proof. For the proof, please refer to [22].

    Three experiments are illustrated in this section to show the applicability and effectiveness of the mentioned approach. We take M(α)=1 in the following experiments.

    Problem 4.1

    Solve fractional linear initial value problems (IVPs) as follows:

    {ABCDαu(x)+exu(x)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=ex(x2+x3+1)+M(α(x))1α(x)2x2Eα(x),3(α(x)1α(x)xα(x))++M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). The true solution of this equation is u(x)=x2+x3+1.

    Selecting m=8,N=8, xi=iN,i=1,2,,N, we apply our new method to Problem 4.1. The obtained numerical results are shown in Tables 1. The Mathematica codes for Problem 4.1 is provided as follows:

    tru[x_]=x2+x3+1;p[x_]=Ex;α[x_]=0.5x+0.1;B[x_]=1;a[x_]=1Gamma[2α[x]];K[x_,y_]=(xy+1)8;R[x_,y_]=K[x,y]K[x,0]K[0,y]/K[0,0];w[x_,y_]=p[x]R[x,y];v[x_,d_]=B[α[x]]Gamma[d+1]xdMittagLefflerE[2,d+1,α[x]xα[x]/(1α[x])];fu[x_,y_]=8yv[x,1]+28y2v[x,2]+56y3v[x,3]+70y4v[x,4]+56y5v[x,5]+28y6v[x,6]+8y7v[x,7]+y8v[x,8];m=8;xx=Table[0,{i,1,m}];A=Table[0,{i,1,m},{j,1,m}];For[i=1,im,i++,xx[[i]]=i/m];For[i=1,im,i++,For[j=1,jm,j++,A[[i,j]]=w[xx[[i]],xx[[j]]]+fu[xx[[i]]+xx[[j]]]]];v[x_]=tru[0];f0[x]=p[x]tru[x]+v[x,2]+v[x,3];f[x]=f0[x]p[x]v[x];b=Table[f[xx[[k]]],{i,1,m}];c=LinearSolve[A,b];u[x_]=mi=1c[[i]]R[x,xx[[i]]];u[x_]=u[x]+v[x];
    Table 1.  Errors of numerical results for Problem 4.1.
    Nodes x Exact solution Absolute error Relative error
    0.10 1.011 1.88×1013 1.86×1013
    0.20 1.048 2.57×1013 2.45×1013
    0.30 1.117 9.50×1014 8.50×1014
    0.40 1.224 6.35×1013 5.19×1013
    0.50 1.375 0 0
    0.60 1.576 2.17×1014 1.38×1014
    0.70 1.833 7.65×1013 4.17×1013
    0.80 2.152 8.65×1013 4.02×1013
    0.90 2.539 2.40×1013 9.46×1014
    1.00 3.000 9.09×1013 3.03×1013

     | Show Table
    DownLoad: CSV

    Problem 4.2

    Solve the variable order fractional linear terminal value problems

    {ABCDαu(x)+2u(x)=f(x),x[0,1),u(1)=3,

    where α(x)=sinx, f(x)=2(x4+2)+M(α(x))1α(x)24x4Eα(x),5(α(x)1α(x)xα(x)). The exact solution is u(x)=x4+2.

    Selecting m=8,N=8, xi=i1N,i=1,2,,N, the obtained absolute and relative errors of numerical results using our method are listed in Tables 2.

    Table 2.  Errors of numerical results for Problem 4.2.
    Nodes x Exact solution Absolute error Relative error
    0.00 2.0000 2.75×1010 1.37×1010
    0.10 2.0001 1.02×1010 5.14×1011
    0.20 2.0016 9.96×1011 4.97×1011
    0.30 2.0081 1.08×1010 5.39×1011
    0.40 2.0256 1.12×1010 5.56×1011
    0.50 2.0625 1.10×1010 5.37×1011
    0.60 2.1296 1.05×1010 4.96×1011
    0.70 2.2401 1.08×1010 4.83×1011
    0.80 2.4096 9.36×1011 3.88×1011
    0.90 2.6561 4.38×1011 1.64×1011

     | Show Table
    DownLoad: CSV

    Problem 4.3

    We apply our method to the nonlinear variable order fractional IVPs as follows

    {ABCDαu(x)+sinhxu(x)+sin(u)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=sinhx(x+x3+1)+M(α(x))1α(x)xEα(x),2(α(x)1α(x)xα(x))+M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). Its true solution is u(x)=x+x3+1.

    Choosing m=8,N=8, xi=iN,i=1,2,,N, we plot the absolute and relative errors in Figure 1.

    Figure 1.  Absolute errors (left) and relative errors (right) for Problem 4.3.

    In this work, a new RKF based collocation technique is developed for Atangana-Baleanu variable order fractional problems. The proposed scheme is meshless and therefore it does not require any background meshes. From the numerical results, it is found that the accuracy of obtained approximate solutions is high and can reach to O(1010). Also, for nonlinear fractional problems, our method can yield highly accurate numerical solutions. Hence, our new method is very effective and easy to implement for the considered problems.

    The work was supported by the National Natural Science Foundation of China (No.11801044, No.11326237).

    All authors declare no conflicts of interest in this paper.



    [1] Q. Liu, A. Liu, X. Zhang, X. Chen, R. Qian, X. Chen, Removal of EMG artifacts from multichannel EEG signals using combined singular spectrum analysis and canonical correlation analysis, J. Healthcare Eng., 2019 (2019), 4159676. https://doi.org/10.1155/2019/4159676 doi: 10.1155/2019/4159676
    [2] Y. Kim, S. Stapornchaisit, M. Miyakoshi, N. Yoshimura, Y. Koike, The effect of ICA and non-negative matrix factorization analysis for EMG signals recorded from multi-channel EMG sensors, Front. Neurosci., 14 (2020), 600804. https://doi.org/10.3389/fnins.2020.600804 doi: 10.3389/fnins.2020.600804
    [3] X. Xi, C. Yang, J. Shi, Z. Luo, Y. B. Zhao, Surface electromyography-based daily activity recognition using wavelet coherence coefficient and support vector machine, Neural Process. Lett., 50 (2019), 2265–2280. https://doi.org/10.1007/s11063-019-10008-w doi: 10.1007/s11063-019-10008-w
    [4] Z. Qin, Z. Jiang, J. Chen, C. Hu, Y. Ma, sEMG-based tremor severity evaluation for Parkinson's disease using a light-weight CNN, IEEE Signal Process. Lett., 26 (2019), 637–641. https://doi.org/10.1109/LSP.2019.2903334 doi: 10.1109/LSP.2019.2903334
    [5] K. Leerskov, M. Rehman, I. Niazi, S. Cremoux, M. Jochumsen, Investigating the feasibility of combining EEG and EMG for controlling a hybrid human computer interface in patients with spinal cord injury, in 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE, (2020), 403–410. https://doi.org/10.1109/BIBE50027.2020.00072
    [6] F. Amin, A. Waris, J. Iqbal, S. O. Gilani, M. Z. ur Rehman, S. Mushtaq, et al., Maximizing stroke recovery with advanced technologies: A comprehensive assessment of robot-assisted, EMG-Controlled robotics, virtual reality, and mirror therapy interventions, Results Eng., 21 (2024), 101725. https://doi.org/10.1016/j.rineng.2023.101725 doi: 10.1016/j.rineng.2023.101725
    [7] T. W. Boonstra, L. Faes, J. N. Kerkman, D. Marinazzo, Information decomposition of multichannel EMG to map functional interactions in the distributed motor system, NeuroImage, 202 (2019), 116093. https://doi.org/10.1016/j.neuroimage.2019.116093 doi: 10.1016/j.neuroimage.2019.116093
    [8] L. C. Chen, P. H. Chen, R. T. H. Tsai, Y. Tsao, Epg2s: Speech generation and speech enhancement based on electropalatography and audio signals using multimodal learning, IEEE Signal Process. Lett., 29 (2022), 2582–2586. https://doi.org/10.1109/LSP.2022.3184636 doi: 10.1109/LSP.2022.3184636
    [9] S. Inam, S. Al-Harmain, S. Shafique, M. Afzal, A. Rabail, F. Amin, et al., A brief review of strategies used for EMG signal classification, in 2021 International Conference on Artificial Intelligence (ICAI), IEEE, (2021), 140–145. https://doi.org/10.1109/ICAI52203.2021.9445257
    [10] L. Cai, S. Yan, C. Ouyang, T. Zhang, J. Zhu, L. Chen, et al., Muscle synergies in joystick manipulation, Front. Physiol., 14 (2023), 1282295. https://doi.org/10.3389/fphys.2023.1282295 doi: 10.3389/fphys.2023.1282295
    [11] C. Shen, K. Zhang, J. Tang, A COVID-19 detection algorithm using deep features and discrete social learning particle swarm optimization for edge computing devices, ACM Trans. Internet Technol., 22 (2022), 1–17. https://doi.org/10.1145/3453170 doi: 10.1145/3453170
    [12] S. Khalil, U. Nawaz, Zubariah, Z. Mushtaq, S. Arif, M. Z. ur Rehman, et al., Enhancing ductal carcinoma classification using transfer learning with 3D U-Net models in breast cancer imaging, Appl. Sci., 13 (2023), 4255. https://doi.org/10.3390/app13074255 doi: 10.3390/app13074255
    [13] Z. Mushtaq, M. F. Qureshi, M. J. Abbass, S. M. Q. Al-Fakih, Effective kernel-principal component analysis based approach for wisconsin breast cancer diagnosis, Electron. Lett., 59 (2023), e212706. https://doi.org/10.1049/ell2.12706 doi: 10.1049/ell2.12706
    [14] Z. Hu, J. Tang, P. Zhang, J. Jiang, Deep learning for the identification of bruised apples by fusing 3D deep features for apple grading systems, Mech. Syst. Signal Process., 145 (2020), 106922. https://doi.org/10.1016/j.ymssp.2020.106922 doi: 10.1016/j.ymssp.2020.106922
    [15] A. Shahzad, A. Mushtaq, A. Q. Sabeeh, Y. Y. Ghadi, Z. Mushtaq, S. Arif, et al., Automated uterine fibroids detection in ultrasound images using deep convolutional neural networks, Healthcare, 11 (2023), 1493. https://doi.org/10.3390/healthcare11101493 doi: 10.3390/healthcare11101493
    [16] N. Afshan, Z. Mushtaq, F. S. Alamri, M. F. Qureshi, N. A. Khan, I. Siddique, Efficient thyroid disorder identification with weighted voting ensemble of super learners by using adaptive synthetic sampling technique, AIMS Math., 8 (2023), 24274–24309. https://doi.org/10.3934/math.20231238 doi: 10.3934/math.20231238
    [17] A. A. Khan, S. Raza, M. F. Qureshi, Z. Mushtaq, M. Taha, F. Amin, Deep learning-based classification of wheat leaf diseases for edge devices, in 2023 2nd International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), IEEE, (2023), 1–6. https://doi.org/10.1109/ETECTE59617.2023.10396676
    [18] D. Huang, B. Chen, Surface EMG decoding for hand gestures based on spectrogram and CNN-LSTM, in 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI), IEEE, (2019), 123–126. https://doi.org/10.1109/CCHI.2019.8901936
    [19] J. O. Pinzón-Arenas, R. Jiménez-Moreno, A. Rubiano, Percentage estimation of muscular activity of the forearm by means of EMG signals based on the gesture recognized using CNN, Sens. Bio-Sens. Res., 29 (2020), 100353. https://doi.org/10.1016/j.sbsr.2020.100353 doi: 10.1016/j.sbsr.2020.100353
    [20] B. Saeed, S. O. Gilani, Z. ur Rehman, M. Jamil, A. Waris, M. N. Khan, Comparative analysis of classifiers for EMG signals, in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), IEEE, (2019), 1–5. https://doi.org/10.1109/CCECE.2019.8861835
    [21] N. K. Karnam, A. C. Turlapaty, S. R. Dubey, B. Gokaraju, Classification of sEMG signals of hand gestures based on energy features, Biomed. Signal Process. Control, 70 (2021), 102948. https://doi.org/10.1016/j.bspc.2021.102948 doi: 10.1016/j.bspc.2021.102948
    [22] M. Akmal, S. Khalid, M. Moiz, M. J. Abbass, M. F. Qureshi, Z. Mushtaq, Leveraging training strategies of artificial neural network for classification of multiday electromyography signals, in 2022 International Conference on Emerging Trends in Electrical, Control, and Telecommunication Engineering (ETECTE), IEEE, (2022), 1–5. https://doi.org/10.1109/ETECTE55893.2022.10007103
    [23] M. Akmal, M. F. Qureshi, F. Amin, M. Z. ur Rehman, I. K. Niazi, SVM-based real-time classification of prosthetic fingers using myo armband-acquired electromyography data, in 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE), IEEE, (2021), 1–5. https://doi.org/10.1109/BIBE52308.2021.9635461
    [24] S. Inam, F. Amin, M. Z. ur Rehman, Comparative study of flexor and extensor muscles emg for upper limb prosthesis, in 2021 15th International Conference on Open Source Systems and Technologies (ICOSST), IEEE, (2021), 1–5. https://doi.org/10.1109/ICOSST53930.2021.9683956
    [25] Y. Hu, Y. Wong, W. Wei, Y. Du, M. Kankanhalli, W. Geng, A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition, PLoS One, 13 (2018), e0206049. https://doi.org/10.1371/journal.pone.0206049 doi: 10.1371/journal.pone.0206049
    [26] S. Pancholi, A. M. Joshi, D. Joshi, A robust and accurate deep learning based pattern recognition framework for upper limb prosthesis using semg, preprint, arXiv: 2106.02463.
    [27] Y. Cheng, G. Li, M. Yu, D. Jiang, J. Yun, Y. Liu, et al., Gesture recognition based on surface electromyography-feature image, Concurrency Comput. Pract. Exper., 33 (2021), e6051. https://doi.org/10.1002/cpe.6051 doi: 10.1002/cpe.6051
    [28] R. Tong, Y. Zhang, H. Chen, H. Liu, Learn the temporal-spatial feature of sEMG via dual-flow network, Int. J. Humanoid Rob., 16 (2019), 1941004. https://doi.org/10.1142/S0219843619410044 doi: 10.1142/S0219843619410044
    [29] P. Xu, F. Li, H. Wang, A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition, PLoS One, 17 (2022), e0262810. https://doi.org/10.1371/journal.pone.0262810 doi: 10.1371/journal.pone.0262810
    [30] M. F. Qureshi, Z. Mushtaq, M. Z. ur Rehman, E. N. Kamavuako, E2cnn: An efficient concatenated cnn for classification of surface emg extracted from upper limb, IEEE Sens. J., 23 (2023), 8989–8996. https://doi.org/10.1109/JSEN.2023.3255408 doi: 10.1109/JSEN.2023.3255408
    [31] M. F. Qureshi, Z. Mushtaq, M. Z. ur Rehman, E. N. Kamavuako, Spectral image-based multiday surface electromyography classification of hand motions using CNN for human–computer interaction, IEEE Sens. J., 22 (2022), 20676–20683. https://doi.org/10.1109/JSEN.2022.3204121 doi: 10.1109/JSEN.2022.3204121
    [32] H. Nodera, Y. Osaki, H. Yamazaki, A. Mori, Y. Izumi, R. Kaji, Deep learning for waveform identification of resting needle electromyography signals, Clin. Neurophysiol., 130 (2019), 617–623. https://doi.org/10.1016/j.clinph.2019.01.024 doi: 10.1016/j.clinph.2019.01.024
    [33] D. Gao, X. Tang, M. Wan, G. Huang, Y. Zhang, EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks, Front. Neurosci., 17 (2023), 1136609. https://doi.org/10.3389/fnins.2023.1136609 doi: 10.3389/fnins.2023.1136609
    [34] T. Tuncer, S. Dogan, M. Baygin, U. R. Acharya, Tetromino pattern based accurate eeg emotion classification model, Artif. Intell. Med., 123 (2022), 102210. https://doi.org/10.1016/j.artmed.2021.102210 doi: 10.1016/j.artmed.2021.102210
    [35] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A. G. M. Hager, S. Elsig, et al., Electromyography data for non-invasive naturally-controlled robotic hand prostheses, Sci. Data, 1 (2014), 140053. https://doi.org/10.1038/sdata.2014.53 doi: 10.1038/sdata.2014.53
    [36] A. Gijsberts, M. Atzori, C. Castellini, H. Müller, B. Caputo, Measuring movement classification performance with the movement error rate, IEEE Trans. Neural Syst. Rehabil. Eng., 89621 (2014), 735–744.
    [37] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A. G. M. Hager, E. Simone, et al., Clinical parameter effect on the capability to control myoelectric robotic prosthetic hands, J. Rehabil. Res. Dev., 53 (2016), 345–358. http://doi.org/10.1682/JRRD.2014.09.0218 doi: 10.1682/JRRD.2014.09.0218
    [38] M. Atzori, M. Cognolato, H. Müller, Deep learning with convolutional neural networks applied to electromyography data: A resource for the classification of movements for prosthetic hands, Front. Neurorob., 10 (2016), 9. https://doi.org/10.3389/fnbot.2016.00009 doi: 10.3389/fnbot.2016.00009
    [39] X. Zhang, X. Li, O. W. Samuel, Z. Huang, P. Fang, G. Li, Improving the robustness of electromyogram-pattern recognition for prosthetic control by a postprocessing strategy, Front. Neurorob., 11 (2017), 51. https://doi.org/10.3389/fnbot.2017.00051 doi: 10.3389/fnbot.2017.00051
    [40] F. Riillo, L. Quitadamo, F. Cavrini, E. Gruppioni, C. Pinto, N. C. Pastò, et al., Optimization of EMG-based hand gesture recognition: Supervised vs. unsupervised data preprocessing on healthy subjects and transradial amputees, Biomed. Signal Process. Control, 14 (2014), 117–125. https://doi.org/10.1016/j.bspc.2014.07.007 doi: 10.1016/j.bspc.2014.07.007
    [41] S. Lu, J. Yang, B. Yang, X. Li, Z. Yin, L. Yin, et al., Surgical instrument posture estimation and tracking based on lstm, ICT Express, in press. https://doi.org/10.1016/j.icte.2024.01.002
    [42] S. Zhao, W. Liang, K. Wang, L. Ren, Z. Qian, G. Chen, et al., A multiaxial bionic ankle based on series elastic actuation with a parallel spring, IEEE Trans. Ind. Electron., 2023 (2023), 1–13. https://doi.org/10.1109/TIE.2023.3310041 doi: 10.1109/TIE.2023.3310041
    [43] W. Geng, Y. Du, W. Jin, W. Wei, Y. Hu, J. Li, Gesture recognition by instantaneous surface EMG images, Sci. Rep., 6 (2016), 36571. https://doi.org/10.1038/srep36571 doi: 10.1038/srep36571
    [44] W. Wei, Y. Wong, Y. Du, Y. Hu, M. Kankanhalli, W. Geng, A multi-stream convolutional neural network for sEMG-based gesture recognition in muscle-computer interface, Pattern Recognit. Lett., 119 (2019), 131–138. https://doi.org/10.1016/j.patrec.2017.12.005 doi: 10.1016/j.patrec.2017.12.005
    [45] W. Wei, Q. Dai, Y. Wong, Y. Hu, M. Kankanhalli, W. Geng, Surface-electromyography-based gesture recognition by multi-view deep learning, IEEE Trans. Biomed. Eng., 66 (2019), 2964–2973. https://doi.org/10.1109/TBME.2019.2899222 doi: 10.1109/TBME.2019.2899222
    [46] H. Wang, Y. Zhang, C. Liu, H. Liu, sEMG based hand gesture recognition with deformable convolutional network, Int. J. Mach. Learn. Cybern., 13 (2022), 1729–1738. https://doi.org/10.1007/s13042-021-01482-7 doi: 10.1007/s13042-021-01482-7
    [47] Y. Zhang, F. Yang, Q. Fan, A. Yang, X. Li, Research on sEMG-based gesture recognition by dual-view deep learning, IEEE Access, 10 (2022), 32928–32937. https://doi.org/10.1109/ACCESS.2022.3158667 doi: 10.1109/ACCESS.2022.3158667
    [48] X. Zhai, B. Jelfs, R. H. M. Chan, C. Tin, Self-recalibrating surface EMG pattern recognition for neuroprosthesis control based on convolutional neural network, Front. Neurorob., 11 (2017), 379. https://doi.org/10.3389/fnins.2017.00379 doi: 10.3389/fnins.2017.00379
    [49] J. A. Sandoval-Espino, A. Zamudio-Lara, J. A. Marbán-Salgado, J. J. Escobedo-Alatorre, O. Palillero-Sandoval, J. G. Velásquez-Aguilar, Selection of the best set of features for sEMG-based hand gesture recognition applying a CNN architecture, Sensors, 22 (2022), 4972. https://doi.org/10.3390/s22134972 doi: 10.3390/s22134972
  • This article has been cited by:

    1. Yuexia Zhang, Ziyang Chen, SETQR Propagation Model for Social Networks, 2019, 7, 2169-3536, 127533, 10.1109/ACCESS.2019.2939150
    2. Anarul Islam, Haider Ali Biswas, Modeling the Effect of Global Warming on the Sustainable Groundwater Management: A Case Study in Bangladesh, 2021, 19, 2224-2880, 639, 10.37394/23206.2020.19.71
    3. Rong Hu, Lili Liu, Xinzhi Ren, Xianning Liu, Global stability of an information-related epidemic model with age-dependent latency and relapse, 2018, 36, 1476945X, 30, 10.1016/j.ecocom.2018.06.006
    4. R. Arazi, A. Feigel, Discontinuous transitions of social distancing in the SIR model, 2021, 566, 03784371, 125632, 10.1016/j.physa.2020.125632
    5. Magdalena Ochab, Piero Manfredi, Krzysztof Puszynski, Alberto d’Onofrio, Multiple epidemic waves as the outcome of stochastic SIR epidemics with behavioral responses: a hybrid modeling approach, 2023, 111, 0924-090X, 887, 10.1007/s11071-022-07317-6
    6. Alberto d'Onofrio, Piero Manfredi, Behavioral SIR models with incidence-based social-distancing, 2022, 159, 09600779, 112072, 10.1016/j.chaos.2022.112072
    7. Sileshi Sintayehu Sharbayta, Bruno Buonomo, Alberto d'Onofrio, Tadesse Abdi, ‘Period doubling’ induced by optimal control in a behavioral SIR epidemic model, 2022, 161, 09600779, 112347, 10.1016/j.chaos.2022.112347
    8. Wu Jing, Haiyan Kang, An effective ISDPR rumor propagation model on complex networks, 2022, 37, 0884-8173, 11188, 10.1002/int.23038
    9. D. Ghosh, P. K. Santra, G. S. Mahapatra, Amr Elsonbaty, A. A. Elsadany, A discrete-time epidemic model for the analysis of transmission of COVID19 based upon data of epidemiological parameters, 2022, 231, 1951-6355, 3461, 10.1140/epjs/s11734-022-00537-2
    10. Lili Liu, Jian Zhang, Yazhi Li, Xinzhi Ren, An age-structured tuberculosis model with information and immigration: Stability and simulation study, 2023, 16, 1793-5245, 10.1142/S1793524522500760
    11. Roxana López-Cruz, Global stability of an SAIRD epidemiological model with negative feedback, 2022, 2022, 2731-4235, 10.1186/s13662-022-03712-w
    12. Ruiqing Shi, Yihong Zhang, Cuihong Wang, Dynamic Analysis and Optimal Control of Fractional Order African Swine Fever Models with Media Coverage, 2023, 13, 2076-2615, 2252, 10.3390/ani13142252
    13. Shaday Guerrero‐Flores, Osvaldo Osuna, Cruz Vargas‐De‐León, Periodic solutions of seasonal epidemiological models with information‐dependent vaccination, 2023, 0170-4214, 10.1002/mma.9728
    14. Wanqin Wu, Wenhui Luo, Hui Chen, Yun Zhao, Stochastic Dynamics Analysis of Epidemic Models Considering Negative Feedback of Information, 2023, 15, 2073-8994, 1781, 10.3390/sym15091781
    15. Yau Umar Ahmad, James Andrawus, Abdurrahman Ado, Yahaya Adamu Maigoro, Abdullahi Yusuf, Saad Althobaiti, Umar Tasiu Mustapha, Mathematical modeling and analysis of human-to-human monkeypox virus transmission with post-exposure vaccination, 2024, 2363-6203, 10.1007/s40808-023-01920-1
    16. Ruiqing Shi, Yihong Zhang, Stability analysis and Hopf bifurcation of a fractional order HIV model with saturated incidence rate and time delay, 2024, 108, 11100168, 70, 10.1016/j.aej.2024.07.059
    17. James Andrawus, Yau Umar Ahmad, Agada Apeh Andrew, Abdullahi Yusuf, Sania Qureshi, Ballah Akawu Denue, Habu Abdul, Soheil Salahshour, Impact of surveillance in human-to-human transmission of monkeypox virus, 2024, 1951-6355, 10.1140/epjs/s11734-024-01346-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2638) PDF downloads(146) Cited by(2)

Figures and Tables

Figures(5)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog